1195 lines
32 KiB
C
1195 lines
32 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* ARM PL35X NAND flash controller driver
|
|
*
|
|
* Copyright (C) 2017 Xilinx, Inc
|
|
* Author:
|
|
* Miquel Raynal <miquel.raynal@bootlin.com>
|
|
* Original work (rewritten):
|
|
* Punnaiah Choudary Kalluri <punnaia@xilinx.com>
|
|
* Naga Sureshkumar Relli <nagasure@xilinx.com>
|
|
*/
|
|
|
|
#include <linux/amba/bus.h>
|
|
#include <linux/err.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/io.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/iopoll.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/module.h>
|
|
#include <linux/moduleparam.h>
|
|
#include <linux/mtd/mtd.h>
|
|
#include <linux/mtd/rawnand.h>
|
|
#include <linux/mtd/partitions.h>
|
|
#include <linux/of_address.h>
|
|
#include <linux/of_device.h>
|
|
#include <linux/of_platform.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/clk.h>
|
|
|
|
#define PL35X_NANDC_DRIVER_NAME "pl35x-nand-controller"
|
|
|
|
/* SMC controller status register (RO) */
|
|
#define PL35X_SMC_MEMC_STATUS 0x0
|
|
#define PL35X_SMC_MEMC_STATUS_RAW_INT_STATUS1 BIT(6)
|
|
/* SMC clear config register (WO) */
|
|
#define PL35X_SMC_MEMC_CFG_CLR 0xC
|
|
#define PL35X_SMC_MEMC_CFG_CLR_INT_DIS_1 BIT(1)
|
|
#define PL35X_SMC_MEMC_CFG_CLR_INT_CLR_1 BIT(4)
|
|
#define PL35X_SMC_MEMC_CFG_CLR_ECC_INT_DIS_1 BIT(6)
|
|
/* SMC direct command register (WO) */
|
|
#define PL35X_SMC_DIRECT_CMD 0x10
|
|
#define PL35X_SMC_DIRECT_CMD_NAND_CS (0x4 << 23)
|
|
#define PL35X_SMC_DIRECT_CMD_UPD_REGS (0x2 << 21)
|
|
/* SMC set cycles register (WO) */
|
|
#define PL35X_SMC_CYCLES 0x14
|
|
#define PL35X_SMC_NAND_TRC_CYCLES(x) ((x) << 0)
|
|
#define PL35X_SMC_NAND_TWC_CYCLES(x) ((x) << 4)
|
|
#define PL35X_SMC_NAND_TREA_CYCLES(x) ((x) << 8)
|
|
#define PL35X_SMC_NAND_TWP_CYCLES(x) ((x) << 11)
|
|
#define PL35X_SMC_NAND_TCLR_CYCLES(x) ((x) << 14)
|
|
#define PL35X_SMC_NAND_TAR_CYCLES(x) ((x) << 17)
|
|
#define PL35X_SMC_NAND_TRR_CYCLES(x) ((x) << 20)
|
|
/* SMC set opmode register (WO) */
|
|
#define PL35X_SMC_OPMODE 0x18
|
|
#define PL35X_SMC_OPMODE_BW_8 0
|
|
#define PL35X_SMC_OPMODE_BW_16 1
|
|
/* SMC ECC status register (RO) */
|
|
#define PL35X_SMC_ECC_STATUS 0x400
|
|
#define PL35X_SMC_ECC_STATUS_ECC_BUSY BIT(6)
|
|
/* SMC ECC configuration register */
|
|
#define PL35X_SMC_ECC_CFG 0x404
|
|
#define PL35X_SMC_ECC_CFG_MODE_MASK 0xC
|
|
#define PL35X_SMC_ECC_CFG_MODE_BYPASS 0
|
|
#define PL35X_SMC_ECC_CFG_MODE_APB BIT(2)
|
|
#define PL35X_SMC_ECC_CFG_MODE_MEM BIT(3)
|
|
#define PL35X_SMC_ECC_CFG_PGSIZE_MASK 0x3
|
|
/* SMC ECC command 1 register */
|
|
#define PL35X_SMC_ECC_CMD1 0x408
|
|
#define PL35X_SMC_ECC_CMD1_WRITE(x) ((x) << 0)
|
|
#define PL35X_SMC_ECC_CMD1_READ(x) ((x) << 8)
|
|
#define PL35X_SMC_ECC_CMD1_READ_END(x) ((x) << 16)
|
|
#define PL35X_SMC_ECC_CMD1_READ_END_VALID(x) ((x) << 24)
|
|
/* SMC ECC command 2 register */
|
|
#define PL35X_SMC_ECC_CMD2 0x40C
|
|
#define PL35X_SMC_ECC_CMD2_WRITE_COL_CHG(x) ((x) << 0)
|
|
#define PL35X_SMC_ECC_CMD2_READ_COL_CHG(x) ((x) << 8)
|
|
#define PL35X_SMC_ECC_CMD2_READ_COL_CHG_END(x) ((x) << 16)
|
|
#define PL35X_SMC_ECC_CMD2_READ_COL_CHG_END_VALID(x) ((x) << 24)
|
|
/* SMC ECC value registers (RO) */
|
|
#define PL35X_SMC_ECC_VALUE(x) (0x418 + (4 * (x)))
|
|
#define PL35X_SMC_ECC_VALUE_IS_CORRECTABLE(x) ((x) & BIT(27))
|
|
#define PL35X_SMC_ECC_VALUE_HAS_FAILED(x) ((x) & BIT(28))
|
|
#define PL35X_SMC_ECC_VALUE_IS_VALID(x) ((x) & BIT(30))
|
|
|
|
/* NAND AXI interface */
|
|
#define PL35X_SMC_CMD_PHASE 0
|
|
#define PL35X_SMC_CMD_PHASE_CMD0(x) ((x) << 3)
|
|
#define PL35X_SMC_CMD_PHASE_CMD1(x) ((x) << 11)
|
|
#define PL35X_SMC_CMD_PHASE_CMD1_VALID BIT(20)
|
|
#define PL35X_SMC_CMD_PHASE_ADDR(pos, x) ((x) << (8 * (pos)))
|
|
#define PL35X_SMC_CMD_PHASE_NADDRS(x) ((x) << 21)
|
|
#define PL35X_SMC_DATA_PHASE BIT(19)
|
|
#define PL35X_SMC_DATA_PHASE_ECC_LAST BIT(10)
|
|
#define PL35X_SMC_DATA_PHASE_CLEAR_CS BIT(21)
|
|
|
|
#define PL35X_NAND_MAX_CS 1
|
|
#define PL35X_NAND_LAST_XFER_SZ 4
|
|
#define TO_CYCLES(ps, period_ns) (DIV_ROUND_UP((ps) / 1000, period_ns))
|
|
|
|
#define PL35X_NAND_ECC_BITS_MASK 0xFFF
|
|
#define PL35X_NAND_ECC_BYTE_OFF_MASK 0x1FF
|
|
#define PL35X_NAND_ECC_BIT_OFF_MASK 0x7
|
|
|
|
struct pl35x_nand_timings {
|
|
unsigned int t_rc:4;
|
|
unsigned int t_wc:4;
|
|
unsigned int t_rea:3;
|
|
unsigned int t_wp:3;
|
|
unsigned int t_clr:3;
|
|
unsigned int t_ar:3;
|
|
unsigned int t_rr:4;
|
|
unsigned int rsvd:8;
|
|
};
|
|
|
|
struct pl35x_nand {
|
|
struct list_head node;
|
|
struct nand_chip chip;
|
|
unsigned int cs;
|
|
unsigned int addr_cycles;
|
|
u32 ecc_cfg;
|
|
u32 timings;
|
|
};
|
|
|
|
/**
|
|
* struct pl35x_nandc - NAND flash controller driver structure
|
|
* @dev: Kernel device
|
|
* @conf_regs: SMC configuration registers for command phase
|
|
* @io_regs: NAND data registers for data phase
|
|
* @controller: Core NAND controller structure
|
|
* @chip: NAND chip information structure
|
|
* @selected_chip: NAND chip currently selected by the controller
|
|
* @assigned_cs: List of assigned CS
|
|
* @ecc_buf: Temporary buffer to extract ECC bytes
|
|
*/
|
|
struct pl35x_nandc {
|
|
struct device *dev;
|
|
void __iomem *conf_regs;
|
|
void __iomem *io_regs;
|
|
struct nand_controller controller;
|
|
struct list_head chips;
|
|
struct nand_chip *selected_chip;
|
|
unsigned long assigned_cs;
|
|
u8 *ecc_buf;
|
|
};
|
|
|
|
static inline struct pl35x_nandc *to_pl35x_nandc(struct nand_controller *ctrl)
|
|
{
|
|
return container_of(ctrl, struct pl35x_nandc, controller);
|
|
}
|
|
|
|
static inline struct pl35x_nand *to_pl35x_nand(struct nand_chip *chip)
|
|
{
|
|
return container_of(chip, struct pl35x_nand, chip);
|
|
}
|
|
|
|
static int pl35x_ecc_ooblayout16_ecc(struct mtd_info *mtd, int section,
|
|
struct mtd_oob_region *oobregion)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
|
|
if (section >= chip->ecc.steps)
|
|
return -ERANGE;
|
|
|
|
oobregion->offset = (section * chip->ecc.bytes);
|
|
oobregion->length = chip->ecc.bytes;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int pl35x_ecc_ooblayout16_free(struct mtd_info *mtd, int section,
|
|
struct mtd_oob_region *oobregion)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
|
|
if (section >= chip->ecc.steps)
|
|
return -ERANGE;
|
|
|
|
oobregion->offset = (section * chip->ecc.bytes) + 8;
|
|
oobregion->length = 8;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct mtd_ooblayout_ops pl35x_ecc_ooblayout16_ops = {
|
|
.ecc = pl35x_ecc_ooblayout16_ecc,
|
|
.free = pl35x_ecc_ooblayout16_free,
|
|
};
|
|
|
|
/* Generic flash bbt decriptors */
|
|
static u8 bbt_pattern[] = { 'B', 'b', 't', '0' };
|
|
static u8 mirror_pattern[] = { '1', 't', 'b', 'B' };
|
|
|
|
static struct nand_bbt_descr bbt_main_descr = {
|
|
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
|
|
| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
|
|
.offs = 4,
|
|
.len = 4,
|
|
.veroffs = 20,
|
|
.maxblocks = 4,
|
|
.pattern = bbt_pattern
|
|
};
|
|
|
|
static struct nand_bbt_descr bbt_mirror_descr = {
|
|
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
|
|
| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
|
|
.offs = 4,
|
|
.len = 4,
|
|
.veroffs = 20,
|
|
.maxblocks = 4,
|
|
.pattern = mirror_pattern
|
|
};
|
|
|
|
static void pl35x_smc_update_regs(struct pl35x_nandc *nfc)
|
|
{
|
|
writel(PL35X_SMC_DIRECT_CMD_NAND_CS |
|
|
PL35X_SMC_DIRECT_CMD_UPD_REGS,
|
|
nfc->conf_regs + PL35X_SMC_DIRECT_CMD);
|
|
}
|
|
|
|
static int pl35x_smc_set_buswidth(struct pl35x_nandc *nfc, unsigned int bw)
|
|
{
|
|
if (bw != PL35X_SMC_OPMODE_BW_8 && bw != PL35X_SMC_OPMODE_BW_16)
|
|
return -EINVAL;
|
|
|
|
writel(bw, nfc->conf_regs + PL35X_SMC_OPMODE);
|
|
pl35x_smc_update_regs(nfc);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void pl35x_smc_clear_irq(struct pl35x_nandc *nfc)
|
|
{
|
|
writel(PL35X_SMC_MEMC_CFG_CLR_INT_CLR_1,
|
|
nfc->conf_regs + PL35X_SMC_MEMC_CFG_CLR);
|
|
}
|
|
|
|
static int pl35x_smc_wait_for_irq(struct pl35x_nandc *nfc)
|
|
{
|
|
u32 reg;
|
|
int ret;
|
|
|
|
ret = readl_poll_timeout(nfc->conf_regs + PL35X_SMC_MEMC_STATUS, reg,
|
|
reg & PL35X_SMC_MEMC_STATUS_RAW_INT_STATUS1,
|
|
10, 1000000);
|
|
if (ret)
|
|
dev_err(nfc->dev,
|
|
"Timeout polling on NAND controller interrupt (0x%x)\n",
|
|
reg);
|
|
|
|
pl35x_smc_clear_irq(nfc);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int pl35x_smc_wait_for_ecc_done(struct pl35x_nandc *nfc)
|
|
{
|
|
u32 reg;
|
|
int ret;
|
|
|
|
ret = readl_poll_timeout(nfc->conf_regs + PL35X_SMC_ECC_STATUS, reg,
|
|
!(reg & PL35X_SMC_ECC_STATUS_ECC_BUSY),
|
|
10, 1000000);
|
|
if (ret)
|
|
dev_err(nfc->dev,
|
|
"Timeout polling on ECC controller interrupt\n");
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int pl35x_smc_set_ecc_mode(struct pl35x_nandc *nfc,
|
|
struct nand_chip *chip,
|
|
unsigned int mode)
|
|
{
|
|
struct pl35x_nand *plnand;
|
|
u32 ecc_cfg;
|
|
|
|
ecc_cfg = readl(nfc->conf_regs + PL35X_SMC_ECC_CFG);
|
|
ecc_cfg &= ~PL35X_SMC_ECC_CFG_MODE_MASK;
|
|
ecc_cfg |= mode;
|
|
writel(ecc_cfg, nfc->conf_regs + PL35X_SMC_ECC_CFG);
|
|
|
|
if (chip) {
|
|
plnand = to_pl35x_nand(chip);
|
|
plnand->ecc_cfg = ecc_cfg;
|
|
}
|
|
|
|
if (mode != PL35X_SMC_ECC_CFG_MODE_BYPASS)
|
|
return pl35x_smc_wait_for_ecc_done(nfc);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void pl35x_smc_force_byte_access(struct nand_chip *chip,
|
|
bool force_8bit)
|
|
{
|
|
struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller);
|
|
int ret;
|
|
|
|
if (!(chip->options & NAND_BUSWIDTH_16))
|
|
return;
|
|
|
|
if (force_8bit)
|
|
ret = pl35x_smc_set_buswidth(nfc, PL35X_SMC_OPMODE_BW_8);
|
|
else
|
|
ret = pl35x_smc_set_buswidth(nfc, PL35X_SMC_OPMODE_BW_16);
|
|
|
|
if (ret)
|
|
dev_err(nfc->dev, "Error in Buswidth\n");
|
|
}
|
|
|
|
static void pl35x_nand_select_target(struct nand_chip *chip,
|
|
unsigned int die_nr)
|
|
{
|
|
struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller);
|
|
struct pl35x_nand *plnand = to_pl35x_nand(chip);
|
|
|
|
if (chip == nfc->selected_chip)
|
|
return;
|
|
|
|
/* Setup the timings */
|
|
writel(plnand->timings, nfc->conf_regs + PL35X_SMC_CYCLES);
|
|
pl35x_smc_update_regs(nfc);
|
|
|
|
/* Configure the ECC engine */
|
|
writel(plnand->ecc_cfg, nfc->conf_regs + PL35X_SMC_ECC_CFG);
|
|
|
|
nfc->selected_chip = chip;
|
|
}
|
|
|
|
static void pl35x_nand_read_data_op(struct nand_chip *chip, u8 *in,
|
|
unsigned int len, bool force_8bit,
|
|
unsigned int flags, unsigned int last_flags)
|
|
{
|
|
struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller);
|
|
unsigned int buf_end = len / 4;
|
|
unsigned int in_start = round_down(len, 4);
|
|
unsigned int data_phase_addr;
|
|
u32 *buf32 = (u32 *)in;
|
|
u8 *buf8 = (u8 *)in;
|
|
int i;
|
|
|
|
if (force_8bit)
|
|
pl35x_smc_force_byte_access(chip, true);
|
|
|
|
for (i = 0; i < buf_end; i++) {
|
|
data_phase_addr = PL35X_SMC_DATA_PHASE + flags;
|
|
if (i + 1 == buf_end)
|
|
data_phase_addr = PL35X_SMC_DATA_PHASE + last_flags;
|
|
|
|
buf32[i] = readl(nfc->io_regs + data_phase_addr);
|
|
}
|
|
|
|
/* No working extra flags on unaligned data accesses */
|
|
for (i = in_start; i < len; i++)
|
|
buf8[i] = readb(nfc->io_regs + PL35X_SMC_DATA_PHASE);
|
|
|
|
if (force_8bit)
|
|
pl35x_smc_force_byte_access(chip, false);
|
|
}
|
|
|
|
static void pl35x_nand_write_data_op(struct nand_chip *chip, const u8 *out,
|
|
int len, bool force_8bit,
|
|
unsigned int flags,
|
|
unsigned int last_flags)
|
|
{
|
|
struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller);
|
|
unsigned int buf_end = len / 4;
|
|
unsigned int in_start = round_down(len, 4);
|
|
const u32 *buf32 = (const u32 *)out;
|
|
const u8 *buf8 = (const u8 *)out;
|
|
unsigned int data_phase_addr;
|
|
int i;
|
|
|
|
if (force_8bit)
|
|
pl35x_smc_force_byte_access(chip, true);
|
|
|
|
for (i = 0; i < buf_end; i++) {
|
|
data_phase_addr = PL35X_SMC_DATA_PHASE + flags;
|
|
if (i + 1 == buf_end)
|
|
data_phase_addr = PL35X_SMC_DATA_PHASE + last_flags;
|
|
|
|
writel(buf32[i], nfc->io_regs + data_phase_addr);
|
|
}
|
|
|
|
/* No working extra flags on unaligned data accesses */
|
|
for (i = in_start; i < len; i++)
|
|
writeb(buf8[i], nfc->io_regs + PL35X_SMC_DATA_PHASE);
|
|
|
|
if (force_8bit)
|
|
pl35x_smc_force_byte_access(chip, false);
|
|
}
|
|
|
|
static int pl35x_nand_correct_data(struct pl35x_nandc *nfc, unsigned char *buf,
|
|
unsigned char *read_ecc,
|
|
unsigned char *calc_ecc)
|
|
{
|
|
unsigned short ecc_odd, ecc_even, read_ecc_lower, read_ecc_upper;
|
|
unsigned short calc_ecc_lower, calc_ecc_upper;
|
|
unsigned short byte_addr, bit_addr;
|
|
|
|
read_ecc_lower = (read_ecc[0] | (read_ecc[1] << 8)) &
|
|
PL35X_NAND_ECC_BITS_MASK;
|
|
read_ecc_upper = ((read_ecc[1] >> 4) | (read_ecc[2] << 4)) &
|
|
PL35X_NAND_ECC_BITS_MASK;
|
|
|
|
calc_ecc_lower = (calc_ecc[0] | (calc_ecc[1] << 8)) &
|
|
PL35X_NAND_ECC_BITS_MASK;
|
|
calc_ecc_upper = ((calc_ecc[1] >> 4) | (calc_ecc[2] << 4)) &
|
|
PL35X_NAND_ECC_BITS_MASK;
|
|
|
|
ecc_odd = read_ecc_lower ^ calc_ecc_lower;
|
|
ecc_even = read_ecc_upper ^ calc_ecc_upper;
|
|
|
|
/* No error */
|
|
if (likely(!ecc_odd && !ecc_even))
|
|
return 0;
|
|
|
|
/* One error in the main data; to be corrected */
|
|
if (ecc_odd == (~ecc_even & PL35X_NAND_ECC_BITS_MASK)) {
|
|
/* Bits [11:3] of error code give the byte offset */
|
|
byte_addr = (ecc_odd >> 3) & PL35X_NAND_ECC_BYTE_OFF_MASK;
|
|
/* Bits [2:0] of error code give the bit offset */
|
|
bit_addr = ecc_odd & PL35X_NAND_ECC_BIT_OFF_MASK;
|
|
/* Toggle the faulty bit */
|
|
buf[byte_addr] ^= (BIT(bit_addr));
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* One error in the ECC data; no action needed */
|
|
if (hweight32(ecc_odd | ecc_even) == 1)
|
|
return 1;
|
|
|
|
return -EBADMSG;
|
|
}
|
|
|
|
static void pl35x_nand_ecc_reg_to_array(struct nand_chip *chip, u32 ecc_reg,
|
|
u8 *ecc_array)
|
|
{
|
|
u32 ecc_value = ~ecc_reg;
|
|
unsigned int ecc_byte;
|
|
|
|
for (ecc_byte = 0; ecc_byte < chip->ecc.bytes; ecc_byte++)
|
|
ecc_array[ecc_byte] = ecc_value >> (8 * ecc_byte);
|
|
}
|
|
|
|
static int pl35x_nand_read_eccbytes(struct pl35x_nandc *nfc,
|
|
struct nand_chip *chip, u8 *read_ecc)
|
|
{
|
|
u32 ecc_value;
|
|
int chunk;
|
|
|
|
for (chunk = 0; chunk < chip->ecc.steps;
|
|
chunk++, read_ecc += chip->ecc.bytes) {
|
|
ecc_value = readl(nfc->conf_regs + PL35X_SMC_ECC_VALUE(chunk));
|
|
if (!PL35X_SMC_ECC_VALUE_IS_VALID(ecc_value))
|
|
return -EINVAL;
|
|
|
|
pl35x_nand_ecc_reg_to_array(chip, ecc_value, read_ecc);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int pl35x_nand_recover_data_hwecc(struct pl35x_nandc *nfc,
|
|
struct nand_chip *chip, u8 *data,
|
|
u8 *read_ecc)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
unsigned int max_bitflips = 0, chunk;
|
|
u8 calc_ecc[3];
|
|
u32 ecc_value;
|
|
int stats;
|
|
|
|
for (chunk = 0; chunk < chip->ecc.steps;
|
|
chunk++, data += chip->ecc.size, read_ecc += chip->ecc.bytes) {
|
|
/* Read ECC value for each chunk */
|
|
ecc_value = readl(nfc->conf_regs + PL35X_SMC_ECC_VALUE(chunk));
|
|
|
|
if (!PL35X_SMC_ECC_VALUE_IS_VALID(ecc_value))
|
|
return -EINVAL;
|
|
|
|
if (PL35X_SMC_ECC_VALUE_HAS_FAILED(ecc_value)) {
|
|
mtd->ecc_stats.failed++;
|
|
continue;
|
|
}
|
|
|
|
pl35x_nand_ecc_reg_to_array(chip, ecc_value, calc_ecc);
|
|
stats = pl35x_nand_correct_data(nfc, data, read_ecc, calc_ecc);
|
|
if (stats < 0) {
|
|
mtd->ecc_stats.failed++;
|
|
} else {
|
|
mtd->ecc_stats.corrected += stats;
|
|
max_bitflips = max_t(unsigned int, max_bitflips, stats);
|
|
}
|
|
}
|
|
|
|
return max_bitflips;
|
|
}
|
|
|
|
static int pl35x_nand_write_page_hwecc(struct nand_chip *chip,
|
|
const u8 *buf, int oob_required,
|
|
int page)
|
|
{
|
|
struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller);
|
|
struct pl35x_nand *plnand = to_pl35x_nand(chip);
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
unsigned int first_row = (mtd->writesize <= 512) ? 1 : 2;
|
|
unsigned int nrows = plnand->addr_cycles;
|
|
u32 addr1 = 0, addr2 = 0, row;
|
|
u32 cmd_addr;
|
|
int i, ret;
|
|
|
|
ret = pl35x_smc_set_ecc_mode(nfc, chip, PL35X_SMC_ECC_CFG_MODE_APB);
|
|
if (ret)
|
|
return ret;
|
|
|
|
cmd_addr = PL35X_SMC_CMD_PHASE |
|
|
PL35X_SMC_CMD_PHASE_NADDRS(plnand->addr_cycles) |
|
|
PL35X_SMC_CMD_PHASE_CMD0(NAND_CMD_SEQIN);
|
|
|
|
for (i = 0, row = first_row; row < nrows; i++, row++) {
|
|
u8 addr = page >> ((i * 8) & 0xFF);
|
|
|
|
if (row < 4)
|
|
addr1 |= PL35X_SMC_CMD_PHASE_ADDR(row, addr);
|
|
else
|
|
addr2 |= PL35X_SMC_CMD_PHASE_ADDR(row - 4, addr);
|
|
}
|
|
|
|
/* Send the command and address cycles */
|
|
writel(addr1, nfc->io_regs + cmd_addr);
|
|
if (plnand->addr_cycles > 4)
|
|
writel(addr2, nfc->io_regs + cmd_addr);
|
|
|
|
/* Write the data with the engine enabled */
|
|
pl35x_nand_write_data_op(chip, buf, mtd->writesize, false,
|
|
0, PL35X_SMC_DATA_PHASE_ECC_LAST);
|
|
ret = pl35x_smc_wait_for_ecc_done(nfc);
|
|
if (ret)
|
|
goto disable_ecc_engine;
|
|
|
|
/* Copy the HW calculated ECC bytes in the OOB buffer */
|
|
ret = pl35x_nand_read_eccbytes(nfc, chip, nfc->ecc_buf);
|
|
if (ret)
|
|
goto disable_ecc_engine;
|
|
|
|
if (!oob_required)
|
|
memset(chip->oob_poi, 0xFF, mtd->oobsize);
|
|
|
|
ret = mtd_ooblayout_set_eccbytes(mtd, nfc->ecc_buf, chip->oob_poi,
|
|
0, chip->ecc.total);
|
|
if (ret)
|
|
goto disable_ecc_engine;
|
|
|
|
/* Write the spare area with ECC bytes */
|
|
pl35x_nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false, 0,
|
|
PL35X_SMC_CMD_PHASE_CMD1(NAND_CMD_PAGEPROG) |
|
|
PL35X_SMC_CMD_PHASE_CMD1_VALID |
|
|
PL35X_SMC_DATA_PHASE_CLEAR_CS);
|
|
ret = pl35x_smc_wait_for_irq(nfc);
|
|
if (ret)
|
|
goto disable_ecc_engine;
|
|
|
|
disable_ecc_engine:
|
|
pl35x_smc_set_ecc_mode(nfc, chip, PL35X_SMC_ECC_CFG_MODE_BYPASS);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* This functions reads data and checks the data integrity by comparing hardware
|
|
* generated ECC values and read ECC values from spare area.
|
|
*
|
|
* There is a limitation with SMC controller: ECC_LAST must be set on the
|
|
* last data access to tell the ECC engine not to expect any further data.
|
|
* In practice, this implies to shrink the last data transfert by eg. 4 bytes,
|
|
* and doing a last 4-byte transfer with the additional bit set. The last block
|
|
* should be aligned with the end of an ECC block. Because of this limitation,
|
|
* it is not possible to use the core routines.
|
|
*/
|
|
static int pl35x_nand_read_page_hwecc(struct nand_chip *chip,
|
|
u8 *buf, int oob_required, int page)
|
|
{
|
|
const struct nand_sdr_timings *sdr =
|
|
nand_get_sdr_timings(nand_get_interface_config(chip));
|
|
struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller);
|
|
struct pl35x_nand *plnand = to_pl35x_nand(chip);
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
unsigned int first_row = (mtd->writesize <= 512) ? 1 : 2;
|
|
unsigned int nrows = plnand->addr_cycles;
|
|
unsigned int addr1 = 0, addr2 = 0, row;
|
|
u32 cmd_addr;
|
|
int i, ret;
|
|
|
|
ret = pl35x_smc_set_ecc_mode(nfc, chip, PL35X_SMC_ECC_CFG_MODE_APB);
|
|
if (ret)
|
|
return ret;
|
|
|
|
cmd_addr = PL35X_SMC_CMD_PHASE |
|
|
PL35X_SMC_CMD_PHASE_NADDRS(plnand->addr_cycles) |
|
|
PL35X_SMC_CMD_PHASE_CMD0(NAND_CMD_READ0) |
|
|
PL35X_SMC_CMD_PHASE_CMD1(NAND_CMD_READSTART) |
|
|
PL35X_SMC_CMD_PHASE_CMD1_VALID;
|
|
|
|
for (i = 0, row = first_row; row < nrows; i++, row++) {
|
|
u8 addr = page >> ((i * 8) & 0xFF);
|
|
|
|
if (row < 4)
|
|
addr1 |= PL35X_SMC_CMD_PHASE_ADDR(row, addr);
|
|
else
|
|
addr2 |= PL35X_SMC_CMD_PHASE_ADDR(row - 4, addr);
|
|
}
|
|
|
|
/* Send the command and address cycles */
|
|
writel(addr1, nfc->io_regs + cmd_addr);
|
|
if (plnand->addr_cycles > 4)
|
|
writel(addr2, nfc->io_regs + cmd_addr);
|
|
|
|
/* Wait the data to be available in the NAND cache */
|
|
ndelay(PSEC_TO_NSEC(sdr->tRR_min));
|
|
ret = pl35x_smc_wait_for_irq(nfc);
|
|
if (ret)
|
|
goto disable_ecc_engine;
|
|
|
|
/* Retrieve the raw data with the engine enabled */
|
|
pl35x_nand_read_data_op(chip, buf, mtd->writesize, false,
|
|
0, PL35X_SMC_DATA_PHASE_ECC_LAST);
|
|
ret = pl35x_smc_wait_for_ecc_done(nfc);
|
|
if (ret)
|
|
goto disable_ecc_engine;
|
|
|
|
/* Retrieve the stored ECC bytes */
|
|
pl35x_nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false,
|
|
0, PL35X_SMC_DATA_PHASE_CLEAR_CS);
|
|
ret = mtd_ooblayout_get_eccbytes(mtd, nfc->ecc_buf, chip->oob_poi, 0,
|
|
chip->ecc.total);
|
|
if (ret)
|
|
goto disable_ecc_engine;
|
|
|
|
pl35x_smc_set_ecc_mode(nfc, chip, PL35X_SMC_ECC_CFG_MODE_BYPASS);
|
|
|
|
/* Correct the data and report failures */
|
|
return pl35x_nand_recover_data_hwecc(nfc, chip, buf, nfc->ecc_buf);
|
|
|
|
disable_ecc_engine:
|
|
pl35x_smc_set_ecc_mode(nfc, chip, PL35X_SMC_ECC_CFG_MODE_BYPASS);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int pl35x_nand_exec_op(struct nand_chip *chip,
|
|
const struct nand_subop *subop)
|
|
{
|
|
struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller);
|
|
const struct nand_op_instr *instr, *data_instr = NULL;
|
|
unsigned int rdy_tim_ms = 0, naddrs = 0, cmds = 0, last_flags = 0;
|
|
u32 addr1 = 0, addr2 = 0, cmd0 = 0, cmd1 = 0, cmd_addr = 0;
|
|
unsigned int op_id, len, offset, rdy_del_ns;
|
|
int last_instr_type = -1;
|
|
bool cmd1_valid = false;
|
|
const u8 *addrs;
|
|
int i, ret;
|
|
|
|
for (op_id = 0; op_id < subop->ninstrs; op_id++) {
|
|
instr = &subop->instrs[op_id];
|
|
|
|
switch (instr->type) {
|
|
case NAND_OP_CMD_INSTR:
|
|
if (!cmds) {
|
|
cmd0 = PL35X_SMC_CMD_PHASE_CMD0(instr->ctx.cmd.opcode);
|
|
} else {
|
|
cmd1 = PL35X_SMC_CMD_PHASE_CMD1(instr->ctx.cmd.opcode);
|
|
if (last_instr_type != NAND_OP_DATA_OUT_INSTR)
|
|
cmd1_valid = true;
|
|
}
|
|
cmds++;
|
|
break;
|
|
|
|
case NAND_OP_ADDR_INSTR:
|
|
offset = nand_subop_get_addr_start_off(subop, op_id);
|
|
naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
|
|
addrs = &instr->ctx.addr.addrs[offset];
|
|
cmd_addr |= PL35X_SMC_CMD_PHASE_NADDRS(naddrs);
|
|
|
|
for (i = offset; i < naddrs; i++) {
|
|
if (i < 4)
|
|
addr1 |= PL35X_SMC_CMD_PHASE_ADDR(i, addrs[i]);
|
|
else
|
|
addr2 |= PL35X_SMC_CMD_PHASE_ADDR(i - 4, addrs[i]);
|
|
}
|
|
break;
|
|
|
|
case NAND_OP_DATA_IN_INSTR:
|
|
case NAND_OP_DATA_OUT_INSTR:
|
|
data_instr = instr;
|
|
len = nand_subop_get_data_len(subop, op_id);
|
|
break;
|
|
|
|
case NAND_OP_WAITRDY_INSTR:
|
|
rdy_tim_ms = instr->ctx.waitrdy.timeout_ms;
|
|
rdy_del_ns = instr->delay_ns;
|
|
break;
|
|
}
|
|
|
|
last_instr_type = instr->type;
|
|
}
|
|
|
|
/* Command phase */
|
|
cmd_addr |= PL35X_SMC_CMD_PHASE | cmd0 | cmd1 |
|
|
(cmd1_valid ? PL35X_SMC_CMD_PHASE_CMD1_VALID : 0);
|
|
writel(addr1, nfc->io_regs + cmd_addr);
|
|
if (naddrs > 4)
|
|
writel(addr2, nfc->io_regs + cmd_addr);
|
|
|
|
/* Data phase */
|
|
if (data_instr && data_instr->type == NAND_OP_DATA_OUT_INSTR) {
|
|
last_flags = PL35X_SMC_DATA_PHASE_CLEAR_CS;
|
|
if (cmds == 2)
|
|
last_flags |= cmd1 | PL35X_SMC_CMD_PHASE_CMD1_VALID;
|
|
|
|
pl35x_nand_write_data_op(chip, data_instr->ctx.data.buf.out,
|
|
len, data_instr->ctx.data.force_8bit,
|
|
0, last_flags);
|
|
}
|
|
|
|
if (rdy_tim_ms) {
|
|
ndelay(rdy_del_ns);
|
|
ret = pl35x_smc_wait_for_irq(nfc);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
if (data_instr && data_instr->type == NAND_OP_DATA_IN_INSTR)
|
|
pl35x_nand_read_data_op(chip, data_instr->ctx.data.buf.in,
|
|
len, data_instr->ctx.data.force_8bit,
|
|
0, PL35X_SMC_DATA_PHASE_CLEAR_CS);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct nand_op_parser pl35x_nandc_op_parser = NAND_OP_PARSER(
|
|
NAND_OP_PARSER_PATTERN(pl35x_nand_exec_op,
|
|
NAND_OP_PARSER_PAT_CMD_ELEM(true),
|
|
NAND_OP_PARSER_PAT_ADDR_ELEM(true, 7),
|
|
NAND_OP_PARSER_PAT_CMD_ELEM(true),
|
|
NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
|
|
NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, 2112)),
|
|
NAND_OP_PARSER_PATTERN(pl35x_nand_exec_op,
|
|
NAND_OP_PARSER_PAT_CMD_ELEM(false),
|
|
NAND_OP_PARSER_PAT_ADDR_ELEM(false, 7),
|
|
NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 2112),
|
|
NAND_OP_PARSER_PAT_CMD_ELEM(false),
|
|
NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
|
|
NAND_OP_PARSER_PATTERN(pl35x_nand_exec_op,
|
|
NAND_OP_PARSER_PAT_CMD_ELEM(false),
|
|
NAND_OP_PARSER_PAT_ADDR_ELEM(false, 7),
|
|
NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 2112),
|
|
NAND_OP_PARSER_PAT_CMD_ELEM(true),
|
|
NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
|
|
);
|
|
|
|
static int pl35x_nfc_exec_op(struct nand_chip *chip,
|
|
const struct nand_operation *op,
|
|
bool check_only)
|
|
{
|
|
if (!check_only)
|
|
pl35x_nand_select_target(chip, op->cs);
|
|
|
|
return nand_op_parser_exec_op(chip, &pl35x_nandc_op_parser,
|
|
op, check_only);
|
|
}
|
|
|
|
static int pl35x_nfc_setup_interface(struct nand_chip *chip, int cs,
|
|
const struct nand_interface_config *conf)
|
|
{
|
|
struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller);
|
|
struct pl35x_nand *plnand = to_pl35x_nand(chip);
|
|
struct pl35x_nand_timings tmgs = {};
|
|
const struct nand_sdr_timings *sdr;
|
|
unsigned int period_ns, val;
|
|
struct clk *mclk;
|
|
|
|
sdr = nand_get_sdr_timings(conf);
|
|
if (IS_ERR(sdr))
|
|
return PTR_ERR(sdr);
|
|
|
|
mclk = of_clk_get_by_name(nfc->dev->parent->of_node, "memclk");
|
|
if (IS_ERR(mclk)) {
|
|
dev_err(nfc->dev, "Failed to retrieve SMC memclk\n");
|
|
return PTR_ERR(mclk);
|
|
}
|
|
|
|
/*
|
|
* SDR timings are given in pico-seconds while NFC timings must be
|
|
* expressed in NAND controller clock cycles. We use the TO_CYCLE()
|
|
* macro to convert from one to the other.
|
|
*/
|
|
period_ns = NSEC_PER_SEC / clk_get_rate(mclk);
|
|
|
|
/*
|
|
* PL35X SMC needs one extra read cycle in SDR Mode 5. This is not
|
|
* written anywhere in the datasheet but is an empirical observation.
|
|
*/
|
|
val = TO_CYCLES(sdr->tRC_min, period_ns);
|
|
if (sdr->tRC_min <= 20000)
|
|
val++;
|
|
|
|
tmgs.t_rc = val;
|
|
if (tmgs.t_rc != val || tmgs.t_rc < 2)
|
|
return -EINVAL;
|
|
|
|
val = TO_CYCLES(sdr->tWC_min, period_ns);
|
|
tmgs.t_wc = val;
|
|
if (tmgs.t_wc != val || tmgs.t_wc < 2)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* For all SDR modes, PL35X SMC needs tREA_max being 1,
|
|
* this is also an empirical result.
|
|
*/
|
|
tmgs.t_rea = 1;
|
|
|
|
val = TO_CYCLES(sdr->tWP_min, period_ns);
|
|
tmgs.t_wp = val;
|
|
if (tmgs.t_wp != val || tmgs.t_wp < 1)
|
|
return -EINVAL;
|
|
|
|
val = TO_CYCLES(sdr->tCLR_min, period_ns);
|
|
tmgs.t_clr = val;
|
|
if (tmgs.t_clr != val)
|
|
return -EINVAL;
|
|
|
|
val = TO_CYCLES(sdr->tAR_min, period_ns);
|
|
tmgs.t_ar = val;
|
|
if (tmgs.t_ar != val)
|
|
return -EINVAL;
|
|
|
|
val = TO_CYCLES(sdr->tRR_min, period_ns);
|
|
tmgs.t_rr = val;
|
|
if (tmgs.t_rr != val)
|
|
return -EINVAL;
|
|
|
|
if (cs == NAND_DATA_IFACE_CHECK_ONLY)
|
|
return 0;
|
|
|
|
plnand->timings = PL35X_SMC_NAND_TRC_CYCLES(tmgs.t_rc) |
|
|
PL35X_SMC_NAND_TWC_CYCLES(tmgs.t_wc) |
|
|
PL35X_SMC_NAND_TREA_CYCLES(tmgs.t_rea) |
|
|
PL35X_SMC_NAND_TWP_CYCLES(tmgs.t_wp) |
|
|
PL35X_SMC_NAND_TCLR_CYCLES(tmgs.t_clr) |
|
|
PL35X_SMC_NAND_TAR_CYCLES(tmgs.t_ar) |
|
|
PL35X_SMC_NAND_TRR_CYCLES(tmgs.t_rr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void pl35x_smc_set_ecc_pg_size(struct pl35x_nandc *nfc,
|
|
struct nand_chip *chip,
|
|
unsigned int pg_sz)
|
|
{
|
|
struct pl35x_nand *plnand = to_pl35x_nand(chip);
|
|
u32 sz;
|
|
|
|
switch (pg_sz) {
|
|
case SZ_512:
|
|
sz = 1;
|
|
break;
|
|
case SZ_1K:
|
|
sz = 2;
|
|
break;
|
|
case SZ_2K:
|
|
sz = 3;
|
|
break;
|
|
default:
|
|
sz = 0;
|
|
break;
|
|
}
|
|
|
|
plnand->ecc_cfg = readl(nfc->conf_regs + PL35X_SMC_ECC_CFG);
|
|
plnand->ecc_cfg &= ~PL35X_SMC_ECC_CFG_PGSIZE_MASK;
|
|
plnand->ecc_cfg |= sz;
|
|
writel(plnand->ecc_cfg, nfc->conf_regs + PL35X_SMC_ECC_CFG);
|
|
}
|
|
|
|
static int pl35x_nand_init_hw_ecc_controller(struct pl35x_nandc *nfc,
|
|
struct nand_chip *chip)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
int ret = 0;
|
|
|
|
if (mtd->writesize < SZ_512 || mtd->writesize > SZ_2K) {
|
|
dev_err(nfc->dev,
|
|
"The hardware ECC engine is limited to pages up to 2kiB\n");
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
chip->ecc.strength = 1;
|
|
chip->ecc.bytes = 3;
|
|
chip->ecc.size = SZ_512;
|
|
chip->ecc.steps = mtd->writesize / chip->ecc.size;
|
|
chip->ecc.read_page = pl35x_nand_read_page_hwecc;
|
|
chip->ecc.write_page = pl35x_nand_write_page_hwecc;
|
|
chip->ecc.write_page_raw = nand_monolithic_write_page_raw;
|
|
pl35x_smc_set_ecc_pg_size(nfc, chip, mtd->writesize);
|
|
|
|
nfc->ecc_buf = devm_kmalloc(nfc->dev, chip->ecc.bytes * chip->ecc.steps,
|
|
GFP_KERNEL);
|
|
if (!nfc->ecc_buf)
|
|
return -ENOMEM;
|
|
|
|
switch (mtd->oobsize) {
|
|
case 16:
|
|
/* Legacy Xilinx layout */
|
|
mtd_set_ooblayout(mtd, &pl35x_ecc_ooblayout16_ops);
|
|
chip->bbt_options |= NAND_BBT_NO_OOB_BBM;
|
|
break;
|
|
case 64:
|
|
mtd_set_ooblayout(mtd, nand_get_large_page_ooblayout());
|
|
break;
|
|
default:
|
|
dev_err(nfc->dev, "Unsupported OOB size\n");
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int pl35x_nand_attach_chip(struct nand_chip *chip)
|
|
{
|
|
const struct nand_ecc_props *requirements =
|
|
nanddev_get_ecc_requirements(&chip->base);
|
|
struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller);
|
|
struct pl35x_nand *plnand = to_pl35x_nand(chip);
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
int ret;
|
|
|
|
if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_NONE &&
|
|
(!chip->ecc.size || !chip->ecc.strength)) {
|
|
if (requirements->step_size && requirements->strength) {
|
|
chip->ecc.size = requirements->step_size;
|
|
chip->ecc.strength = requirements->strength;
|
|
} else {
|
|
dev_info(nfc->dev,
|
|
"No minimum ECC strength, using 1b/512B\n");
|
|
chip->ecc.size = 512;
|
|
chip->ecc.strength = 1;
|
|
}
|
|
}
|
|
|
|
if (mtd->writesize <= SZ_512)
|
|
plnand->addr_cycles = 1;
|
|
else
|
|
plnand->addr_cycles = 2;
|
|
|
|
if (chip->options & NAND_ROW_ADDR_3)
|
|
plnand->addr_cycles += 3;
|
|
else
|
|
plnand->addr_cycles += 2;
|
|
|
|
switch (chip->ecc.engine_type) {
|
|
case NAND_ECC_ENGINE_TYPE_ON_DIE:
|
|
/* Keep these legacy BBT descriptors for ON_DIE situations */
|
|
chip->bbt_td = &bbt_main_descr;
|
|
chip->bbt_md = &bbt_mirror_descr;
|
|
fallthrough;
|
|
case NAND_ECC_ENGINE_TYPE_NONE:
|
|
case NAND_ECC_ENGINE_TYPE_SOFT:
|
|
break;
|
|
case NAND_ECC_ENGINE_TYPE_ON_HOST:
|
|
ret = pl35x_nand_init_hw_ecc_controller(nfc, chip);
|
|
if (ret)
|
|
return ret;
|
|
break;
|
|
default:
|
|
dev_err(nfc->dev, "Unsupported ECC mode: %d\n",
|
|
chip->ecc.engine_type);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct nand_controller_ops pl35x_nandc_ops = {
|
|
.attach_chip = pl35x_nand_attach_chip,
|
|
.exec_op = pl35x_nfc_exec_op,
|
|
.setup_interface = pl35x_nfc_setup_interface,
|
|
};
|
|
|
|
static int pl35x_nand_reset_state(struct pl35x_nandc *nfc)
|
|
{
|
|
int ret;
|
|
|
|
/* Disable interrupts and clear their status */
|
|
writel(PL35X_SMC_MEMC_CFG_CLR_INT_CLR_1 |
|
|
PL35X_SMC_MEMC_CFG_CLR_ECC_INT_DIS_1 |
|
|
PL35X_SMC_MEMC_CFG_CLR_INT_DIS_1,
|
|
nfc->conf_regs + PL35X_SMC_MEMC_CFG_CLR);
|
|
|
|
/* Set default bus width to 8-bit */
|
|
ret = pl35x_smc_set_buswidth(nfc, PL35X_SMC_OPMODE_BW_8);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Ensure the ECC controller is bypassed by default */
|
|
ret = pl35x_smc_set_ecc_mode(nfc, NULL, PL35X_SMC_ECC_CFG_MODE_BYPASS);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* Configure the commands that the ECC block uses to detect the
|
|
* operations it should start/end.
|
|
*/
|
|
writel(PL35X_SMC_ECC_CMD1_WRITE(NAND_CMD_SEQIN) |
|
|
PL35X_SMC_ECC_CMD1_READ(NAND_CMD_READ0) |
|
|
PL35X_SMC_ECC_CMD1_READ_END(NAND_CMD_READSTART) |
|
|
PL35X_SMC_ECC_CMD1_READ_END_VALID(NAND_CMD_READ1),
|
|
nfc->conf_regs + PL35X_SMC_ECC_CMD1);
|
|
writel(PL35X_SMC_ECC_CMD2_WRITE_COL_CHG(NAND_CMD_RNDIN) |
|
|
PL35X_SMC_ECC_CMD2_READ_COL_CHG(NAND_CMD_RNDOUT) |
|
|
PL35X_SMC_ECC_CMD2_READ_COL_CHG_END(NAND_CMD_RNDOUTSTART) |
|
|
PL35X_SMC_ECC_CMD2_READ_COL_CHG_END_VALID(NAND_CMD_READ1),
|
|
nfc->conf_regs + PL35X_SMC_ECC_CMD2);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int pl35x_nand_chip_init(struct pl35x_nandc *nfc,
|
|
struct device_node *np)
|
|
{
|
|
struct pl35x_nand *plnand;
|
|
struct nand_chip *chip;
|
|
struct mtd_info *mtd;
|
|
int cs, ret;
|
|
|
|
plnand = devm_kzalloc(nfc->dev, sizeof(*plnand), GFP_KERNEL);
|
|
if (!plnand)
|
|
return -ENOMEM;
|
|
|
|
ret = of_property_read_u32(np, "reg", &cs);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (cs >= PL35X_NAND_MAX_CS) {
|
|
dev_err(nfc->dev, "Wrong CS %d\n", cs);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (test_and_set_bit(cs, &nfc->assigned_cs)) {
|
|
dev_err(nfc->dev, "Already assigned CS %d\n", cs);
|
|
return -EINVAL;
|
|
}
|
|
|
|
plnand->cs = cs;
|
|
|
|
chip = &plnand->chip;
|
|
chip->options = NAND_BUSWIDTH_AUTO | NAND_USES_DMA | NAND_NO_SUBPAGE_WRITE;
|
|
chip->bbt_options = NAND_BBT_USE_FLASH;
|
|
chip->controller = &nfc->controller;
|
|
mtd = nand_to_mtd(chip);
|
|
mtd->dev.parent = nfc->dev;
|
|
nand_set_flash_node(chip, np);
|
|
if (!mtd->name) {
|
|
mtd->name = devm_kasprintf(nfc->dev, GFP_KERNEL,
|
|
"%s", PL35X_NANDC_DRIVER_NAME);
|
|
if (!mtd->name) {
|
|
dev_err(nfc->dev, "Failed to allocate mtd->name\n");
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
|
|
ret = nand_scan(chip, 1);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = mtd_device_register(mtd, NULL, 0);
|
|
if (ret) {
|
|
nand_cleanup(chip);
|
|
return ret;
|
|
}
|
|
|
|
list_add_tail(&plnand->node, &nfc->chips);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void pl35x_nand_chips_cleanup(struct pl35x_nandc *nfc)
|
|
{
|
|
struct pl35x_nand *plnand, *tmp;
|
|
struct nand_chip *chip;
|
|
int ret;
|
|
|
|
list_for_each_entry_safe(plnand, tmp, &nfc->chips, node) {
|
|
chip = &plnand->chip;
|
|
ret = mtd_device_unregister(nand_to_mtd(chip));
|
|
WARN_ON(ret);
|
|
nand_cleanup(chip);
|
|
list_del(&plnand->node);
|
|
}
|
|
}
|
|
|
|
static int pl35x_nand_chips_init(struct pl35x_nandc *nfc)
|
|
{
|
|
struct device_node *np = nfc->dev->of_node, *nand_np;
|
|
int nchips = of_get_child_count(np);
|
|
int ret;
|
|
|
|
if (!nchips || nchips > PL35X_NAND_MAX_CS) {
|
|
dev_err(nfc->dev, "Incorrect number of NAND chips (%d)\n",
|
|
nchips);
|
|
return -EINVAL;
|
|
}
|
|
|
|
for_each_child_of_node(np, nand_np) {
|
|
ret = pl35x_nand_chip_init(nfc, nand_np);
|
|
if (ret) {
|
|
of_node_put(nand_np);
|
|
pl35x_nand_chips_cleanup(nfc);
|
|
break;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int pl35x_nand_probe(struct platform_device *pdev)
|
|
{
|
|
struct device *smc_dev = pdev->dev.parent;
|
|
struct amba_device *smc_amba = to_amba_device(smc_dev);
|
|
struct pl35x_nandc *nfc;
|
|
u32 ret;
|
|
|
|
nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL);
|
|
if (!nfc)
|
|
return -ENOMEM;
|
|
|
|
nfc->dev = &pdev->dev;
|
|
nand_controller_init(&nfc->controller);
|
|
nfc->controller.ops = &pl35x_nandc_ops;
|
|
INIT_LIST_HEAD(&nfc->chips);
|
|
|
|
nfc->conf_regs = devm_ioremap_resource(&smc_amba->dev, &smc_amba->res);
|
|
if (IS_ERR(nfc->conf_regs))
|
|
return PTR_ERR(nfc->conf_regs);
|
|
|
|
nfc->io_regs = devm_platform_ioremap_resource(pdev, 0);
|
|
if (IS_ERR(nfc->io_regs))
|
|
return PTR_ERR(nfc->io_regs);
|
|
|
|
ret = pl35x_nand_reset_state(nfc);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = pl35x_nand_chips_init(nfc);
|
|
if (ret)
|
|
return ret;
|
|
|
|
platform_set_drvdata(pdev, nfc);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int pl35x_nand_remove(struct platform_device *pdev)
|
|
{
|
|
struct pl35x_nandc *nfc = platform_get_drvdata(pdev);
|
|
|
|
pl35x_nand_chips_cleanup(nfc);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct of_device_id pl35x_nand_of_match[] = {
|
|
{ .compatible = "arm,pl353-nand-r2p1" },
|
|
{},
|
|
};
|
|
MODULE_DEVICE_TABLE(of, pl35x_nand_of_match);
|
|
|
|
static struct platform_driver pl35x_nandc_driver = {
|
|
.probe = pl35x_nand_probe,
|
|
.remove = pl35x_nand_remove,
|
|
.driver = {
|
|
.name = PL35X_NANDC_DRIVER_NAME,
|
|
.of_match_table = pl35x_nand_of_match,
|
|
},
|
|
};
|
|
module_platform_driver(pl35x_nandc_driver);
|
|
|
|
MODULE_AUTHOR("Xilinx, Inc.");
|
|
MODULE_ALIAS("platform:" PL35X_NANDC_DRIVER_NAME);
|
|
MODULE_DESCRIPTION("ARM PL35X NAND controller driver");
|
|
MODULE_LICENSE("GPL");
|