966 lines
26 KiB
C
966 lines
26 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* Copyright 2009-2015 Freescale Semiconductor, Inc. and others
|
|
*
|
|
* Description: MPC5125, VF610, MCF54418 and Kinetis K70 Nand driver.
|
|
* Jason ported to M54418TWR and MVFA5 (VF610).
|
|
* Authors: Stefan Agner <stefan.agner@toradex.com>
|
|
* Bill Pringlemeir <bpringlemeir@nbsps.com>
|
|
* Shaohui Xie <b21989@freescale.com>
|
|
* Jason Jin <Jason.jin@freescale.com>
|
|
*
|
|
* Based on original driver mpc5121_nfc.c.
|
|
*
|
|
* Limitations:
|
|
* - Untested on MPC5125 and M54418.
|
|
* - DMA and pipelining not used.
|
|
* - 2K pages or less.
|
|
* - HW ECC: Only 2K page with 64+ OOB.
|
|
* - HW ECC: Only 24 and 32-bit error correction implemented.
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/clk.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/init.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/io.h>
|
|
#include <linux/mtd/mtd.h>
|
|
#include <linux/mtd/rawnand.h>
|
|
#include <linux/mtd/partitions.h>
|
|
#include <linux/of_device.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/swab.h>
|
|
|
|
#define DRV_NAME "vf610_nfc"
|
|
|
|
/* Register Offsets */
|
|
#define NFC_FLASH_CMD1 0x3F00
|
|
#define NFC_FLASH_CMD2 0x3F04
|
|
#define NFC_COL_ADDR 0x3F08
|
|
#define NFC_ROW_ADDR 0x3F0c
|
|
#define NFC_ROW_ADDR_INC 0x3F14
|
|
#define NFC_FLASH_STATUS1 0x3F18
|
|
#define NFC_FLASH_STATUS2 0x3F1c
|
|
#define NFC_CACHE_SWAP 0x3F28
|
|
#define NFC_SECTOR_SIZE 0x3F2c
|
|
#define NFC_FLASH_CONFIG 0x3F30
|
|
#define NFC_IRQ_STATUS 0x3F38
|
|
|
|
/* Addresses for NFC MAIN RAM BUFFER areas */
|
|
#define NFC_MAIN_AREA(n) ((n) * 0x1000)
|
|
|
|
#define PAGE_2K 0x0800
|
|
#define OOB_64 0x0040
|
|
#define OOB_MAX 0x0100
|
|
|
|
/* NFC_CMD2[CODE] controller cycle bit masks */
|
|
#define COMMAND_CMD_BYTE1 BIT(14)
|
|
#define COMMAND_CAR_BYTE1 BIT(13)
|
|
#define COMMAND_CAR_BYTE2 BIT(12)
|
|
#define COMMAND_RAR_BYTE1 BIT(11)
|
|
#define COMMAND_RAR_BYTE2 BIT(10)
|
|
#define COMMAND_RAR_BYTE3 BIT(9)
|
|
#define COMMAND_NADDR_BYTES(x) GENMASK(13, 13 - (x) + 1)
|
|
#define COMMAND_WRITE_DATA BIT(8)
|
|
#define COMMAND_CMD_BYTE2 BIT(7)
|
|
#define COMMAND_RB_HANDSHAKE BIT(6)
|
|
#define COMMAND_READ_DATA BIT(5)
|
|
#define COMMAND_CMD_BYTE3 BIT(4)
|
|
#define COMMAND_READ_STATUS BIT(3)
|
|
#define COMMAND_READ_ID BIT(2)
|
|
|
|
/* NFC ECC mode define */
|
|
#define ECC_BYPASS 0
|
|
#define ECC_45_BYTE 6
|
|
#define ECC_60_BYTE 7
|
|
|
|
/*** Register Mask and bit definitions */
|
|
|
|
/* NFC_FLASH_CMD1 Field */
|
|
#define CMD_BYTE2_MASK 0xFF000000
|
|
#define CMD_BYTE2_SHIFT 24
|
|
|
|
/* NFC_FLASH_CM2 Field */
|
|
#define CMD_BYTE1_MASK 0xFF000000
|
|
#define CMD_BYTE1_SHIFT 24
|
|
#define CMD_CODE_MASK 0x00FFFF00
|
|
#define CMD_CODE_SHIFT 8
|
|
#define BUFNO_MASK 0x00000006
|
|
#define BUFNO_SHIFT 1
|
|
#define START_BIT BIT(0)
|
|
|
|
/* NFC_COL_ADDR Field */
|
|
#define COL_ADDR_MASK 0x0000FFFF
|
|
#define COL_ADDR_SHIFT 0
|
|
#define COL_ADDR(pos, val) (((val) & 0xFF) << (8 * (pos)))
|
|
|
|
/* NFC_ROW_ADDR Field */
|
|
#define ROW_ADDR_MASK 0x00FFFFFF
|
|
#define ROW_ADDR_SHIFT 0
|
|
#define ROW_ADDR(pos, val) (((val) & 0xFF) << (8 * (pos)))
|
|
|
|
#define ROW_ADDR_CHIP_SEL_RB_MASK 0xF0000000
|
|
#define ROW_ADDR_CHIP_SEL_RB_SHIFT 28
|
|
#define ROW_ADDR_CHIP_SEL_MASK 0x0F000000
|
|
#define ROW_ADDR_CHIP_SEL_SHIFT 24
|
|
|
|
/* NFC_FLASH_STATUS2 Field */
|
|
#define STATUS_BYTE1_MASK 0x000000FF
|
|
|
|
/* NFC_FLASH_CONFIG Field */
|
|
#define CONFIG_ECC_SRAM_ADDR_MASK 0x7FC00000
|
|
#define CONFIG_ECC_SRAM_ADDR_SHIFT 22
|
|
#define CONFIG_ECC_SRAM_REQ_BIT BIT(21)
|
|
#define CONFIG_DMA_REQ_BIT BIT(20)
|
|
#define CONFIG_ECC_MODE_MASK 0x000E0000
|
|
#define CONFIG_ECC_MODE_SHIFT 17
|
|
#define CONFIG_FAST_FLASH_BIT BIT(16)
|
|
#define CONFIG_16BIT BIT(7)
|
|
#define CONFIG_BOOT_MODE_BIT BIT(6)
|
|
#define CONFIG_ADDR_AUTO_INCR_BIT BIT(5)
|
|
#define CONFIG_BUFNO_AUTO_INCR_BIT BIT(4)
|
|
#define CONFIG_PAGE_CNT_MASK 0xF
|
|
#define CONFIG_PAGE_CNT_SHIFT 0
|
|
|
|
/* NFC_IRQ_STATUS Field */
|
|
#define IDLE_IRQ_BIT BIT(29)
|
|
#define IDLE_EN_BIT BIT(20)
|
|
#define CMD_DONE_CLEAR_BIT BIT(18)
|
|
#define IDLE_CLEAR_BIT BIT(17)
|
|
|
|
/*
|
|
* ECC status - seems to consume 8 bytes (double word). The documented
|
|
* status byte is located in the lowest byte of the second word (which is
|
|
* the 4th or 7th byte depending on endianness).
|
|
* Calculate an offset to store the ECC status at the end of the buffer.
|
|
*/
|
|
#define ECC_SRAM_ADDR (PAGE_2K + OOB_MAX - 8)
|
|
|
|
#define ECC_STATUS 0x4
|
|
#define ECC_STATUS_MASK 0x80
|
|
#define ECC_STATUS_ERR_COUNT 0x3F
|
|
|
|
enum vf610_nfc_variant {
|
|
NFC_VFC610 = 1,
|
|
};
|
|
|
|
struct vf610_nfc {
|
|
struct nand_controller base;
|
|
struct nand_chip chip;
|
|
struct device *dev;
|
|
void __iomem *regs;
|
|
struct completion cmd_done;
|
|
/* Status and ID are in alternate locations. */
|
|
enum vf610_nfc_variant variant;
|
|
struct clk *clk;
|
|
/*
|
|
* Indicate that user data is accessed (full page/oob). This is
|
|
* useful to indicate the driver whether to swap byte endianness.
|
|
* See comments in vf610_nfc_rd_from_sram/vf610_nfc_wr_to_sram.
|
|
*/
|
|
bool data_access;
|
|
u32 ecc_mode;
|
|
};
|
|
|
|
static inline struct vf610_nfc *chip_to_nfc(struct nand_chip *chip)
|
|
{
|
|
return container_of(chip, struct vf610_nfc, chip);
|
|
}
|
|
|
|
static inline u32 vf610_nfc_read(struct vf610_nfc *nfc, uint reg)
|
|
{
|
|
return readl(nfc->regs + reg);
|
|
}
|
|
|
|
static inline void vf610_nfc_write(struct vf610_nfc *nfc, uint reg, u32 val)
|
|
{
|
|
writel(val, nfc->regs + reg);
|
|
}
|
|
|
|
static inline void vf610_nfc_set(struct vf610_nfc *nfc, uint reg, u32 bits)
|
|
{
|
|
vf610_nfc_write(nfc, reg, vf610_nfc_read(nfc, reg) | bits);
|
|
}
|
|
|
|
static inline void vf610_nfc_clear(struct vf610_nfc *nfc, uint reg, u32 bits)
|
|
{
|
|
vf610_nfc_write(nfc, reg, vf610_nfc_read(nfc, reg) & ~bits);
|
|
}
|
|
|
|
static inline void vf610_nfc_set_field(struct vf610_nfc *nfc, u32 reg,
|
|
u32 mask, u32 shift, u32 val)
|
|
{
|
|
vf610_nfc_write(nfc, reg,
|
|
(vf610_nfc_read(nfc, reg) & (~mask)) | val << shift);
|
|
}
|
|
|
|
static inline bool vf610_nfc_kernel_is_little_endian(void)
|
|
{
|
|
#ifdef __LITTLE_ENDIAN
|
|
return true;
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Read accessor for internal SRAM buffer
|
|
* @dst: destination address in regular memory
|
|
* @src: source address in SRAM buffer
|
|
* @len: bytes to copy
|
|
* @fix_endian: Fix endianness if required
|
|
*
|
|
* Use this accessor for the internal SRAM buffers. On the ARM
|
|
* Freescale Vybrid SoC it's known that the driver can treat
|
|
* the SRAM buffer as if it's memory. Other platform might need
|
|
* to treat the buffers differently.
|
|
*
|
|
* The controller stores bytes from the NAND chip internally in big
|
|
* endianness. On little endian platforms such as Vybrid this leads
|
|
* to reversed byte order.
|
|
* For performance reason (and earlier probably due to unawareness)
|
|
* the driver avoids correcting endianness where it has control over
|
|
* write and read side (e.g. page wise data access).
|
|
*/
|
|
static inline void vf610_nfc_rd_from_sram(void *dst, const void __iomem *src,
|
|
size_t len, bool fix_endian)
|
|
{
|
|
if (vf610_nfc_kernel_is_little_endian() && fix_endian) {
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < len; i += 4) {
|
|
u32 val = swab32(__raw_readl(src + i));
|
|
|
|
memcpy(dst + i, &val, min(sizeof(val), len - i));
|
|
}
|
|
} else {
|
|
memcpy_fromio(dst, src, len);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Write accessor for internal SRAM buffer
|
|
* @dst: destination address in SRAM buffer
|
|
* @src: source address in regular memory
|
|
* @len: bytes to copy
|
|
* @fix_endian: Fix endianness if required
|
|
*
|
|
* Use this accessor for the internal SRAM buffers. On the ARM
|
|
* Freescale Vybrid SoC it's known that the driver can treat
|
|
* the SRAM buffer as if it's memory. Other platform might need
|
|
* to treat the buffers differently.
|
|
*
|
|
* The controller stores bytes from the NAND chip internally in big
|
|
* endianness. On little endian platforms such as Vybrid this leads
|
|
* to reversed byte order.
|
|
* For performance reason (and earlier probably due to unawareness)
|
|
* the driver avoids correcting endianness where it has control over
|
|
* write and read side (e.g. page wise data access).
|
|
*/
|
|
static inline void vf610_nfc_wr_to_sram(void __iomem *dst, const void *src,
|
|
size_t len, bool fix_endian)
|
|
{
|
|
if (vf610_nfc_kernel_is_little_endian() && fix_endian) {
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < len; i += 4) {
|
|
u32 val;
|
|
|
|
memcpy(&val, src + i, min(sizeof(val), len - i));
|
|
__raw_writel(swab32(val), dst + i);
|
|
}
|
|
} else {
|
|
memcpy_toio(dst, src, len);
|
|
}
|
|
}
|
|
|
|
/* Clear flags for upcoming command */
|
|
static inline void vf610_nfc_clear_status(struct vf610_nfc *nfc)
|
|
{
|
|
u32 tmp = vf610_nfc_read(nfc, NFC_IRQ_STATUS);
|
|
|
|
tmp |= CMD_DONE_CLEAR_BIT | IDLE_CLEAR_BIT;
|
|
vf610_nfc_write(nfc, NFC_IRQ_STATUS, tmp);
|
|
}
|
|
|
|
static void vf610_nfc_done(struct vf610_nfc *nfc)
|
|
{
|
|
unsigned long timeout = msecs_to_jiffies(100);
|
|
|
|
/*
|
|
* Barrier is needed after this write. This write need
|
|
* to be done before reading the next register the first
|
|
* time.
|
|
* vf610_nfc_set implicates such a barrier by using writel
|
|
* to write to the register.
|
|
*/
|
|
vf610_nfc_set(nfc, NFC_IRQ_STATUS, IDLE_EN_BIT);
|
|
vf610_nfc_set(nfc, NFC_FLASH_CMD2, START_BIT);
|
|
|
|
if (!wait_for_completion_timeout(&nfc->cmd_done, timeout))
|
|
dev_warn(nfc->dev, "Timeout while waiting for BUSY.\n");
|
|
|
|
vf610_nfc_clear_status(nfc);
|
|
}
|
|
|
|
static irqreturn_t vf610_nfc_irq(int irq, void *data)
|
|
{
|
|
struct vf610_nfc *nfc = data;
|
|
|
|
vf610_nfc_clear(nfc, NFC_IRQ_STATUS, IDLE_EN_BIT);
|
|
complete(&nfc->cmd_done);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static inline void vf610_nfc_ecc_mode(struct vf610_nfc *nfc, int ecc_mode)
|
|
{
|
|
vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG,
|
|
CONFIG_ECC_MODE_MASK,
|
|
CONFIG_ECC_MODE_SHIFT, ecc_mode);
|
|
}
|
|
|
|
static inline void vf610_nfc_run(struct vf610_nfc *nfc, u32 col, u32 row,
|
|
u32 cmd1, u32 cmd2, u32 trfr_sz)
|
|
{
|
|
vf610_nfc_set_field(nfc, NFC_COL_ADDR, COL_ADDR_MASK,
|
|
COL_ADDR_SHIFT, col);
|
|
|
|
vf610_nfc_set_field(nfc, NFC_ROW_ADDR, ROW_ADDR_MASK,
|
|
ROW_ADDR_SHIFT, row);
|
|
|
|
vf610_nfc_write(nfc, NFC_SECTOR_SIZE, trfr_sz);
|
|
vf610_nfc_write(nfc, NFC_FLASH_CMD1, cmd1);
|
|
vf610_nfc_write(nfc, NFC_FLASH_CMD2, cmd2);
|
|
|
|
dev_dbg(nfc->dev,
|
|
"col 0x%04x, row 0x%08x, cmd1 0x%08x, cmd2 0x%08x, len %d\n",
|
|
col, row, cmd1, cmd2, trfr_sz);
|
|
|
|
vf610_nfc_done(nfc);
|
|
}
|
|
|
|
static inline const struct nand_op_instr *
|
|
vf610_get_next_instr(const struct nand_subop *subop, int *op_id)
|
|
{
|
|
if (*op_id + 1 >= subop->ninstrs)
|
|
return NULL;
|
|
|
|
(*op_id)++;
|
|
|
|
return &subop->instrs[*op_id];
|
|
}
|
|
|
|
static int vf610_nfc_cmd(struct nand_chip *chip,
|
|
const struct nand_subop *subop)
|
|
{
|
|
const struct nand_op_instr *instr;
|
|
struct vf610_nfc *nfc = chip_to_nfc(chip);
|
|
int op_id = -1, trfr_sz = 0, offset = 0;
|
|
u32 col = 0, row = 0, cmd1 = 0, cmd2 = 0, code = 0;
|
|
bool force8bit = false;
|
|
|
|
/*
|
|
* Some ops are optional, but the hardware requires the operations
|
|
* to be in this exact order.
|
|
* The op parser enforces the order and makes sure that there isn't
|
|
* a read and write element in a single operation.
|
|
*/
|
|
instr = vf610_get_next_instr(subop, &op_id);
|
|
if (!instr)
|
|
return -EINVAL;
|
|
|
|
if (instr && instr->type == NAND_OP_CMD_INSTR) {
|
|
cmd2 |= instr->ctx.cmd.opcode << CMD_BYTE1_SHIFT;
|
|
code |= COMMAND_CMD_BYTE1;
|
|
|
|
instr = vf610_get_next_instr(subop, &op_id);
|
|
}
|
|
|
|
if (instr && instr->type == NAND_OP_ADDR_INSTR) {
|
|
int naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
|
|
int i = nand_subop_get_addr_start_off(subop, op_id);
|
|
|
|
for (; i < naddrs; i++) {
|
|
u8 val = instr->ctx.addr.addrs[i];
|
|
|
|
if (i < 2)
|
|
col |= COL_ADDR(i, val);
|
|
else
|
|
row |= ROW_ADDR(i - 2, val);
|
|
}
|
|
code |= COMMAND_NADDR_BYTES(naddrs);
|
|
|
|
instr = vf610_get_next_instr(subop, &op_id);
|
|
}
|
|
|
|
if (instr && instr->type == NAND_OP_DATA_OUT_INSTR) {
|
|
trfr_sz = nand_subop_get_data_len(subop, op_id);
|
|
offset = nand_subop_get_data_start_off(subop, op_id);
|
|
force8bit = instr->ctx.data.force_8bit;
|
|
|
|
/*
|
|
* Don't fix endianness on page access for historical reasons.
|
|
* See comment in vf610_nfc_wr_to_sram
|
|
*/
|
|
vf610_nfc_wr_to_sram(nfc->regs + NFC_MAIN_AREA(0) + offset,
|
|
instr->ctx.data.buf.out + offset,
|
|
trfr_sz, !nfc->data_access);
|
|
code |= COMMAND_WRITE_DATA;
|
|
|
|
instr = vf610_get_next_instr(subop, &op_id);
|
|
}
|
|
|
|
if (instr && instr->type == NAND_OP_CMD_INSTR) {
|
|
cmd1 |= instr->ctx.cmd.opcode << CMD_BYTE2_SHIFT;
|
|
code |= COMMAND_CMD_BYTE2;
|
|
|
|
instr = vf610_get_next_instr(subop, &op_id);
|
|
}
|
|
|
|
if (instr && instr->type == NAND_OP_WAITRDY_INSTR) {
|
|
code |= COMMAND_RB_HANDSHAKE;
|
|
|
|
instr = vf610_get_next_instr(subop, &op_id);
|
|
}
|
|
|
|
if (instr && instr->type == NAND_OP_DATA_IN_INSTR) {
|
|
trfr_sz = nand_subop_get_data_len(subop, op_id);
|
|
offset = nand_subop_get_data_start_off(subop, op_id);
|
|
force8bit = instr->ctx.data.force_8bit;
|
|
|
|
code |= COMMAND_READ_DATA;
|
|
}
|
|
|
|
if (force8bit && (chip->options & NAND_BUSWIDTH_16))
|
|
vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
|
|
|
|
cmd2 |= code << CMD_CODE_SHIFT;
|
|
|
|
vf610_nfc_run(nfc, col, row, cmd1, cmd2, trfr_sz);
|
|
|
|
if (instr && instr->type == NAND_OP_DATA_IN_INSTR) {
|
|
/*
|
|
* Don't fix endianness on page access for historical reasons.
|
|
* See comment in vf610_nfc_rd_from_sram
|
|
*/
|
|
vf610_nfc_rd_from_sram(instr->ctx.data.buf.in + offset,
|
|
nfc->regs + NFC_MAIN_AREA(0) + offset,
|
|
trfr_sz, !nfc->data_access);
|
|
}
|
|
|
|
if (force8bit && (chip->options & NAND_BUSWIDTH_16))
|
|
vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct nand_op_parser vf610_nfc_op_parser = NAND_OP_PARSER(
|
|
NAND_OP_PARSER_PATTERN(vf610_nfc_cmd,
|
|
NAND_OP_PARSER_PAT_CMD_ELEM(true),
|
|
NAND_OP_PARSER_PAT_ADDR_ELEM(true, 5),
|
|
NAND_OP_PARSER_PAT_DATA_OUT_ELEM(true, PAGE_2K + OOB_MAX),
|
|
NAND_OP_PARSER_PAT_CMD_ELEM(true),
|
|
NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
|
|
NAND_OP_PARSER_PATTERN(vf610_nfc_cmd,
|
|
NAND_OP_PARSER_PAT_CMD_ELEM(true),
|
|
NAND_OP_PARSER_PAT_ADDR_ELEM(true, 5),
|
|
NAND_OP_PARSER_PAT_CMD_ELEM(true),
|
|
NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
|
|
NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, PAGE_2K + OOB_MAX)),
|
|
);
|
|
|
|
/*
|
|
* This function supports Vybrid only (MPC5125 would have full RB and four CS)
|
|
*/
|
|
static void vf610_nfc_select_target(struct nand_chip *chip, unsigned int cs)
|
|
{
|
|
struct vf610_nfc *nfc = chip_to_nfc(chip);
|
|
u32 tmp;
|
|
|
|
/* Vybrid only (MPC5125 would have full RB and four CS) */
|
|
if (nfc->variant != NFC_VFC610)
|
|
return;
|
|
|
|
tmp = vf610_nfc_read(nfc, NFC_ROW_ADDR);
|
|
tmp &= ~(ROW_ADDR_CHIP_SEL_RB_MASK | ROW_ADDR_CHIP_SEL_MASK);
|
|
tmp |= 1 << ROW_ADDR_CHIP_SEL_RB_SHIFT;
|
|
tmp |= BIT(cs) << ROW_ADDR_CHIP_SEL_SHIFT;
|
|
|
|
vf610_nfc_write(nfc, NFC_ROW_ADDR, tmp);
|
|
}
|
|
|
|
static int vf610_nfc_exec_op(struct nand_chip *chip,
|
|
const struct nand_operation *op,
|
|
bool check_only)
|
|
{
|
|
if (!check_only)
|
|
vf610_nfc_select_target(chip, op->cs);
|
|
|
|
return nand_op_parser_exec_op(chip, &vf610_nfc_op_parser, op,
|
|
check_only);
|
|
}
|
|
|
|
static inline int vf610_nfc_correct_data(struct nand_chip *chip, uint8_t *dat,
|
|
uint8_t *oob, int page)
|
|
{
|
|
struct vf610_nfc *nfc = chip_to_nfc(chip);
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
u32 ecc_status_off = NFC_MAIN_AREA(0) + ECC_SRAM_ADDR + ECC_STATUS;
|
|
u8 ecc_status;
|
|
u8 ecc_count;
|
|
int flips_threshold = nfc->chip.ecc.strength / 2;
|
|
|
|
ecc_status = vf610_nfc_read(nfc, ecc_status_off) & 0xff;
|
|
ecc_count = ecc_status & ECC_STATUS_ERR_COUNT;
|
|
|
|
if (!(ecc_status & ECC_STATUS_MASK))
|
|
return ecc_count;
|
|
|
|
nfc->data_access = true;
|
|
nand_read_oob_op(&nfc->chip, page, 0, oob, mtd->oobsize);
|
|
nfc->data_access = false;
|
|
|
|
/*
|
|
* On an erased page, bit count (including OOB) should be zero or
|
|
* at least less then half of the ECC strength.
|
|
*/
|
|
return nand_check_erased_ecc_chunk(dat, nfc->chip.ecc.size, oob,
|
|
mtd->oobsize, NULL, 0,
|
|
flips_threshold);
|
|
}
|
|
|
|
static void vf610_nfc_fill_row(struct nand_chip *chip, int page, u32 *code,
|
|
u32 *row)
|
|
{
|
|
*row = ROW_ADDR(0, page & 0xff) | ROW_ADDR(1, page >> 8);
|
|
*code |= COMMAND_RAR_BYTE1 | COMMAND_RAR_BYTE2;
|
|
|
|
if (chip->options & NAND_ROW_ADDR_3) {
|
|
*row |= ROW_ADDR(2, page >> 16);
|
|
*code |= COMMAND_RAR_BYTE3;
|
|
}
|
|
}
|
|
|
|
static int vf610_nfc_read_page(struct nand_chip *chip, uint8_t *buf,
|
|
int oob_required, int page)
|
|
{
|
|
struct vf610_nfc *nfc = chip_to_nfc(chip);
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
int trfr_sz = mtd->writesize + mtd->oobsize;
|
|
u32 row = 0, cmd1 = 0, cmd2 = 0, code = 0;
|
|
int stat;
|
|
|
|
vf610_nfc_select_target(chip, chip->cur_cs);
|
|
|
|
cmd2 |= NAND_CMD_READ0 << CMD_BYTE1_SHIFT;
|
|
code |= COMMAND_CMD_BYTE1 | COMMAND_CAR_BYTE1 | COMMAND_CAR_BYTE2;
|
|
|
|
vf610_nfc_fill_row(chip, page, &code, &row);
|
|
|
|
cmd1 |= NAND_CMD_READSTART << CMD_BYTE2_SHIFT;
|
|
code |= COMMAND_CMD_BYTE2 | COMMAND_RB_HANDSHAKE | COMMAND_READ_DATA;
|
|
|
|
cmd2 |= code << CMD_CODE_SHIFT;
|
|
|
|
vf610_nfc_ecc_mode(nfc, nfc->ecc_mode);
|
|
vf610_nfc_run(nfc, 0, row, cmd1, cmd2, trfr_sz);
|
|
vf610_nfc_ecc_mode(nfc, ECC_BYPASS);
|
|
|
|
/*
|
|
* Don't fix endianness on page access for historical reasons.
|
|
* See comment in vf610_nfc_rd_from_sram
|
|
*/
|
|
vf610_nfc_rd_from_sram(buf, nfc->regs + NFC_MAIN_AREA(0),
|
|
mtd->writesize, false);
|
|
if (oob_required)
|
|
vf610_nfc_rd_from_sram(chip->oob_poi,
|
|
nfc->regs + NFC_MAIN_AREA(0) +
|
|
mtd->writesize,
|
|
mtd->oobsize, false);
|
|
|
|
stat = vf610_nfc_correct_data(chip, buf, chip->oob_poi, page);
|
|
|
|
if (stat < 0) {
|
|
mtd->ecc_stats.failed++;
|
|
return 0;
|
|
} else {
|
|
mtd->ecc_stats.corrected += stat;
|
|
return stat;
|
|
}
|
|
}
|
|
|
|
static int vf610_nfc_write_page(struct nand_chip *chip, const uint8_t *buf,
|
|
int oob_required, int page)
|
|
{
|
|
struct vf610_nfc *nfc = chip_to_nfc(chip);
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
int trfr_sz = mtd->writesize + mtd->oobsize;
|
|
u32 row = 0, cmd1 = 0, cmd2 = 0, code = 0;
|
|
u8 status;
|
|
int ret;
|
|
|
|
vf610_nfc_select_target(chip, chip->cur_cs);
|
|
|
|
cmd2 |= NAND_CMD_SEQIN << CMD_BYTE1_SHIFT;
|
|
code |= COMMAND_CMD_BYTE1 | COMMAND_CAR_BYTE1 | COMMAND_CAR_BYTE2;
|
|
|
|
vf610_nfc_fill_row(chip, page, &code, &row);
|
|
|
|
cmd1 |= NAND_CMD_PAGEPROG << CMD_BYTE2_SHIFT;
|
|
code |= COMMAND_CMD_BYTE2 | COMMAND_WRITE_DATA;
|
|
|
|
/*
|
|
* Don't fix endianness on page access for historical reasons.
|
|
* See comment in vf610_nfc_wr_to_sram
|
|
*/
|
|
vf610_nfc_wr_to_sram(nfc->regs + NFC_MAIN_AREA(0), buf,
|
|
mtd->writesize, false);
|
|
|
|
code |= COMMAND_RB_HANDSHAKE;
|
|
cmd2 |= code << CMD_CODE_SHIFT;
|
|
|
|
vf610_nfc_ecc_mode(nfc, nfc->ecc_mode);
|
|
vf610_nfc_run(nfc, 0, row, cmd1, cmd2, trfr_sz);
|
|
vf610_nfc_ecc_mode(nfc, ECC_BYPASS);
|
|
|
|
ret = nand_status_op(chip, &status);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (status & NAND_STATUS_FAIL)
|
|
return -EIO;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int vf610_nfc_read_page_raw(struct nand_chip *chip, u8 *buf,
|
|
int oob_required, int page)
|
|
{
|
|
struct vf610_nfc *nfc = chip_to_nfc(chip);
|
|
int ret;
|
|
|
|
nfc->data_access = true;
|
|
ret = nand_read_page_raw(chip, buf, oob_required, page);
|
|
nfc->data_access = false;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int vf610_nfc_write_page_raw(struct nand_chip *chip, const u8 *buf,
|
|
int oob_required, int page)
|
|
{
|
|
struct vf610_nfc *nfc = chip_to_nfc(chip);
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
int ret;
|
|
|
|
nfc->data_access = true;
|
|
ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
|
|
if (!ret && oob_required)
|
|
ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize,
|
|
false);
|
|
nfc->data_access = false;
|
|
|
|
if (ret)
|
|
return ret;
|
|
|
|
return nand_prog_page_end_op(chip);
|
|
}
|
|
|
|
static int vf610_nfc_read_oob(struct nand_chip *chip, int page)
|
|
{
|
|
struct vf610_nfc *nfc = chip_to_nfc(chip);
|
|
int ret;
|
|
|
|
nfc->data_access = true;
|
|
ret = nand_read_oob_std(chip, page);
|
|
nfc->data_access = false;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int vf610_nfc_write_oob(struct nand_chip *chip, int page)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
struct vf610_nfc *nfc = chip_to_nfc(chip);
|
|
int ret;
|
|
|
|
nfc->data_access = true;
|
|
ret = nand_prog_page_begin_op(chip, page, mtd->writesize,
|
|
chip->oob_poi, mtd->oobsize);
|
|
nfc->data_access = false;
|
|
|
|
if (ret)
|
|
return ret;
|
|
|
|
return nand_prog_page_end_op(chip);
|
|
}
|
|
|
|
static const struct of_device_id vf610_nfc_dt_ids[] = {
|
|
{ .compatible = "fsl,vf610-nfc", .data = (void *)NFC_VFC610 },
|
|
{ /* sentinel */ }
|
|
};
|
|
MODULE_DEVICE_TABLE(of, vf610_nfc_dt_ids);
|
|
|
|
static void vf610_nfc_preinit_controller(struct vf610_nfc *nfc)
|
|
{
|
|
vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
|
|
vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_ADDR_AUTO_INCR_BIT);
|
|
vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_BUFNO_AUTO_INCR_BIT);
|
|
vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_BOOT_MODE_BIT);
|
|
vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_DMA_REQ_BIT);
|
|
vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_FAST_FLASH_BIT);
|
|
vf610_nfc_ecc_mode(nfc, ECC_BYPASS);
|
|
|
|
/* Disable virtual pages, only one elementary transfer unit */
|
|
vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG, CONFIG_PAGE_CNT_MASK,
|
|
CONFIG_PAGE_CNT_SHIFT, 1);
|
|
}
|
|
|
|
static void vf610_nfc_init_controller(struct vf610_nfc *nfc)
|
|
{
|
|
if (nfc->chip.options & NAND_BUSWIDTH_16)
|
|
vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
|
|
else
|
|
vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
|
|
|
|
if (nfc->chip.ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) {
|
|
/* Set ECC status offset in SRAM */
|
|
vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG,
|
|
CONFIG_ECC_SRAM_ADDR_MASK,
|
|
CONFIG_ECC_SRAM_ADDR_SHIFT,
|
|
ECC_SRAM_ADDR >> 3);
|
|
|
|
/* Enable ECC status in SRAM */
|
|
vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_ECC_SRAM_REQ_BIT);
|
|
}
|
|
}
|
|
|
|
static int vf610_nfc_attach_chip(struct nand_chip *chip)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
struct vf610_nfc *nfc = chip_to_nfc(chip);
|
|
|
|
vf610_nfc_init_controller(nfc);
|
|
|
|
/* Bad block options. */
|
|
if (chip->bbt_options & NAND_BBT_USE_FLASH)
|
|
chip->bbt_options |= NAND_BBT_NO_OOB;
|
|
|
|
/* Single buffer only, max 256 OOB minus ECC status */
|
|
if (mtd->writesize + mtd->oobsize > PAGE_2K + OOB_MAX - 8) {
|
|
dev_err(nfc->dev, "Unsupported flash page size\n");
|
|
return -ENXIO;
|
|
}
|
|
|
|
if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST)
|
|
return 0;
|
|
|
|
if (mtd->writesize != PAGE_2K && mtd->oobsize < 64) {
|
|
dev_err(nfc->dev, "Unsupported flash with hwecc\n");
|
|
return -ENXIO;
|
|
}
|
|
|
|
if (chip->ecc.size != mtd->writesize) {
|
|
dev_err(nfc->dev, "Step size needs to be page size\n");
|
|
return -ENXIO;
|
|
}
|
|
|
|
/* Only 64 byte ECC layouts known */
|
|
if (mtd->oobsize > 64)
|
|
mtd->oobsize = 64;
|
|
|
|
/* Use default large page ECC layout defined in NAND core */
|
|
mtd_set_ooblayout(mtd, nand_get_large_page_ooblayout());
|
|
if (chip->ecc.strength == 32) {
|
|
nfc->ecc_mode = ECC_60_BYTE;
|
|
chip->ecc.bytes = 60;
|
|
} else if (chip->ecc.strength == 24) {
|
|
nfc->ecc_mode = ECC_45_BYTE;
|
|
chip->ecc.bytes = 45;
|
|
} else {
|
|
dev_err(nfc->dev, "Unsupported ECC strength\n");
|
|
return -ENXIO;
|
|
}
|
|
|
|
chip->ecc.read_page = vf610_nfc_read_page;
|
|
chip->ecc.write_page = vf610_nfc_write_page;
|
|
chip->ecc.read_page_raw = vf610_nfc_read_page_raw;
|
|
chip->ecc.write_page_raw = vf610_nfc_write_page_raw;
|
|
chip->ecc.read_oob = vf610_nfc_read_oob;
|
|
chip->ecc.write_oob = vf610_nfc_write_oob;
|
|
|
|
chip->ecc.size = PAGE_2K;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct nand_controller_ops vf610_nfc_controller_ops = {
|
|
.attach_chip = vf610_nfc_attach_chip,
|
|
.exec_op = vf610_nfc_exec_op,
|
|
|
|
};
|
|
|
|
static int vf610_nfc_probe(struct platform_device *pdev)
|
|
{
|
|
struct vf610_nfc *nfc;
|
|
struct mtd_info *mtd;
|
|
struct nand_chip *chip;
|
|
struct device_node *child;
|
|
const struct of_device_id *of_id;
|
|
int err;
|
|
int irq;
|
|
|
|
nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL);
|
|
if (!nfc)
|
|
return -ENOMEM;
|
|
|
|
nfc->dev = &pdev->dev;
|
|
chip = &nfc->chip;
|
|
mtd = nand_to_mtd(chip);
|
|
|
|
mtd->owner = THIS_MODULE;
|
|
mtd->dev.parent = nfc->dev;
|
|
mtd->name = DRV_NAME;
|
|
|
|
irq = platform_get_irq(pdev, 0);
|
|
if (irq <= 0)
|
|
return -EINVAL;
|
|
|
|
nfc->regs = devm_platform_ioremap_resource(pdev, 0);
|
|
if (IS_ERR(nfc->regs))
|
|
return PTR_ERR(nfc->regs);
|
|
|
|
nfc->clk = devm_clk_get(&pdev->dev, NULL);
|
|
if (IS_ERR(nfc->clk))
|
|
return PTR_ERR(nfc->clk);
|
|
|
|
err = clk_prepare_enable(nfc->clk);
|
|
if (err) {
|
|
dev_err(nfc->dev, "Unable to enable clock!\n");
|
|
return err;
|
|
}
|
|
|
|
of_id = of_match_device(vf610_nfc_dt_ids, &pdev->dev);
|
|
if (!of_id) {
|
|
err = -ENODEV;
|
|
goto err_disable_clk;
|
|
}
|
|
|
|
nfc->variant = (enum vf610_nfc_variant)of_id->data;
|
|
|
|
for_each_available_child_of_node(nfc->dev->of_node, child) {
|
|
if (of_device_is_compatible(child, "fsl,vf610-nfc-nandcs")) {
|
|
|
|
if (nand_get_flash_node(chip)) {
|
|
dev_err(nfc->dev,
|
|
"Only one NAND chip supported!\n");
|
|
err = -EINVAL;
|
|
of_node_put(child);
|
|
goto err_disable_clk;
|
|
}
|
|
|
|
nand_set_flash_node(chip, child);
|
|
}
|
|
}
|
|
|
|
if (!nand_get_flash_node(chip)) {
|
|
dev_err(nfc->dev, "NAND chip sub-node missing!\n");
|
|
err = -ENODEV;
|
|
goto err_disable_clk;
|
|
}
|
|
|
|
chip->options |= NAND_NO_SUBPAGE_WRITE;
|
|
|
|
init_completion(&nfc->cmd_done);
|
|
|
|
err = devm_request_irq(nfc->dev, irq, vf610_nfc_irq, 0, DRV_NAME, nfc);
|
|
if (err) {
|
|
dev_err(nfc->dev, "Error requesting IRQ!\n");
|
|
goto err_disable_clk;
|
|
}
|
|
|
|
vf610_nfc_preinit_controller(nfc);
|
|
|
|
nand_controller_init(&nfc->base);
|
|
nfc->base.ops = &vf610_nfc_controller_ops;
|
|
chip->controller = &nfc->base;
|
|
|
|
/* Scan the NAND chip */
|
|
err = nand_scan(chip, 1);
|
|
if (err)
|
|
goto err_disable_clk;
|
|
|
|
platform_set_drvdata(pdev, nfc);
|
|
|
|
/* Register device in MTD */
|
|
err = mtd_device_register(mtd, NULL, 0);
|
|
if (err)
|
|
goto err_cleanup_nand;
|
|
return 0;
|
|
|
|
err_cleanup_nand:
|
|
nand_cleanup(chip);
|
|
err_disable_clk:
|
|
clk_disable_unprepare(nfc->clk);
|
|
return err;
|
|
}
|
|
|
|
static int vf610_nfc_remove(struct platform_device *pdev)
|
|
{
|
|
struct vf610_nfc *nfc = platform_get_drvdata(pdev);
|
|
struct nand_chip *chip = &nfc->chip;
|
|
int ret;
|
|
|
|
ret = mtd_device_unregister(nand_to_mtd(chip));
|
|
WARN_ON(ret);
|
|
nand_cleanup(chip);
|
|
clk_disable_unprepare(nfc->clk);
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_PM_SLEEP
|
|
static int vf610_nfc_suspend(struct device *dev)
|
|
{
|
|
struct vf610_nfc *nfc = dev_get_drvdata(dev);
|
|
|
|
clk_disable_unprepare(nfc->clk);
|
|
return 0;
|
|
}
|
|
|
|
static int vf610_nfc_resume(struct device *dev)
|
|
{
|
|
struct vf610_nfc *nfc = dev_get_drvdata(dev);
|
|
int err;
|
|
|
|
err = clk_prepare_enable(nfc->clk);
|
|
if (err)
|
|
return err;
|
|
|
|
vf610_nfc_preinit_controller(nfc);
|
|
vf610_nfc_init_controller(nfc);
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static SIMPLE_DEV_PM_OPS(vf610_nfc_pm_ops, vf610_nfc_suspend, vf610_nfc_resume);
|
|
|
|
static struct platform_driver vf610_nfc_driver = {
|
|
.driver = {
|
|
.name = DRV_NAME,
|
|
.of_match_table = vf610_nfc_dt_ids,
|
|
.pm = &vf610_nfc_pm_ops,
|
|
},
|
|
.probe = vf610_nfc_probe,
|
|
.remove = vf610_nfc_remove,
|
|
};
|
|
|
|
module_platform_driver(vf610_nfc_driver);
|
|
|
|
MODULE_AUTHOR("Stefan Agner <stefan.agner@toradex.com>");
|
|
MODULE_DESCRIPTION("Freescale VF610/MPC5125 NFC MTD NAND driver");
|
|
MODULE_LICENSE("GPL");
|