1494 lines
38 KiB
C
1494 lines
38 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/* CAN driver for Geschwister Schneider USB/CAN devices
|
|
* and bytewerk.org candleLight USB CAN interfaces.
|
|
*
|
|
* Copyright (C) 2013-2016 Geschwister Schneider Technologie-,
|
|
* Entwicklungs- und Vertriebs UG (Haftungsbeschränkt).
|
|
* Copyright (C) 2016 Hubert Denkmair
|
|
*
|
|
* Many thanks to all socketcan devs!
|
|
*/
|
|
|
|
#include <linux/bitfield.h>
|
|
#include <linux/clocksource.h>
|
|
#include <linux/ethtool.h>
|
|
#include <linux/init.h>
|
|
#include <linux/module.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/signal.h>
|
|
#include <linux/timecounter.h>
|
|
#include <linux/units.h>
|
|
#include <linux/usb.h>
|
|
#include <linux/workqueue.h>
|
|
|
|
#include <linux/can.h>
|
|
#include <linux/can/dev.h>
|
|
#include <linux/can/error.h>
|
|
|
|
/* Device specific constants */
|
|
#define USB_GS_USB_1_VENDOR_ID 0x1d50
|
|
#define USB_GS_USB_1_PRODUCT_ID 0x606f
|
|
|
|
#define USB_CANDLELIGHT_VENDOR_ID 0x1209
|
|
#define USB_CANDLELIGHT_PRODUCT_ID 0x2323
|
|
|
|
#define USB_CES_CANEXT_FD_VENDOR_ID 0x1cd2
|
|
#define USB_CES_CANEXT_FD_PRODUCT_ID 0x606f
|
|
|
|
#define USB_ABE_CANDEBUGGER_FD_VENDOR_ID 0x16d0
|
|
#define USB_ABE_CANDEBUGGER_FD_PRODUCT_ID 0x10b8
|
|
|
|
#define GS_USB_ENDPOINT_IN 1
|
|
#define GS_USB_ENDPOINT_OUT 2
|
|
|
|
/* Timestamp 32 bit timer runs at 1 MHz (1 µs tick). Worker accounts
|
|
* for timer overflow (will be after ~71 minutes)
|
|
*/
|
|
#define GS_USB_TIMESTAMP_TIMER_HZ (1 * HZ_PER_MHZ)
|
|
#define GS_USB_TIMESTAMP_WORK_DELAY_SEC 1800
|
|
static_assert(GS_USB_TIMESTAMP_WORK_DELAY_SEC <
|
|
CYCLECOUNTER_MASK(32) / GS_USB_TIMESTAMP_TIMER_HZ / 2);
|
|
|
|
/* Device specific constants */
|
|
enum gs_usb_breq {
|
|
GS_USB_BREQ_HOST_FORMAT = 0,
|
|
GS_USB_BREQ_BITTIMING,
|
|
GS_USB_BREQ_MODE,
|
|
GS_USB_BREQ_BERR,
|
|
GS_USB_BREQ_BT_CONST,
|
|
GS_USB_BREQ_DEVICE_CONFIG,
|
|
GS_USB_BREQ_TIMESTAMP,
|
|
GS_USB_BREQ_IDENTIFY,
|
|
GS_USB_BREQ_GET_USER_ID,
|
|
GS_USB_BREQ_QUIRK_CANTACT_PRO_DATA_BITTIMING = GS_USB_BREQ_GET_USER_ID,
|
|
GS_USB_BREQ_SET_USER_ID,
|
|
GS_USB_BREQ_DATA_BITTIMING,
|
|
GS_USB_BREQ_BT_CONST_EXT,
|
|
GS_USB_BREQ_SET_TERMINATION,
|
|
GS_USB_BREQ_GET_TERMINATION,
|
|
GS_USB_BREQ_GET_STATE,
|
|
};
|
|
|
|
enum gs_can_mode {
|
|
/* reset a channel. turns it off */
|
|
GS_CAN_MODE_RESET = 0,
|
|
/* starts a channel */
|
|
GS_CAN_MODE_START
|
|
};
|
|
|
|
enum gs_can_state {
|
|
GS_CAN_STATE_ERROR_ACTIVE = 0,
|
|
GS_CAN_STATE_ERROR_WARNING,
|
|
GS_CAN_STATE_ERROR_PASSIVE,
|
|
GS_CAN_STATE_BUS_OFF,
|
|
GS_CAN_STATE_STOPPED,
|
|
GS_CAN_STATE_SLEEPING
|
|
};
|
|
|
|
enum gs_can_identify_mode {
|
|
GS_CAN_IDENTIFY_OFF = 0,
|
|
GS_CAN_IDENTIFY_ON
|
|
};
|
|
|
|
enum gs_can_termination_state {
|
|
GS_CAN_TERMINATION_STATE_OFF = 0,
|
|
GS_CAN_TERMINATION_STATE_ON
|
|
};
|
|
|
|
#define GS_USB_TERMINATION_DISABLED CAN_TERMINATION_DISABLED
|
|
#define GS_USB_TERMINATION_ENABLED 120
|
|
|
|
/* data types passed between host and device */
|
|
|
|
/* The firmware on the original USB2CAN by Geschwister Schneider
|
|
* Technologie Entwicklungs- und Vertriebs UG exchanges all data
|
|
* between the host and the device in host byte order. This is done
|
|
* with the struct gs_host_config::byte_order member, which is sent
|
|
* first to indicate the desired byte order.
|
|
*
|
|
* The widely used open source firmware candleLight doesn't support
|
|
* this feature and exchanges the data in little endian byte order.
|
|
*/
|
|
struct gs_host_config {
|
|
__le32 byte_order;
|
|
} __packed;
|
|
|
|
struct gs_device_config {
|
|
u8 reserved1;
|
|
u8 reserved2;
|
|
u8 reserved3;
|
|
u8 icount;
|
|
__le32 sw_version;
|
|
__le32 hw_version;
|
|
} __packed;
|
|
|
|
#define GS_CAN_MODE_NORMAL 0
|
|
#define GS_CAN_MODE_LISTEN_ONLY BIT(0)
|
|
#define GS_CAN_MODE_LOOP_BACK BIT(1)
|
|
#define GS_CAN_MODE_TRIPLE_SAMPLE BIT(2)
|
|
#define GS_CAN_MODE_ONE_SHOT BIT(3)
|
|
#define GS_CAN_MODE_HW_TIMESTAMP BIT(4)
|
|
/* GS_CAN_FEATURE_IDENTIFY BIT(5) */
|
|
/* GS_CAN_FEATURE_USER_ID BIT(6) */
|
|
#define GS_CAN_MODE_PAD_PKTS_TO_MAX_PKT_SIZE BIT(7)
|
|
#define GS_CAN_MODE_FD BIT(8)
|
|
/* GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX BIT(9) */
|
|
/* GS_CAN_FEATURE_BT_CONST_EXT BIT(10) */
|
|
/* GS_CAN_FEATURE_TERMINATION BIT(11) */
|
|
#define GS_CAN_MODE_BERR_REPORTING BIT(12)
|
|
/* GS_CAN_FEATURE_GET_STATE BIT(13) */
|
|
|
|
struct gs_device_mode {
|
|
__le32 mode;
|
|
__le32 flags;
|
|
} __packed;
|
|
|
|
struct gs_device_state {
|
|
__le32 state;
|
|
__le32 rxerr;
|
|
__le32 txerr;
|
|
} __packed;
|
|
|
|
struct gs_device_bittiming {
|
|
__le32 prop_seg;
|
|
__le32 phase_seg1;
|
|
__le32 phase_seg2;
|
|
__le32 sjw;
|
|
__le32 brp;
|
|
} __packed;
|
|
|
|
struct gs_identify_mode {
|
|
__le32 mode;
|
|
} __packed;
|
|
|
|
struct gs_device_termination_state {
|
|
__le32 state;
|
|
} __packed;
|
|
|
|
#define GS_CAN_FEATURE_LISTEN_ONLY BIT(0)
|
|
#define GS_CAN_FEATURE_LOOP_BACK BIT(1)
|
|
#define GS_CAN_FEATURE_TRIPLE_SAMPLE BIT(2)
|
|
#define GS_CAN_FEATURE_ONE_SHOT BIT(3)
|
|
#define GS_CAN_FEATURE_HW_TIMESTAMP BIT(4)
|
|
#define GS_CAN_FEATURE_IDENTIFY BIT(5)
|
|
#define GS_CAN_FEATURE_USER_ID BIT(6)
|
|
#define GS_CAN_FEATURE_PAD_PKTS_TO_MAX_PKT_SIZE BIT(7)
|
|
#define GS_CAN_FEATURE_FD BIT(8)
|
|
#define GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX BIT(9)
|
|
#define GS_CAN_FEATURE_BT_CONST_EXT BIT(10)
|
|
#define GS_CAN_FEATURE_TERMINATION BIT(11)
|
|
#define GS_CAN_FEATURE_BERR_REPORTING BIT(12)
|
|
#define GS_CAN_FEATURE_GET_STATE BIT(13)
|
|
#define GS_CAN_FEATURE_MASK GENMASK(13, 0)
|
|
|
|
/* internal quirks - keep in GS_CAN_FEATURE space for now */
|
|
|
|
/* CANtact Pro original firmware:
|
|
* BREQ DATA_BITTIMING overlaps with GET_USER_ID
|
|
*/
|
|
#define GS_CAN_FEATURE_QUIRK_BREQ_CANTACT_PRO BIT(31)
|
|
|
|
struct gs_device_bt_const {
|
|
__le32 feature;
|
|
__le32 fclk_can;
|
|
__le32 tseg1_min;
|
|
__le32 tseg1_max;
|
|
__le32 tseg2_min;
|
|
__le32 tseg2_max;
|
|
__le32 sjw_max;
|
|
__le32 brp_min;
|
|
__le32 brp_max;
|
|
__le32 brp_inc;
|
|
} __packed;
|
|
|
|
struct gs_device_bt_const_extended {
|
|
__le32 feature;
|
|
__le32 fclk_can;
|
|
__le32 tseg1_min;
|
|
__le32 tseg1_max;
|
|
__le32 tseg2_min;
|
|
__le32 tseg2_max;
|
|
__le32 sjw_max;
|
|
__le32 brp_min;
|
|
__le32 brp_max;
|
|
__le32 brp_inc;
|
|
|
|
__le32 dtseg1_min;
|
|
__le32 dtseg1_max;
|
|
__le32 dtseg2_min;
|
|
__le32 dtseg2_max;
|
|
__le32 dsjw_max;
|
|
__le32 dbrp_min;
|
|
__le32 dbrp_max;
|
|
__le32 dbrp_inc;
|
|
} __packed;
|
|
|
|
#define GS_CAN_FLAG_OVERFLOW BIT(0)
|
|
#define GS_CAN_FLAG_FD BIT(1)
|
|
#define GS_CAN_FLAG_BRS BIT(2)
|
|
#define GS_CAN_FLAG_ESI BIT(3)
|
|
|
|
struct classic_can {
|
|
u8 data[8];
|
|
} __packed;
|
|
|
|
struct classic_can_ts {
|
|
u8 data[8];
|
|
__le32 timestamp_us;
|
|
} __packed;
|
|
|
|
struct classic_can_quirk {
|
|
u8 data[8];
|
|
u8 quirk;
|
|
} __packed;
|
|
|
|
struct canfd {
|
|
u8 data[64];
|
|
} __packed;
|
|
|
|
struct canfd_ts {
|
|
u8 data[64];
|
|
__le32 timestamp_us;
|
|
} __packed;
|
|
|
|
struct canfd_quirk {
|
|
u8 data[64];
|
|
u8 quirk;
|
|
} __packed;
|
|
|
|
struct gs_host_frame {
|
|
u32 echo_id;
|
|
__le32 can_id;
|
|
|
|
u8 can_dlc;
|
|
u8 channel;
|
|
u8 flags;
|
|
u8 reserved;
|
|
|
|
union {
|
|
DECLARE_FLEX_ARRAY(struct classic_can, classic_can);
|
|
DECLARE_FLEX_ARRAY(struct classic_can_ts, classic_can_ts);
|
|
DECLARE_FLEX_ARRAY(struct classic_can_quirk, classic_can_quirk);
|
|
DECLARE_FLEX_ARRAY(struct canfd, canfd);
|
|
DECLARE_FLEX_ARRAY(struct canfd_ts, canfd_ts);
|
|
DECLARE_FLEX_ARRAY(struct canfd_quirk, canfd_quirk);
|
|
};
|
|
} __packed;
|
|
/* The GS USB devices make use of the same flags and masks as in
|
|
* linux/can.h and linux/can/error.h, and no additional mapping is necessary.
|
|
*/
|
|
|
|
/* Only send a max of GS_MAX_TX_URBS frames per channel at a time. */
|
|
#define GS_MAX_TX_URBS 10
|
|
/* Only launch a max of GS_MAX_RX_URBS usb requests at a time. */
|
|
#define GS_MAX_RX_URBS 30
|
|
/* Maximum number of interfaces the driver supports per device.
|
|
* Current hardware only supports 3 interfaces. The future may vary.
|
|
*/
|
|
#define GS_MAX_INTF 3
|
|
|
|
struct gs_tx_context {
|
|
struct gs_can *dev;
|
|
unsigned int echo_id;
|
|
};
|
|
|
|
struct gs_can {
|
|
struct can_priv can; /* must be the first member */
|
|
|
|
struct gs_usb *parent;
|
|
|
|
struct net_device *netdev;
|
|
struct usb_device *udev;
|
|
|
|
struct can_bittiming_const bt_const, data_bt_const;
|
|
unsigned int channel; /* channel number */
|
|
|
|
/* time counter for hardware timestamps */
|
|
struct cyclecounter cc;
|
|
struct timecounter tc;
|
|
spinlock_t tc_lock; /* spinlock to guard access tc->cycle_last */
|
|
struct delayed_work timestamp;
|
|
|
|
u32 feature;
|
|
unsigned int hf_size_tx;
|
|
|
|
/* This lock prevents a race condition between xmit and receive. */
|
|
spinlock_t tx_ctx_lock;
|
|
struct gs_tx_context tx_context[GS_MAX_TX_URBS];
|
|
|
|
struct usb_anchor tx_submitted;
|
|
atomic_t active_tx_urbs;
|
|
};
|
|
|
|
/* usb interface struct */
|
|
struct gs_usb {
|
|
struct gs_can *canch[GS_MAX_INTF];
|
|
struct usb_anchor rx_submitted;
|
|
struct usb_device *udev;
|
|
unsigned int hf_size_rx;
|
|
u8 active_channels;
|
|
};
|
|
|
|
/* 'allocate' a tx context.
|
|
* returns a valid tx context or NULL if there is no space.
|
|
*/
|
|
static struct gs_tx_context *gs_alloc_tx_context(struct gs_can *dev)
|
|
{
|
|
int i = 0;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&dev->tx_ctx_lock, flags);
|
|
|
|
for (; i < GS_MAX_TX_URBS; i++) {
|
|
if (dev->tx_context[i].echo_id == GS_MAX_TX_URBS) {
|
|
dev->tx_context[i].echo_id = i;
|
|
spin_unlock_irqrestore(&dev->tx_ctx_lock, flags);
|
|
return &dev->tx_context[i];
|
|
}
|
|
}
|
|
|
|
spin_unlock_irqrestore(&dev->tx_ctx_lock, flags);
|
|
return NULL;
|
|
}
|
|
|
|
/* releases a tx context
|
|
*/
|
|
static void gs_free_tx_context(struct gs_tx_context *txc)
|
|
{
|
|
txc->echo_id = GS_MAX_TX_URBS;
|
|
}
|
|
|
|
/* Get a tx context by id.
|
|
*/
|
|
static struct gs_tx_context *gs_get_tx_context(struct gs_can *dev,
|
|
unsigned int id)
|
|
{
|
|
unsigned long flags;
|
|
|
|
if (id < GS_MAX_TX_URBS) {
|
|
spin_lock_irqsave(&dev->tx_ctx_lock, flags);
|
|
if (dev->tx_context[id].echo_id == id) {
|
|
spin_unlock_irqrestore(&dev->tx_ctx_lock, flags);
|
|
return &dev->tx_context[id];
|
|
}
|
|
spin_unlock_irqrestore(&dev->tx_ctx_lock, flags);
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static int gs_cmd_reset(struct gs_can *dev)
|
|
{
|
|
struct gs_device_mode dm = {
|
|
.mode = GS_CAN_MODE_RESET,
|
|
};
|
|
|
|
return usb_control_msg_send(dev->udev, 0, GS_USB_BREQ_MODE,
|
|
USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
|
|
dev->channel, 0, &dm, sizeof(dm), 1000,
|
|
GFP_KERNEL);
|
|
}
|
|
|
|
static inline int gs_usb_get_timestamp(const struct gs_can *dev,
|
|
u32 *timestamp_p)
|
|
{
|
|
__le32 timestamp;
|
|
int rc;
|
|
|
|
rc = usb_control_msg_recv(dev->udev, 0, GS_USB_BREQ_TIMESTAMP,
|
|
USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
|
|
dev->channel, 0,
|
|
×tamp, sizeof(timestamp),
|
|
USB_CTRL_GET_TIMEOUT,
|
|
GFP_KERNEL);
|
|
if (rc)
|
|
return rc;
|
|
|
|
*timestamp_p = le32_to_cpu(timestamp);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static u64 gs_usb_timestamp_read(const struct cyclecounter *cc) __must_hold(&dev->tc_lock)
|
|
{
|
|
struct gs_can *dev = container_of(cc, struct gs_can, cc);
|
|
u32 timestamp = 0;
|
|
int err;
|
|
|
|
lockdep_assert_held(&dev->tc_lock);
|
|
|
|
/* drop lock for synchronous USB transfer */
|
|
spin_unlock_bh(&dev->tc_lock);
|
|
err = gs_usb_get_timestamp(dev, ×tamp);
|
|
spin_lock_bh(&dev->tc_lock);
|
|
if (err)
|
|
netdev_err(dev->netdev,
|
|
"Error %d while reading timestamp. HW timestamps may be inaccurate.",
|
|
err);
|
|
|
|
return timestamp;
|
|
}
|
|
|
|
static void gs_usb_timestamp_work(struct work_struct *work)
|
|
{
|
|
struct delayed_work *delayed_work = to_delayed_work(work);
|
|
struct gs_can *dev;
|
|
|
|
dev = container_of(delayed_work, struct gs_can, timestamp);
|
|
spin_lock_bh(&dev->tc_lock);
|
|
timecounter_read(&dev->tc);
|
|
spin_unlock_bh(&dev->tc_lock);
|
|
|
|
schedule_delayed_work(&dev->timestamp,
|
|
GS_USB_TIMESTAMP_WORK_DELAY_SEC * HZ);
|
|
}
|
|
|
|
static void gs_usb_skb_set_timestamp(struct gs_can *dev,
|
|
struct sk_buff *skb, u32 timestamp)
|
|
{
|
|
struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
|
|
u64 ns;
|
|
|
|
spin_lock_bh(&dev->tc_lock);
|
|
ns = timecounter_cyc2time(&dev->tc, timestamp);
|
|
spin_unlock_bh(&dev->tc_lock);
|
|
|
|
hwtstamps->hwtstamp = ns_to_ktime(ns);
|
|
}
|
|
|
|
static void gs_usb_timestamp_init(struct gs_can *dev)
|
|
{
|
|
struct cyclecounter *cc = &dev->cc;
|
|
|
|
cc->read = gs_usb_timestamp_read;
|
|
cc->mask = CYCLECOUNTER_MASK(32);
|
|
cc->shift = 32 - bits_per(NSEC_PER_SEC / GS_USB_TIMESTAMP_TIMER_HZ);
|
|
cc->mult = clocksource_hz2mult(GS_USB_TIMESTAMP_TIMER_HZ, cc->shift);
|
|
|
|
spin_lock_init(&dev->tc_lock);
|
|
spin_lock_bh(&dev->tc_lock);
|
|
timecounter_init(&dev->tc, &dev->cc, ktime_get_real_ns());
|
|
spin_unlock_bh(&dev->tc_lock);
|
|
|
|
INIT_DELAYED_WORK(&dev->timestamp, gs_usb_timestamp_work);
|
|
schedule_delayed_work(&dev->timestamp,
|
|
GS_USB_TIMESTAMP_WORK_DELAY_SEC * HZ);
|
|
}
|
|
|
|
static void gs_usb_timestamp_stop(struct gs_can *dev)
|
|
{
|
|
cancel_delayed_work_sync(&dev->timestamp);
|
|
}
|
|
|
|
static void gs_update_state(struct gs_can *dev, struct can_frame *cf)
|
|
{
|
|
struct can_device_stats *can_stats = &dev->can.can_stats;
|
|
|
|
if (cf->can_id & CAN_ERR_RESTARTED) {
|
|
dev->can.state = CAN_STATE_ERROR_ACTIVE;
|
|
can_stats->restarts++;
|
|
} else if (cf->can_id & CAN_ERR_BUSOFF) {
|
|
dev->can.state = CAN_STATE_BUS_OFF;
|
|
can_stats->bus_off++;
|
|
} else if (cf->can_id & CAN_ERR_CRTL) {
|
|
if ((cf->data[1] & CAN_ERR_CRTL_TX_WARNING) ||
|
|
(cf->data[1] & CAN_ERR_CRTL_RX_WARNING)) {
|
|
dev->can.state = CAN_STATE_ERROR_WARNING;
|
|
can_stats->error_warning++;
|
|
} else if ((cf->data[1] & CAN_ERR_CRTL_TX_PASSIVE) ||
|
|
(cf->data[1] & CAN_ERR_CRTL_RX_PASSIVE)) {
|
|
dev->can.state = CAN_STATE_ERROR_PASSIVE;
|
|
can_stats->error_passive++;
|
|
} else {
|
|
dev->can.state = CAN_STATE_ERROR_ACTIVE;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void gs_usb_set_timestamp(struct gs_can *dev, struct sk_buff *skb,
|
|
const struct gs_host_frame *hf)
|
|
{
|
|
u32 timestamp;
|
|
|
|
if (!(dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP))
|
|
return;
|
|
|
|
if (hf->flags & GS_CAN_FLAG_FD)
|
|
timestamp = le32_to_cpu(hf->canfd_ts->timestamp_us);
|
|
else
|
|
timestamp = le32_to_cpu(hf->classic_can_ts->timestamp_us);
|
|
|
|
gs_usb_skb_set_timestamp(dev, skb, timestamp);
|
|
|
|
return;
|
|
}
|
|
|
|
static void gs_usb_receive_bulk_callback(struct urb *urb)
|
|
{
|
|
struct gs_usb *usbcan = urb->context;
|
|
struct gs_can *dev;
|
|
struct net_device *netdev;
|
|
int rc;
|
|
struct net_device_stats *stats;
|
|
struct gs_host_frame *hf = urb->transfer_buffer;
|
|
struct gs_tx_context *txc;
|
|
struct can_frame *cf;
|
|
struct canfd_frame *cfd;
|
|
struct sk_buff *skb;
|
|
|
|
BUG_ON(!usbcan);
|
|
|
|
switch (urb->status) {
|
|
case 0: /* success */
|
|
break;
|
|
case -ENOENT:
|
|
case -ESHUTDOWN:
|
|
return;
|
|
default:
|
|
/* do not resubmit aborted urbs. eg: when device goes down */
|
|
return;
|
|
}
|
|
|
|
/* device reports out of range channel id */
|
|
if (hf->channel >= GS_MAX_INTF)
|
|
goto device_detach;
|
|
|
|
dev = usbcan->canch[hf->channel];
|
|
|
|
netdev = dev->netdev;
|
|
stats = &netdev->stats;
|
|
|
|
if (!netif_device_present(netdev))
|
|
return;
|
|
|
|
if (hf->echo_id == -1) { /* normal rx */
|
|
if (hf->flags & GS_CAN_FLAG_FD) {
|
|
skb = alloc_canfd_skb(dev->netdev, &cfd);
|
|
if (!skb)
|
|
return;
|
|
|
|
cfd->can_id = le32_to_cpu(hf->can_id);
|
|
cfd->len = can_fd_dlc2len(hf->can_dlc);
|
|
if (hf->flags & GS_CAN_FLAG_BRS)
|
|
cfd->flags |= CANFD_BRS;
|
|
if (hf->flags & GS_CAN_FLAG_ESI)
|
|
cfd->flags |= CANFD_ESI;
|
|
|
|
memcpy(cfd->data, hf->canfd->data, cfd->len);
|
|
} else {
|
|
skb = alloc_can_skb(dev->netdev, &cf);
|
|
if (!skb)
|
|
return;
|
|
|
|
cf->can_id = le32_to_cpu(hf->can_id);
|
|
can_frame_set_cc_len(cf, hf->can_dlc, dev->can.ctrlmode);
|
|
|
|
memcpy(cf->data, hf->classic_can->data, 8);
|
|
|
|
/* ERROR frames tell us information about the controller */
|
|
if (le32_to_cpu(hf->can_id) & CAN_ERR_FLAG)
|
|
gs_update_state(dev, cf);
|
|
}
|
|
|
|
gs_usb_set_timestamp(dev, skb, hf);
|
|
|
|
netdev->stats.rx_packets++;
|
|
netdev->stats.rx_bytes += hf->can_dlc;
|
|
|
|
netif_rx(skb);
|
|
} else { /* echo_id == hf->echo_id */
|
|
if (hf->echo_id >= GS_MAX_TX_URBS) {
|
|
netdev_err(netdev,
|
|
"Unexpected out of range echo id %u\n",
|
|
hf->echo_id);
|
|
goto resubmit_urb;
|
|
}
|
|
|
|
txc = gs_get_tx_context(dev, hf->echo_id);
|
|
|
|
/* bad devices send bad echo_ids. */
|
|
if (!txc) {
|
|
netdev_err(netdev,
|
|
"Unexpected unused echo id %u\n",
|
|
hf->echo_id);
|
|
goto resubmit_urb;
|
|
}
|
|
|
|
skb = dev->can.echo_skb[hf->echo_id];
|
|
gs_usb_set_timestamp(dev, skb, hf);
|
|
|
|
netdev->stats.tx_packets++;
|
|
netdev->stats.tx_bytes += can_get_echo_skb(netdev, hf->echo_id,
|
|
NULL);
|
|
|
|
gs_free_tx_context(txc);
|
|
|
|
atomic_dec(&dev->active_tx_urbs);
|
|
|
|
netif_wake_queue(netdev);
|
|
}
|
|
|
|
if (hf->flags & GS_CAN_FLAG_OVERFLOW) {
|
|
skb = alloc_can_err_skb(netdev, &cf);
|
|
if (!skb)
|
|
goto resubmit_urb;
|
|
|
|
cf->can_id |= CAN_ERR_CRTL;
|
|
cf->len = CAN_ERR_DLC;
|
|
cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
|
|
stats->rx_over_errors++;
|
|
stats->rx_errors++;
|
|
netif_rx(skb);
|
|
}
|
|
|
|
resubmit_urb:
|
|
usb_fill_bulk_urb(urb, usbcan->udev,
|
|
usb_rcvbulkpipe(usbcan->udev, GS_USB_ENDPOINT_IN),
|
|
hf, dev->parent->hf_size_rx,
|
|
gs_usb_receive_bulk_callback, usbcan);
|
|
|
|
rc = usb_submit_urb(urb, GFP_ATOMIC);
|
|
|
|
/* USB failure take down all interfaces */
|
|
if (rc == -ENODEV) {
|
|
device_detach:
|
|
for (rc = 0; rc < GS_MAX_INTF; rc++) {
|
|
if (usbcan->canch[rc])
|
|
netif_device_detach(usbcan->canch[rc]->netdev);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int gs_usb_set_bittiming(struct net_device *netdev)
|
|
{
|
|
struct gs_can *dev = netdev_priv(netdev);
|
|
struct can_bittiming *bt = &dev->can.bittiming;
|
|
struct gs_device_bittiming dbt = {
|
|
.prop_seg = cpu_to_le32(bt->prop_seg),
|
|
.phase_seg1 = cpu_to_le32(bt->phase_seg1),
|
|
.phase_seg2 = cpu_to_le32(bt->phase_seg2),
|
|
.sjw = cpu_to_le32(bt->sjw),
|
|
.brp = cpu_to_le32(bt->brp),
|
|
};
|
|
|
|
/* request bit timings */
|
|
return usb_control_msg_send(dev->udev, 0, GS_USB_BREQ_BITTIMING,
|
|
USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
|
|
dev->channel, 0, &dbt, sizeof(dbt), 1000,
|
|
GFP_KERNEL);
|
|
}
|
|
|
|
static int gs_usb_set_data_bittiming(struct net_device *netdev)
|
|
{
|
|
struct gs_can *dev = netdev_priv(netdev);
|
|
struct can_bittiming *bt = &dev->can.data_bittiming;
|
|
struct gs_device_bittiming dbt = {
|
|
.prop_seg = cpu_to_le32(bt->prop_seg),
|
|
.phase_seg1 = cpu_to_le32(bt->phase_seg1),
|
|
.phase_seg2 = cpu_to_le32(bt->phase_seg2),
|
|
.sjw = cpu_to_le32(bt->sjw),
|
|
.brp = cpu_to_le32(bt->brp),
|
|
};
|
|
u8 request = GS_USB_BREQ_DATA_BITTIMING;
|
|
|
|
if (dev->feature & GS_CAN_FEATURE_QUIRK_BREQ_CANTACT_PRO)
|
|
request = GS_USB_BREQ_QUIRK_CANTACT_PRO_DATA_BITTIMING;
|
|
|
|
/* request data bit timings */
|
|
return usb_control_msg_send(dev->udev, 0, request,
|
|
USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
|
|
dev->channel, 0, &dbt, sizeof(dbt), 1000,
|
|
GFP_KERNEL);
|
|
}
|
|
|
|
static void gs_usb_xmit_callback(struct urb *urb)
|
|
{
|
|
struct gs_tx_context *txc = urb->context;
|
|
struct gs_can *dev = txc->dev;
|
|
struct net_device *netdev = dev->netdev;
|
|
|
|
if (urb->status)
|
|
netdev_info(netdev, "usb xmit fail %u\n", txc->echo_id);
|
|
}
|
|
|
|
static netdev_tx_t gs_can_start_xmit(struct sk_buff *skb,
|
|
struct net_device *netdev)
|
|
{
|
|
struct gs_can *dev = netdev_priv(netdev);
|
|
struct net_device_stats *stats = &dev->netdev->stats;
|
|
struct urb *urb;
|
|
struct gs_host_frame *hf;
|
|
struct can_frame *cf;
|
|
struct canfd_frame *cfd;
|
|
int rc;
|
|
unsigned int idx;
|
|
struct gs_tx_context *txc;
|
|
|
|
if (can_dev_dropped_skb(netdev, skb))
|
|
return NETDEV_TX_OK;
|
|
|
|
/* find an empty context to keep track of transmission */
|
|
txc = gs_alloc_tx_context(dev);
|
|
if (!txc)
|
|
return NETDEV_TX_BUSY;
|
|
|
|
/* create a URB, and a buffer for it */
|
|
urb = usb_alloc_urb(0, GFP_ATOMIC);
|
|
if (!urb)
|
|
goto nomem_urb;
|
|
|
|
hf = kmalloc(dev->hf_size_tx, GFP_ATOMIC);
|
|
if (!hf) {
|
|
netdev_err(netdev, "No memory left for USB buffer\n");
|
|
goto nomem_hf;
|
|
}
|
|
|
|
idx = txc->echo_id;
|
|
|
|
if (idx >= GS_MAX_TX_URBS) {
|
|
netdev_err(netdev, "Invalid tx context %u\n", idx);
|
|
goto badidx;
|
|
}
|
|
|
|
hf->echo_id = idx;
|
|
hf->channel = dev->channel;
|
|
hf->flags = 0;
|
|
hf->reserved = 0;
|
|
|
|
if (can_is_canfd_skb(skb)) {
|
|
cfd = (struct canfd_frame *)skb->data;
|
|
|
|
hf->can_id = cpu_to_le32(cfd->can_id);
|
|
hf->can_dlc = can_fd_len2dlc(cfd->len);
|
|
hf->flags |= GS_CAN_FLAG_FD;
|
|
if (cfd->flags & CANFD_BRS)
|
|
hf->flags |= GS_CAN_FLAG_BRS;
|
|
if (cfd->flags & CANFD_ESI)
|
|
hf->flags |= GS_CAN_FLAG_ESI;
|
|
|
|
memcpy(hf->canfd->data, cfd->data, cfd->len);
|
|
} else {
|
|
cf = (struct can_frame *)skb->data;
|
|
|
|
hf->can_id = cpu_to_le32(cf->can_id);
|
|
hf->can_dlc = can_get_cc_dlc(cf, dev->can.ctrlmode);
|
|
|
|
memcpy(hf->classic_can->data, cf->data, cf->len);
|
|
}
|
|
|
|
usb_fill_bulk_urb(urb, dev->udev,
|
|
usb_sndbulkpipe(dev->udev, GS_USB_ENDPOINT_OUT),
|
|
hf, dev->hf_size_tx,
|
|
gs_usb_xmit_callback, txc);
|
|
|
|
urb->transfer_flags |= URB_FREE_BUFFER;
|
|
usb_anchor_urb(urb, &dev->tx_submitted);
|
|
|
|
can_put_echo_skb(skb, netdev, idx, 0);
|
|
|
|
atomic_inc(&dev->active_tx_urbs);
|
|
|
|
rc = usb_submit_urb(urb, GFP_ATOMIC);
|
|
if (unlikely(rc)) { /* usb send failed */
|
|
atomic_dec(&dev->active_tx_urbs);
|
|
|
|
can_free_echo_skb(netdev, idx, NULL);
|
|
gs_free_tx_context(txc);
|
|
|
|
usb_unanchor_urb(urb);
|
|
|
|
if (rc == -ENODEV) {
|
|
netif_device_detach(netdev);
|
|
} else {
|
|
netdev_err(netdev, "usb_submit failed (err=%d)\n", rc);
|
|
stats->tx_dropped++;
|
|
}
|
|
} else {
|
|
/* Slow down tx path */
|
|
if (atomic_read(&dev->active_tx_urbs) >= GS_MAX_TX_URBS)
|
|
netif_stop_queue(netdev);
|
|
}
|
|
|
|
/* let usb core take care of this urb */
|
|
usb_free_urb(urb);
|
|
|
|
return NETDEV_TX_OK;
|
|
|
|
badidx:
|
|
kfree(hf);
|
|
nomem_hf:
|
|
usb_free_urb(urb);
|
|
|
|
nomem_urb:
|
|
gs_free_tx_context(txc);
|
|
dev_kfree_skb(skb);
|
|
stats->tx_dropped++;
|
|
return NETDEV_TX_OK;
|
|
}
|
|
|
|
static int gs_can_open(struct net_device *netdev)
|
|
{
|
|
struct gs_can *dev = netdev_priv(netdev);
|
|
struct gs_usb *parent = dev->parent;
|
|
struct gs_device_mode dm = {
|
|
.mode = cpu_to_le32(GS_CAN_MODE_START),
|
|
};
|
|
struct gs_host_frame *hf;
|
|
u32 ctrlmode;
|
|
u32 flags = 0;
|
|
int rc, i;
|
|
|
|
rc = open_candev(netdev);
|
|
if (rc)
|
|
return rc;
|
|
|
|
ctrlmode = dev->can.ctrlmode;
|
|
if (ctrlmode & CAN_CTRLMODE_FD) {
|
|
if (dev->feature & GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX)
|
|
dev->hf_size_tx = struct_size(hf, canfd_quirk, 1);
|
|
else
|
|
dev->hf_size_tx = struct_size(hf, canfd, 1);
|
|
} else {
|
|
if (dev->feature & GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX)
|
|
dev->hf_size_tx = struct_size(hf, classic_can_quirk, 1);
|
|
else
|
|
dev->hf_size_tx = struct_size(hf, classic_can, 1);
|
|
}
|
|
|
|
if (!parent->active_channels) {
|
|
for (i = 0; i < GS_MAX_RX_URBS; i++) {
|
|
struct urb *urb;
|
|
u8 *buf;
|
|
|
|
/* alloc rx urb */
|
|
urb = usb_alloc_urb(0, GFP_KERNEL);
|
|
if (!urb)
|
|
return -ENOMEM;
|
|
|
|
/* alloc rx buffer */
|
|
buf = kmalloc(dev->parent->hf_size_rx,
|
|
GFP_KERNEL);
|
|
if (!buf) {
|
|
netdev_err(netdev,
|
|
"No memory left for USB buffer\n");
|
|
usb_free_urb(urb);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* fill, anchor, and submit rx urb */
|
|
usb_fill_bulk_urb(urb,
|
|
dev->udev,
|
|
usb_rcvbulkpipe(dev->udev,
|
|
GS_USB_ENDPOINT_IN),
|
|
buf,
|
|
dev->parent->hf_size_rx,
|
|
gs_usb_receive_bulk_callback, parent);
|
|
urb->transfer_flags |= URB_FREE_BUFFER;
|
|
|
|
usb_anchor_urb(urb, &parent->rx_submitted);
|
|
|
|
rc = usb_submit_urb(urb, GFP_KERNEL);
|
|
if (rc) {
|
|
if (rc == -ENODEV)
|
|
netif_device_detach(dev->netdev);
|
|
|
|
netdev_err(netdev,
|
|
"usb_submit failed (err=%d)\n", rc);
|
|
|
|
usb_unanchor_urb(urb);
|
|
usb_free_urb(urb);
|
|
break;
|
|
}
|
|
|
|
/* Drop reference,
|
|
* USB core will take care of freeing it
|
|
*/
|
|
usb_free_urb(urb);
|
|
}
|
|
}
|
|
|
|
/* flags */
|
|
if (ctrlmode & CAN_CTRLMODE_LOOPBACK)
|
|
flags |= GS_CAN_MODE_LOOP_BACK;
|
|
|
|
if (ctrlmode & CAN_CTRLMODE_LISTENONLY)
|
|
flags |= GS_CAN_MODE_LISTEN_ONLY;
|
|
|
|
if (ctrlmode & CAN_CTRLMODE_3_SAMPLES)
|
|
flags |= GS_CAN_MODE_TRIPLE_SAMPLE;
|
|
|
|
if (ctrlmode & CAN_CTRLMODE_ONE_SHOT)
|
|
flags |= GS_CAN_MODE_ONE_SHOT;
|
|
|
|
if (ctrlmode & CAN_CTRLMODE_BERR_REPORTING)
|
|
flags |= GS_CAN_MODE_BERR_REPORTING;
|
|
|
|
if (ctrlmode & CAN_CTRLMODE_FD)
|
|
flags |= GS_CAN_MODE_FD;
|
|
|
|
/* if hardware supports timestamps, enable it */
|
|
if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP) {
|
|
flags |= GS_CAN_MODE_HW_TIMESTAMP;
|
|
|
|
/* start polling timestamp */
|
|
gs_usb_timestamp_init(dev);
|
|
}
|
|
|
|
/* finally start device */
|
|
dev->can.state = CAN_STATE_ERROR_ACTIVE;
|
|
dm.flags = cpu_to_le32(flags);
|
|
rc = usb_control_msg_send(dev->udev, 0, GS_USB_BREQ_MODE,
|
|
USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
|
|
dev->channel, 0, &dm, sizeof(dm), 1000,
|
|
GFP_KERNEL);
|
|
if (rc) {
|
|
netdev_err(netdev, "Couldn't start device (err=%d)\n", rc);
|
|
if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
|
|
gs_usb_timestamp_stop(dev);
|
|
dev->can.state = CAN_STATE_STOPPED;
|
|
return rc;
|
|
}
|
|
|
|
parent->active_channels++;
|
|
if (!(dev->can.ctrlmode & CAN_CTRLMODE_LISTENONLY))
|
|
netif_start_queue(netdev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int gs_usb_get_state(const struct net_device *netdev,
|
|
struct can_berr_counter *bec,
|
|
enum can_state *state)
|
|
{
|
|
struct gs_can *dev = netdev_priv(netdev);
|
|
struct gs_device_state ds;
|
|
int rc;
|
|
|
|
rc = usb_control_msg_recv(dev->udev, 0, GS_USB_BREQ_GET_STATE,
|
|
USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
|
|
dev->channel, 0,
|
|
&ds, sizeof(ds),
|
|
USB_CTRL_GET_TIMEOUT,
|
|
GFP_KERNEL);
|
|
if (rc)
|
|
return rc;
|
|
|
|
if (le32_to_cpu(ds.state) >= CAN_STATE_MAX)
|
|
return -EOPNOTSUPP;
|
|
|
|
*state = le32_to_cpu(ds.state);
|
|
bec->txerr = le32_to_cpu(ds.txerr);
|
|
bec->rxerr = le32_to_cpu(ds.rxerr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int gs_usb_can_get_berr_counter(const struct net_device *netdev,
|
|
struct can_berr_counter *bec)
|
|
{
|
|
enum can_state state;
|
|
|
|
return gs_usb_get_state(netdev, bec, &state);
|
|
}
|
|
|
|
static int gs_can_close(struct net_device *netdev)
|
|
{
|
|
int rc;
|
|
struct gs_can *dev = netdev_priv(netdev);
|
|
struct gs_usb *parent = dev->parent;
|
|
|
|
netif_stop_queue(netdev);
|
|
|
|
/* stop polling timestamp */
|
|
if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
|
|
gs_usb_timestamp_stop(dev);
|
|
|
|
/* Stop polling */
|
|
parent->active_channels--;
|
|
if (!parent->active_channels) {
|
|
usb_kill_anchored_urbs(&parent->rx_submitted);
|
|
}
|
|
|
|
/* Stop sending URBs */
|
|
usb_kill_anchored_urbs(&dev->tx_submitted);
|
|
atomic_set(&dev->active_tx_urbs, 0);
|
|
|
|
/* reset the device */
|
|
rc = gs_cmd_reset(dev);
|
|
if (rc < 0)
|
|
netdev_warn(netdev, "Couldn't shutdown device (err=%d)", rc);
|
|
|
|
/* reset tx contexts */
|
|
for (rc = 0; rc < GS_MAX_TX_URBS; rc++) {
|
|
dev->tx_context[rc].dev = dev;
|
|
dev->tx_context[rc].echo_id = GS_MAX_TX_URBS;
|
|
}
|
|
|
|
/* close the netdev */
|
|
close_candev(netdev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int gs_can_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
|
|
{
|
|
const struct gs_can *dev = netdev_priv(netdev);
|
|
|
|
if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
|
|
return can_eth_ioctl_hwts(netdev, ifr, cmd);
|
|
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
static const struct net_device_ops gs_usb_netdev_ops = {
|
|
.ndo_open = gs_can_open,
|
|
.ndo_stop = gs_can_close,
|
|
.ndo_start_xmit = gs_can_start_xmit,
|
|
.ndo_change_mtu = can_change_mtu,
|
|
.ndo_eth_ioctl = gs_can_eth_ioctl,
|
|
};
|
|
|
|
static int gs_usb_set_identify(struct net_device *netdev, bool do_identify)
|
|
{
|
|
struct gs_can *dev = netdev_priv(netdev);
|
|
struct gs_identify_mode imode;
|
|
|
|
if (do_identify)
|
|
imode.mode = cpu_to_le32(GS_CAN_IDENTIFY_ON);
|
|
else
|
|
imode.mode = cpu_to_le32(GS_CAN_IDENTIFY_OFF);
|
|
|
|
return usb_control_msg_send(dev->udev, 0, GS_USB_BREQ_IDENTIFY,
|
|
USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
|
|
dev->channel, 0, &imode, sizeof(imode), 100,
|
|
GFP_KERNEL);
|
|
}
|
|
|
|
/* blink LED's for finding the this interface */
|
|
static int gs_usb_set_phys_id(struct net_device *netdev,
|
|
enum ethtool_phys_id_state state)
|
|
{
|
|
const struct gs_can *dev = netdev_priv(netdev);
|
|
int rc = 0;
|
|
|
|
if (!(dev->feature & GS_CAN_FEATURE_IDENTIFY))
|
|
return -EOPNOTSUPP;
|
|
|
|
switch (state) {
|
|
case ETHTOOL_ID_ACTIVE:
|
|
rc = gs_usb_set_identify(netdev, GS_CAN_IDENTIFY_ON);
|
|
break;
|
|
case ETHTOOL_ID_INACTIVE:
|
|
rc = gs_usb_set_identify(netdev, GS_CAN_IDENTIFY_OFF);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int gs_usb_get_ts_info(struct net_device *netdev,
|
|
struct ethtool_ts_info *info)
|
|
{
|
|
struct gs_can *dev = netdev_priv(netdev);
|
|
|
|
/* report if device supports HW timestamps */
|
|
if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
|
|
return can_ethtool_op_get_ts_info_hwts(netdev, info);
|
|
|
|
return ethtool_op_get_ts_info(netdev, info);
|
|
}
|
|
|
|
static const struct ethtool_ops gs_usb_ethtool_ops = {
|
|
.set_phys_id = gs_usb_set_phys_id,
|
|
.get_ts_info = gs_usb_get_ts_info,
|
|
};
|
|
|
|
static int gs_usb_get_termination(struct net_device *netdev, u16 *term)
|
|
{
|
|
struct gs_can *dev = netdev_priv(netdev);
|
|
struct gs_device_termination_state term_state;
|
|
int rc;
|
|
|
|
rc = usb_control_msg_recv(dev->udev, 0, GS_USB_BREQ_GET_TERMINATION,
|
|
USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
|
|
dev->channel, 0,
|
|
&term_state, sizeof(term_state), 1000,
|
|
GFP_KERNEL);
|
|
if (rc)
|
|
return rc;
|
|
|
|
if (term_state.state == cpu_to_le32(GS_CAN_TERMINATION_STATE_ON))
|
|
*term = GS_USB_TERMINATION_ENABLED;
|
|
else
|
|
*term = GS_USB_TERMINATION_DISABLED;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int gs_usb_set_termination(struct net_device *netdev, u16 term)
|
|
{
|
|
struct gs_can *dev = netdev_priv(netdev);
|
|
struct gs_device_termination_state term_state;
|
|
|
|
if (term == GS_USB_TERMINATION_ENABLED)
|
|
term_state.state = cpu_to_le32(GS_CAN_TERMINATION_STATE_ON);
|
|
else
|
|
term_state.state = cpu_to_le32(GS_CAN_TERMINATION_STATE_OFF);
|
|
|
|
return usb_control_msg_send(dev->udev, 0, GS_USB_BREQ_SET_TERMINATION,
|
|
USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
|
|
dev->channel, 0,
|
|
&term_state, sizeof(term_state), 1000,
|
|
GFP_KERNEL);
|
|
}
|
|
|
|
static const u16 gs_usb_termination_const[] = {
|
|
GS_USB_TERMINATION_DISABLED,
|
|
GS_USB_TERMINATION_ENABLED
|
|
};
|
|
|
|
static struct gs_can *gs_make_candev(unsigned int channel,
|
|
struct usb_interface *intf,
|
|
struct gs_device_config *dconf)
|
|
{
|
|
struct gs_can *dev;
|
|
struct net_device *netdev;
|
|
int rc;
|
|
struct gs_device_bt_const_extended bt_const_extended;
|
|
struct gs_device_bt_const bt_const;
|
|
u32 feature;
|
|
|
|
/* fetch bit timing constants */
|
|
rc = usb_control_msg_recv(interface_to_usbdev(intf), 0,
|
|
GS_USB_BREQ_BT_CONST,
|
|
USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
|
|
channel, 0, &bt_const, sizeof(bt_const), 1000,
|
|
GFP_KERNEL);
|
|
|
|
if (rc) {
|
|
dev_err(&intf->dev,
|
|
"Couldn't get bit timing const for channel %d (%pe)\n",
|
|
channel, ERR_PTR(rc));
|
|
return ERR_PTR(rc);
|
|
}
|
|
|
|
/* create netdev */
|
|
netdev = alloc_candev(sizeof(struct gs_can), GS_MAX_TX_URBS);
|
|
if (!netdev) {
|
|
dev_err(&intf->dev, "Couldn't allocate candev\n");
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
dev = netdev_priv(netdev);
|
|
|
|
netdev->netdev_ops = &gs_usb_netdev_ops;
|
|
netdev->ethtool_ops = &gs_usb_ethtool_ops;
|
|
|
|
netdev->flags |= IFF_ECHO; /* we support full roundtrip echo */
|
|
netdev->dev_id = channel;
|
|
|
|
/* dev setup */
|
|
strcpy(dev->bt_const.name, KBUILD_MODNAME);
|
|
dev->bt_const.tseg1_min = le32_to_cpu(bt_const.tseg1_min);
|
|
dev->bt_const.tseg1_max = le32_to_cpu(bt_const.tseg1_max);
|
|
dev->bt_const.tseg2_min = le32_to_cpu(bt_const.tseg2_min);
|
|
dev->bt_const.tseg2_max = le32_to_cpu(bt_const.tseg2_max);
|
|
dev->bt_const.sjw_max = le32_to_cpu(bt_const.sjw_max);
|
|
dev->bt_const.brp_min = le32_to_cpu(bt_const.brp_min);
|
|
dev->bt_const.brp_max = le32_to_cpu(bt_const.brp_max);
|
|
dev->bt_const.brp_inc = le32_to_cpu(bt_const.brp_inc);
|
|
|
|
dev->udev = interface_to_usbdev(intf);
|
|
dev->netdev = netdev;
|
|
dev->channel = channel;
|
|
|
|
init_usb_anchor(&dev->tx_submitted);
|
|
atomic_set(&dev->active_tx_urbs, 0);
|
|
spin_lock_init(&dev->tx_ctx_lock);
|
|
for (rc = 0; rc < GS_MAX_TX_URBS; rc++) {
|
|
dev->tx_context[rc].dev = dev;
|
|
dev->tx_context[rc].echo_id = GS_MAX_TX_URBS;
|
|
}
|
|
|
|
/* can setup */
|
|
dev->can.state = CAN_STATE_STOPPED;
|
|
dev->can.clock.freq = le32_to_cpu(bt_const.fclk_can);
|
|
dev->can.bittiming_const = &dev->bt_const;
|
|
dev->can.do_set_bittiming = gs_usb_set_bittiming;
|
|
|
|
dev->can.ctrlmode_supported = CAN_CTRLMODE_CC_LEN8_DLC;
|
|
|
|
feature = le32_to_cpu(bt_const.feature);
|
|
dev->feature = FIELD_GET(GS_CAN_FEATURE_MASK, feature);
|
|
if (feature & GS_CAN_FEATURE_LISTEN_ONLY)
|
|
dev->can.ctrlmode_supported |= CAN_CTRLMODE_LISTENONLY;
|
|
|
|
if (feature & GS_CAN_FEATURE_LOOP_BACK)
|
|
dev->can.ctrlmode_supported |= CAN_CTRLMODE_LOOPBACK;
|
|
|
|
if (feature & GS_CAN_FEATURE_TRIPLE_SAMPLE)
|
|
dev->can.ctrlmode_supported |= CAN_CTRLMODE_3_SAMPLES;
|
|
|
|
if (feature & GS_CAN_FEATURE_ONE_SHOT)
|
|
dev->can.ctrlmode_supported |= CAN_CTRLMODE_ONE_SHOT;
|
|
|
|
if (feature & GS_CAN_FEATURE_FD) {
|
|
dev->can.ctrlmode_supported |= CAN_CTRLMODE_FD;
|
|
/* The data bit timing will be overwritten, if
|
|
* GS_CAN_FEATURE_BT_CONST_EXT is set.
|
|
*/
|
|
dev->can.data_bittiming_const = &dev->bt_const;
|
|
dev->can.do_set_data_bittiming = gs_usb_set_data_bittiming;
|
|
}
|
|
|
|
if (feature & GS_CAN_FEATURE_TERMINATION) {
|
|
rc = gs_usb_get_termination(netdev, &dev->can.termination);
|
|
if (rc) {
|
|
dev->feature &= ~GS_CAN_FEATURE_TERMINATION;
|
|
|
|
dev_info(&intf->dev,
|
|
"Disabling termination support for channel %d (%pe)\n",
|
|
channel, ERR_PTR(rc));
|
|
} else {
|
|
dev->can.termination_const = gs_usb_termination_const;
|
|
dev->can.termination_const_cnt = ARRAY_SIZE(gs_usb_termination_const);
|
|
dev->can.do_set_termination = gs_usb_set_termination;
|
|
}
|
|
}
|
|
|
|
if (feature & GS_CAN_FEATURE_BERR_REPORTING)
|
|
dev->can.ctrlmode_supported |= CAN_CTRLMODE_BERR_REPORTING;
|
|
|
|
if (feature & GS_CAN_FEATURE_GET_STATE)
|
|
dev->can.do_get_berr_counter = gs_usb_can_get_berr_counter;
|
|
|
|
/* The CANtact Pro from LinkLayer Labs is based on the
|
|
* LPC54616 µC, which is affected by the NXP LPC USB transfer
|
|
* erratum. However, the current firmware (version 2) doesn't
|
|
* set the GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX bit. Set the
|
|
* feature GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX to workaround
|
|
* this issue.
|
|
*
|
|
* For the GS_USB_BREQ_DATA_BITTIMING USB control message the
|
|
* CANtact Pro firmware uses a request value, which is already
|
|
* used by the candleLight firmware for a different purpose
|
|
* (GS_USB_BREQ_GET_USER_ID). Set the feature
|
|
* GS_CAN_FEATURE_QUIRK_BREQ_CANTACT_PRO to workaround this
|
|
* issue.
|
|
*/
|
|
if (dev->udev->descriptor.idVendor == cpu_to_le16(USB_GS_USB_1_VENDOR_ID) &&
|
|
dev->udev->descriptor.idProduct == cpu_to_le16(USB_GS_USB_1_PRODUCT_ID) &&
|
|
dev->udev->manufacturer && dev->udev->product &&
|
|
!strcmp(dev->udev->manufacturer, "LinkLayer Labs") &&
|
|
!strcmp(dev->udev->product, "CANtact Pro") &&
|
|
(le32_to_cpu(dconf->sw_version) <= 2))
|
|
dev->feature |= GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX |
|
|
GS_CAN_FEATURE_QUIRK_BREQ_CANTACT_PRO;
|
|
|
|
/* GS_CAN_FEATURE_IDENTIFY is only supported for sw_version > 1 */
|
|
if (!(le32_to_cpu(dconf->sw_version) > 1 &&
|
|
feature & GS_CAN_FEATURE_IDENTIFY))
|
|
dev->feature &= ~GS_CAN_FEATURE_IDENTIFY;
|
|
|
|
/* fetch extended bit timing constants if device has feature
|
|
* GS_CAN_FEATURE_FD and GS_CAN_FEATURE_BT_CONST_EXT
|
|
*/
|
|
if (feature & GS_CAN_FEATURE_FD &&
|
|
feature & GS_CAN_FEATURE_BT_CONST_EXT) {
|
|
rc = usb_control_msg_recv(interface_to_usbdev(intf), 0,
|
|
GS_USB_BREQ_BT_CONST_EXT,
|
|
USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
|
|
channel, 0, &bt_const_extended,
|
|
sizeof(bt_const_extended),
|
|
1000, GFP_KERNEL);
|
|
if (rc) {
|
|
dev_err(&intf->dev,
|
|
"Couldn't get extended bit timing const for channel %d (%pe)\n",
|
|
channel, ERR_PTR(rc));
|
|
goto out_free_candev;
|
|
}
|
|
|
|
strcpy(dev->data_bt_const.name, KBUILD_MODNAME);
|
|
dev->data_bt_const.tseg1_min = le32_to_cpu(bt_const_extended.dtseg1_min);
|
|
dev->data_bt_const.tseg1_max = le32_to_cpu(bt_const_extended.dtseg1_max);
|
|
dev->data_bt_const.tseg2_min = le32_to_cpu(bt_const_extended.dtseg2_min);
|
|
dev->data_bt_const.tseg2_max = le32_to_cpu(bt_const_extended.dtseg2_max);
|
|
dev->data_bt_const.sjw_max = le32_to_cpu(bt_const_extended.dsjw_max);
|
|
dev->data_bt_const.brp_min = le32_to_cpu(bt_const_extended.dbrp_min);
|
|
dev->data_bt_const.brp_max = le32_to_cpu(bt_const_extended.dbrp_max);
|
|
dev->data_bt_const.brp_inc = le32_to_cpu(bt_const_extended.dbrp_inc);
|
|
|
|
dev->can.data_bittiming_const = &dev->data_bt_const;
|
|
}
|
|
|
|
SET_NETDEV_DEV(netdev, &intf->dev);
|
|
|
|
rc = register_candev(dev->netdev);
|
|
if (rc) {
|
|
dev_err(&intf->dev,
|
|
"Couldn't register candev for channel %d (%pe)\n",
|
|
channel, ERR_PTR(rc));
|
|
goto out_free_candev;
|
|
}
|
|
|
|
return dev;
|
|
|
|
out_free_candev:
|
|
free_candev(dev->netdev);
|
|
return ERR_PTR(rc);
|
|
}
|
|
|
|
static void gs_destroy_candev(struct gs_can *dev)
|
|
{
|
|
unregister_candev(dev->netdev);
|
|
usb_kill_anchored_urbs(&dev->tx_submitted);
|
|
free_candev(dev->netdev);
|
|
}
|
|
|
|
static int gs_usb_probe(struct usb_interface *intf,
|
|
const struct usb_device_id *id)
|
|
{
|
|
struct usb_device *udev = interface_to_usbdev(intf);
|
|
struct gs_host_frame *hf;
|
|
struct gs_usb *dev;
|
|
struct gs_host_config hconf = {
|
|
.byte_order = cpu_to_le32(0x0000beef),
|
|
};
|
|
struct gs_device_config dconf;
|
|
unsigned int icount, i;
|
|
int rc;
|
|
|
|
/* send host config */
|
|
rc = usb_control_msg_send(udev, 0,
|
|
GS_USB_BREQ_HOST_FORMAT,
|
|
USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
|
|
1, intf->cur_altsetting->desc.bInterfaceNumber,
|
|
&hconf, sizeof(hconf), 1000,
|
|
GFP_KERNEL);
|
|
if (rc) {
|
|
dev_err(&intf->dev, "Couldn't send data format (err=%d)\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
/* read device config */
|
|
rc = usb_control_msg_recv(udev, 0,
|
|
GS_USB_BREQ_DEVICE_CONFIG,
|
|
USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
|
|
1, intf->cur_altsetting->desc.bInterfaceNumber,
|
|
&dconf, sizeof(dconf), 1000,
|
|
GFP_KERNEL);
|
|
if (rc) {
|
|
dev_err(&intf->dev, "Couldn't get device config: (err=%d)\n",
|
|
rc);
|
|
return rc;
|
|
}
|
|
|
|
icount = dconf.icount + 1;
|
|
dev_info(&intf->dev, "Configuring for %u interfaces\n", icount);
|
|
|
|
if (icount > GS_MAX_INTF) {
|
|
dev_err(&intf->dev,
|
|
"Driver cannot handle more that %u CAN interfaces\n",
|
|
GS_MAX_INTF);
|
|
return -EINVAL;
|
|
}
|
|
|
|
dev = kzalloc(sizeof(*dev), GFP_KERNEL);
|
|
if (!dev)
|
|
return -ENOMEM;
|
|
|
|
init_usb_anchor(&dev->rx_submitted);
|
|
|
|
usb_set_intfdata(intf, dev);
|
|
dev->udev = udev;
|
|
|
|
for (i = 0; i < icount; i++) {
|
|
unsigned int hf_size_rx = 0;
|
|
|
|
dev->canch[i] = gs_make_candev(i, intf, &dconf);
|
|
if (IS_ERR_OR_NULL(dev->canch[i])) {
|
|
/* save error code to return later */
|
|
rc = PTR_ERR(dev->canch[i]);
|
|
|
|
/* on failure destroy previously created candevs */
|
|
icount = i;
|
|
for (i = 0; i < icount; i++)
|
|
gs_destroy_candev(dev->canch[i]);
|
|
|
|
usb_kill_anchored_urbs(&dev->rx_submitted);
|
|
kfree(dev);
|
|
return rc;
|
|
}
|
|
dev->canch[i]->parent = dev;
|
|
|
|
/* set RX packet size based on FD and if hardware
|
|
* timestamps are supported.
|
|
*/
|
|
if (dev->canch[i]->can.ctrlmode_supported & CAN_CTRLMODE_FD) {
|
|
if (dev->canch[i]->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
|
|
hf_size_rx = struct_size(hf, canfd_ts, 1);
|
|
else
|
|
hf_size_rx = struct_size(hf, canfd, 1);
|
|
} else {
|
|
if (dev->canch[i]->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
|
|
hf_size_rx = struct_size(hf, classic_can_ts, 1);
|
|
else
|
|
hf_size_rx = struct_size(hf, classic_can, 1);
|
|
}
|
|
dev->hf_size_rx = max(dev->hf_size_rx, hf_size_rx);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void gs_usb_disconnect(struct usb_interface *intf)
|
|
{
|
|
struct gs_usb *dev = usb_get_intfdata(intf);
|
|
unsigned int i;
|
|
|
|
usb_set_intfdata(intf, NULL);
|
|
|
|
if (!dev) {
|
|
dev_err(&intf->dev, "Disconnect (nodata)\n");
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < GS_MAX_INTF; i++)
|
|
if (dev->canch[i])
|
|
gs_destroy_candev(dev->canch[i]);
|
|
|
|
usb_kill_anchored_urbs(&dev->rx_submitted);
|
|
kfree(dev);
|
|
}
|
|
|
|
static const struct usb_device_id gs_usb_table[] = {
|
|
{ USB_DEVICE_INTERFACE_NUMBER(USB_GS_USB_1_VENDOR_ID,
|
|
USB_GS_USB_1_PRODUCT_ID, 0) },
|
|
{ USB_DEVICE_INTERFACE_NUMBER(USB_CANDLELIGHT_VENDOR_ID,
|
|
USB_CANDLELIGHT_PRODUCT_ID, 0) },
|
|
{ USB_DEVICE_INTERFACE_NUMBER(USB_CES_CANEXT_FD_VENDOR_ID,
|
|
USB_CES_CANEXT_FD_PRODUCT_ID, 0) },
|
|
{ USB_DEVICE_INTERFACE_NUMBER(USB_ABE_CANDEBUGGER_FD_VENDOR_ID,
|
|
USB_ABE_CANDEBUGGER_FD_PRODUCT_ID, 0) },
|
|
{} /* Terminating entry */
|
|
};
|
|
|
|
MODULE_DEVICE_TABLE(usb, gs_usb_table);
|
|
|
|
static struct usb_driver gs_usb_driver = {
|
|
.name = KBUILD_MODNAME,
|
|
.probe = gs_usb_probe,
|
|
.disconnect = gs_usb_disconnect,
|
|
.id_table = gs_usb_table,
|
|
};
|
|
|
|
module_usb_driver(gs_usb_driver);
|
|
|
|
MODULE_AUTHOR("Maximilian Schneider <mws@schneidersoft.net>");
|
|
MODULE_DESCRIPTION(
|
|
"Socket CAN device driver for Geschwister Schneider Technologie-, "
|
|
"Entwicklungs- und Vertriebs UG. USB2.0 to CAN interfaces\n"
|
|
"and bytewerk.org candleLight USB CAN interfaces.");
|
|
MODULE_LICENSE("GPL v2");
|