linux-zen-server/drivers/net/ethernet/broadcom/bnxt/bnxt_hwrm.c

818 lines
26 KiB
C
Raw Permalink Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

/* Broadcom NetXtreme-C/E network driver.
*
* Copyright (c) 2020 Broadcom Limited
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation.
*/
#include <asm/byteorder.h>
#include <linux/dma-mapping.h>
#include <linux/dmapool.h>
#include <linux/errno.h>
#include <linux/ethtool.h>
#include <linux/if_ether.h>
#include <linux/io.h>
#include <linux/irq.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/netdevice.h>
#include <linux/pci.h>
#include <linux/skbuff.h>
#include "bnxt_hsi.h"
#include "bnxt.h"
#include "bnxt_hwrm.h"
static u64 hwrm_calc_sentinel(struct bnxt_hwrm_ctx *ctx, u16 req_type)
{
return (((uintptr_t)ctx) + req_type) ^ BNXT_HWRM_SENTINEL;
}
/**
* __hwrm_req_init() - Initialize an HWRM request.
* @bp: The driver context.
* @req: A pointer to the request pointer to initialize.
* @req_type: The request type. This will be converted to the little endian
* before being written to the req_type field of the returned request.
* @req_len: The length of the request to be allocated.
*
* Allocate DMA resources and initialize a new HWRM request object of the
* given type. The response address field in the request is configured with
* the DMA bus address that has been mapped for the response and the passed
* request is pointed to kernel virtual memory mapped for the request (such
* that short_input indirection can be accomplished without copying). The
* requests target and completion ring are initialized to default values and
* can be overridden by writing to the returned request object directly.
*
* The initialized request can be further customized by writing to its fields
* directly, taking care to covert such fields to little endian. The request
* object will be consumed (and all its associated resources release) upon
* passing it to hwrm_req_send() unless ownership of the request has been
* claimed by the caller via a call to hwrm_req_hold(). If the request is not
* consumed, either because it is never sent or because ownership has been
* claimed, then it must be released by a call to hwrm_req_drop().
*
* Return: zero on success, negative error code otherwise:
* E2BIG: the type of request pointer is too large to fit.
* ENOMEM: an allocation failure occurred.
*/
int __hwrm_req_init(struct bnxt *bp, void **req, u16 req_type, u32 req_len)
{
struct bnxt_hwrm_ctx *ctx;
dma_addr_t dma_handle;
u8 *req_addr;
if (req_len > BNXT_HWRM_CTX_OFFSET)
return -E2BIG;
req_addr = dma_pool_alloc(bp->hwrm_dma_pool, GFP_KERNEL | __GFP_ZERO,
&dma_handle);
if (!req_addr)
return -ENOMEM;
ctx = (struct bnxt_hwrm_ctx *)(req_addr + BNXT_HWRM_CTX_OFFSET);
/* safety first, sentinel used to check for invalid requests */
ctx->sentinel = hwrm_calc_sentinel(ctx, req_type);
ctx->req_len = req_len;
ctx->req = (struct input *)req_addr;
ctx->resp = (struct output *)(req_addr + BNXT_HWRM_RESP_OFFSET);
ctx->dma_handle = dma_handle;
ctx->flags = 0; /* __GFP_ZERO, but be explicit regarding ownership */
ctx->timeout = bp->hwrm_cmd_timeout ?: DFLT_HWRM_CMD_TIMEOUT;
ctx->allocated = BNXT_HWRM_DMA_SIZE - BNXT_HWRM_CTX_OFFSET;
ctx->gfp = GFP_KERNEL;
ctx->slice_addr = NULL;
/* initialize common request fields */
ctx->req->req_type = cpu_to_le16(req_type);
ctx->req->resp_addr = cpu_to_le64(dma_handle + BNXT_HWRM_RESP_OFFSET);
ctx->req->cmpl_ring = cpu_to_le16(BNXT_HWRM_NO_CMPL_RING);
ctx->req->target_id = cpu_to_le16(BNXT_HWRM_TARGET);
*req = ctx->req;
return 0;
}
static struct bnxt_hwrm_ctx *__hwrm_ctx(struct bnxt *bp, u8 *req_addr)
{
void *ctx_addr = req_addr + BNXT_HWRM_CTX_OFFSET;
struct input *req = (struct input *)req_addr;
struct bnxt_hwrm_ctx *ctx = ctx_addr;
u64 sentinel;
if (!req) {
/* can only be due to software bug, be loud */
netdev_err(bp->dev, "null HWRM request");
dump_stack();
return NULL;
}
/* HWRM API has no type safety, verify sentinel to validate address */
sentinel = hwrm_calc_sentinel(ctx, le16_to_cpu(req->req_type));
if (ctx->sentinel != sentinel) {
/* can only be due to software bug, be loud */
netdev_err(bp->dev, "HWRM sentinel mismatch, req_type = %u\n",
(u32)le16_to_cpu(req->req_type));
dump_stack();
return NULL;
}
return ctx;
}
/**
* hwrm_req_timeout() - Set the completion timeout for the request.
* @bp: The driver context.
* @req: The request to set the timeout.
* @timeout: The timeout in milliseconds.
*
* Set the timeout associated with the request for subsequent calls to
* hwrm_req_send(). Some requests are long running and require a different
* timeout than the default.
*/
void hwrm_req_timeout(struct bnxt *bp, void *req, unsigned int timeout)
{
struct bnxt_hwrm_ctx *ctx = __hwrm_ctx(bp, req);
if (ctx)
ctx->timeout = timeout;
}
/**
* hwrm_req_alloc_flags() - Sets GFP allocation flags for slices.
* @bp: The driver context.
* @req: The request for which calls to hwrm_req_dma_slice() will have altered
* allocation flags.
* @gfp: A bitmask of GFP flags. These flags are passed to dma_alloc_coherent()
* whenever it is used to allocate backing memory for slices. Note that
* calls to hwrm_req_dma_slice() will not always result in new allocations,
* however, memory suballocated from the request buffer is already
* __GFP_ZERO.
*
* Sets the GFP allocation flags associated with the request for subsequent
* calls to hwrm_req_dma_slice(). This can be useful for specifying __GFP_ZERO
* for slice allocations.
*/
void hwrm_req_alloc_flags(struct bnxt *bp, void *req, gfp_t gfp)
{
struct bnxt_hwrm_ctx *ctx = __hwrm_ctx(bp, req);
if (ctx)
ctx->gfp = gfp;
}
/**
* hwrm_req_replace() - Replace request data.
* @bp: The driver context.
* @req: The request to modify. A call to hwrm_req_replace() is conceptually
* an assignment of new_req to req. Subsequent calls to HWRM API functions,
* such as hwrm_req_send(), should thus use req and not new_req (in fact,
* calls to HWRM API functions will fail if non-managed request objects
* are passed).
* @len: The length of new_req.
* @new_req: The pre-built request to copy or reference.
*
* Replaces the request data in req with that of new_req. This is useful in
* scenarios where a request object has already been constructed by a third
* party prior to creating a resource managed request using hwrm_req_init().
* Depending on the length, hwrm_req_replace() will either copy the new
* request data into the DMA memory allocated for req, or it will simply
* reference the new request and use it in lieu of req during subsequent
* calls to hwrm_req_send(). The resource management is associated with
* req and is independent of and does not apply to new_req. The caller must
* ensure that the lifetime of new_req is least as long as req. Any slices
* that may have been associated with the original request are released.
*
* Return: zero on success, negative error code otherwise:
* E2BIG: Request is too large.
* EINVAL: Invalid request to modify.
*/
int hwrm_req_replace(struct bnxt *bp, void *req, void *new_req, u32 len)
{
struct bnxt_hwrm_ctx *ctx = __hwrm_ctx(bp, req);
struct input *internal_req = req;
u16 req_type;
if (!ctx)
return -EINVAL;
if (len > BNXT_HWRM_CTX_OFFSET)
return -E2BIG;
/* free any existing slices */
ctx->allocated = BNXT_HWRM_DMA_SIZE - BNXT_HWRM_CTX_OFFSET;
if (ctx->slice_addr) {
dma_free_coherent(&bp->pdev->dev, ctx->slice_size,
ctx->slice_addr, ctx->slice_handle);
ctx->slice_addr = NULL;
}
ctx->gfp = GFP_KERNEL;
if ((bp->fw_cap & BNXT_FW_CAP_SHORT_CMD) || len > BNXT_HWRM_MAX_REQ_LEN) {
memcpy(internal_req, new_req, len);
} else {
internal_req->req_type = ((struct input *)new_req)->req_type;
ctx->req = new_req;
}
ctx->req_len = len;
ctx->req->resp_addr = cpu_to_le64(ctx->dma_handle +
BNXT_HWRM_RESP_OFFSET);
/* update sentinel for potentially new request type */
req_type = le16_to_cpu(internal_req->req_type);
ctx->sentinel = hwrm_calc_sentinel(ctx, req_type);
return 0;
}
/**
* hwrm_req_flags() - Set non internal flags of the ctx
* @bp: The driver context.
* @req: The request containing the HWRM command
* @flags: ctx flags that don't have BNXT_HWRM_INTERNAL_FLAG set
*
* ctx flags can be used by the callers to instruct how the subsequent
* hwrm_req_send() should behave. Example: callers can use hwrm_req_flags
* with BNXT_HWRM_CTX_SILENT to omit kernel prints of errors of hwrm_req_send()
* or with BNXT_HWRM_FULL_WAIT enforce hwrm_req_send() to wait for full timeout
* even if FW is not responding.
* This generic function can be used to set any flag that is not an internal flag
* of the HWRM module.
*/
void hwrm_req_flags(struct bnxt *bp, void *req, enum bnxt_hwrm_ctx_flags flags)
{
struct bnxt_hwrm_ctx *ctx = __hwrm_ctx(bp, req);
if (ctx)
ctx->flags |= (flags & HWRM_API_FLAGS);
}
/**
* hwrm_req_hold() - Claim ownership of the request's resources.
* @bp: The driver context.
* @req: A pointer to the request to own. The request will no longer be
* consumed by calls to hwrm_req_send().
*
* Take ownership of the request. Ownership places responsibility on the
* caller to free the resources associated with the request via a call to
* hwrm_req_drop(). The caller taking ownership implies that a subsequent
* call to hwrm_req_send() will not consume the request (ie. sending will
* not free the associated resources if the request is owned by the caller).
* Taking ownership returns a reference to the response. Retaining and
* accessing the response data is the most common reason to take ownership
* of the request. Ownership can also be acquired in order to reuse the same
* request object across multiple invocations of hwrm_req_send().
*
* Return: A pointer to the response object.
*
* The resources associated with the response will remain available to the
* caller until ownership of the request is relinquished via a call to
* hwrm_req_drop(). It is not possible for hwrm_req_hold() to return NULL if
* a valid request is provided. A returned NULL value would imply a driver
* bug and the implementation will complain loudly in the logs to aid in
* detection. It should not be necessary to check the result for NULL.
*/
void *hwrm_req_hold(struct bnxt *bp, void *req)
{
struct bnxt_hwrm_ctx *ctx = __hwrm_ctx(bp, req);
struct input *input = (struct input *)req;
if (!ctx)
return NULL;
if (ctx->flags & BNXT_HWRM_INTERNAL_CTX_OWNED) {
/* can only be due to software bug, be loud */
netdev_err(bp->dev, "HWRM context already owned, req_type = %u\n",
(u32)le16_to_cpu(input->req_type));
dump_stack();
return NULL;
}
ctx->flags |= BNXT_HWRM_INTERNAL_CTX_OWNED;
return ((u8 *)req) + BNXT_HWRM_RESP_OFFSET;
}
static void __hwrm_ctx_drop(struct bnxt *bp, struct bnxt_hwrm_ctx *ctx)
{
void *addr = ((u8 *)ctx) - BNXT_HWRM_CTX_OFFSET;
dma_addr_t dma_handle = ctx->dma_handle; /* save before invalidate */
/* unmap any auxiliary DMA slice */
if (ctx->slice_addr)
dma_free_coherent(&bp->pdev->dev, ctx->slice_size,
ctx->slice_addr, ctx->slice_handle);
/* invalidate, ensure ownership, sentinel and dma_handle are cleared */
memset(ctx, 0, sizeof(struct bnxt_hwrm_ctx));
/* return the buffer to the DMA pool */
if (dma_handle)
dma_pool_free(bp->hwrm_dma_pool, addr, dma_handle);
}
/**
* hwrm_req_drop() - Release all resources associated with the request.
* @bp: The driver context.
* @req: The request to consume, releasing the associated resources. The
* request object, any slices, and its associated response are no
* longer valid.
*
* It is legal to call hwrm_req_drop() on an unowned request, provided it
* has not already been consumed by hwrm_req_send() (for example, to release
* an aborted request). A given request should not be dropped more than once,
* nor should it be dropped after having been consumed by hwrm_req_send(). To
* do so is an error (the context will not be found and a stack trace will be
* rendered in the kernel log).
*/
void hwrm_req_drop(struct bnxt *bp, void *req)
{
struct bnxt_hwrm_ctx *ctx = __hwrm_ctx(bp, req);
if (ctx)
__hwrm_ctx_drop(bp, ctx);
}
static int __hwrm_to_stderr(u32 hwrm_err)
{
switch (hwrm_err) {
case HWRM_ERR_CODE_SUCCESS:
return 0;
case HWRM_ERR_CODE_RESOURCE_LOCKED:
return -EROFS;
case HWRM_ERR_CODE_RESOURCE_ACCESS_DENIED:
return -EACCES;
case HWRM_ERR_CODE_RESOURCE_ALLOC_ERROR:
return -ENOSPC;
case HWRM_ERR_CODE_INVALID_PARAMS:
case HWRM_ERR_CODE_INVALID_FLAGS:
case HWRM_ERR_CODE_INVALID_ENABLES:
case HWRM_ERR_CODE_UNSUPPORTED_TLV:
case HWRM_ERR_CODE_UNSUPPORTED_OPTION_ERR:
return -EINVAL;
case HWRM_ERR_CODE_NO_BUFFER:
return -ENOMEM;
case HWRM_ERR_CODE_HOT_RESET_PROGRESS:
case HWRM_ERR_CODE_BUSY:
return -EAGAIN;
case HWRM_ERR_CODE_CMD_NOT_SUPPORTED:
return -EOPNOTSUPP;
case HWRM_ERR_CODE_PF_UNAVAILABLE:
return -ENODEV;
default:
return -EIO;
}
}
static struct bnxt_hwrm_wait_token *
__hwrm_acquire_token(struct bnxt *bp, enum bnxt_hwrm_chnl dst)
{
struct bnxt_hwrm_wait_token *token;
token = kzalloc(sizeof(*token), GFP_KERNEL);
if (!token)
return NULL;
mutex_lock(&bp->hwrm_cmd_lock);
token->dst = dst;
token->state = BNXT_HWRM_PENDING;
if (dst == BNXT_HWRM_CHNL_CHIMP) {
token->seq_id = bp->hwrm_cmd_seq++;
hlist_add_head_rcu(&token->node, &bp->hwrm_pending_list);
} else {
token->seq_id = bp->hwrm_cmd_kong_seq++;
}
return token;
}
static void
__hwrm_release_token(struct bnxt *bp, struct bnxt_hwrm_wait_token *token)
{
if (token->dst == BNXT_HWRM_CHNL_CHIMP) {
hlist_del_rcu(&token->node);
kfree_rcu(token, rcu);
} else {
kfree(token);
}
mutex_unlock(&bp->hwrm_cmd_lock);
}
void
hwrm_update_token(struct bnxt *bp, u16 seq_id, enum bnxt_hwrm_wait_state state)
{
struct bnxt_hwrm_wait_token *token;
rcu_read_lock();
hlist_for_each_entry_rcu(token, &bp->hwrm_pending_list, node) {
if (token->seq_id == seq_id) {
WRITE_ONCE(token->state, state);
rcu_read_unlock();
return;
}
}
rcu_read_unlock();
netdev_err(bp->dev, "Invalid hwrm seq id %d\n", seq_id);
}
static void hwrm_req_dbg(struct bnxt *bp, struct input *req)
{
u32 ring = le16_to_cpu(req->cmpl_ring);
u32 type = le16_to_cpu(req->req_type);
u32 tgt = le16_to_cpu(req->target_id);
u32 seq = le16_to_cpu(req->seq_id);
char opt[32] = "\n";
if (unlikely(ring != (u16)BNXT_HWRM_NO_CMPL_RING))
snprintf(opt, 16, " ring %d\n", ring);
if (unlikely(tgt != BNXT_HWRM_TARGET))
snprintf(opt + strlen(opt) - 1, 16, " tgt 0x%x\n", tgt);
netdev_dbg(bp->dev, "sent hwrm req_type 0x%x seq id 0x%x%s",
type, seq, opt);
}
#define hwrm_err(bp, ctx, fmt, ...) \
do { \
if ((ctx)->flags & BNXT_HWRM_CTX_SILENT) \
netdev_dbg((bp)->dev, fmt, __VA_ARGS__); \
else \
netdev_err((bp)->dev, fmt, __VA_ARGS__); \
} while (0)
static bool hwrm_wait_must_abort(struct bnxt *bp, u32 req_type, u32 *fw_status)
{
if (req_type == HWRM_VER_GET)
return false;
if (!bp->fw_health || !bp->fw_health->status_reliable)
return false;
*fw_status = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
return *fw_status && !BNXT_FW_IS_HEALTHY(*fw_status);
}
static int __hwrm_send(struct bnxt *bp, struct bnxt_hwrm_ctx *ctx)
{
u32 doorbell_offset = BNXT_GRCPF_REG_CHIMP_COMM_TRIGGER;
enum bnxt_hwrm_chnl dst = BNXT_HWRM_CHNL_CHIMP;
u32 bar_offset = BNXT_GRCPF_REG_CHIMP_COMM;
struct bnxt_hwrm_wait_token *token = NULL;
struct hwrm_short_input short_input = {0};
u16 max_req_len = BNXT_HWRM_MAX_REQ_LEN;
unsigned int i, timeout, tmo_count;
u32 *data = (u32 *)ctx->req;
u32 msg_len = ctx->req_len;
u32 req_type, sts;
int rc = -EBUSY;
u16 len = 0;
u8 *valid;
if (ctx->flags & BNXT_HWRM_INTERNAL_RESP_DIRTY)
memset(ctx->resp, 0, PAGE_SIZE);
req_type = le16_to_cpu(ctx->req->req_type);
if (BNXT_NO_FW_ACCESS(bp) &&
(req_type != HWRM_FUNC_RESET && req_type != HWRM_VER_GET)) {
netdev_dbg(bp->dev, "hwrm req_type 0x%x skipped, FW channel down\n",
req_type);
goto exit;
}
if (msg_len > BNXT_HWRM_MAX_REQ_LEN &&
msg_len > bp->hwrm_max_ext_req_len) {
rc = -E2BIG;
goto exit;
}
if (bnxt_kong_hwrm_message(bp, ctx->req)) {
dst = BNXT_HWRM_CHNL_KONG;
bar_offset = BNXT_GRCPF_REG_KONG_COMM;
doorbell_offset = BNXT_GRCPF_REG_KONG_COMM_TRIGGER;
if (le16_to_cpu(ctx->req->cmpl_ring) != INVALID_HW_RING_ID) {
netdev_err(bp->dev, "Ring completions not supported for KONG commands, req_type = %d\n",
req_type);
rc = -EINVAL;
goto exit;
}
}
token = __hwrm_acquire_token(bp, dst);
if (!token) {
rc = -ENOMEM;
goto exit;
}
ctx->req->seq_id = cpu_to_le16(token->seq_id);
if ((bp->fw_cap & BNXT_FW_CAP_SHORT_CMD) ||
msg_len > BNXT_HWRM_MAX_REQ_LEN) {
short_input.req_type = ctx->req->req_type;
short_input.signature =
cpu_to_le16(SHORT_REQ_SIGNATURE_SHORT_CMD);
short_input.size = cpu_to_le16(msg_len);
short_input.req_addr = cpu_to_le64(ctx->dma_handle);
data = (u32 *)&short_input;
msg_len = sizeof(short_input);
max_req_len = BNXT_HWRM_SHORT_REQ_LEN;
}
/* Ensure any associated DMA buffers are written before doorbell */
wmb();
/* Write request msg to hwrm channel */
__iowrite32_copy(bp->bar0 + bar_offset, data, msg_len / 4);
for (i = msg_len; i < max_req_len; i += 4)
writel(0, bp->bar0 + bar_offset + i);
/* Ring channel doorbell */
writel(1, bp->bar0 + doorbell_offset);
hwrm_req_dbg(bp, ctx->req);
if (!pci_is_enabled(bp->pdev)) {
rc = -ENODEV;
goto exit;
}
/* Limit timeout to an upper limit */
timeout = min(ctx->timeout, bp->hwrm_cmd_max_timeout ?: HWRM_CMD_MAX_TIMEOUT);
/* convert timeout to usec */
timeout *= 1000;
i = 0;
/* Short timeout for the first few iterations:
* number of loops = number of loops for short timeout +
* number of loops for standard timeout.
*/
tmo_count = HWRM_SHORT_TIMEOUT_COUNTER;
timeout = timeout - HWRM_SHORT_MIN_TIMEOUT * HWRM_SHORT_TIMEOUT_COUNTER;
tmo_count += DIV_ROUND_UP(timeout, HWRM_MIN_TIMEOUT);
if (le16_to_cpu(ctx->req->cmpl_ring) != INVALID_HW_RING_ID) {
/* Wait until hwrm response cmpl interrupt is processed */
while (READ_ONCE(token->state) < BNXT_HWRM_COMPLETE &&
i++ < tmo_count) {
/* Abort the wait for completion if the FW health
* check has failed.
*/
if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
goto exit;
/* on first few passes, just barely sleep */
if (i < HWRM_SHORT_TIMEOUT_COUNTER) {
usleep_range(HWRM_SHORT_MIN_TIMEOUT,
HWRM_SHORT_MAX_TIMEOUT);
} else {
if (hwrm_wait_must_abort(bp, req_type, &sts)) {
hwrm_err(bp, ctx, "Resp cmpl intr abandoning msg: 0x%x due to firmware status: 0x%x\n",
req_type, sts);
goto exit;
}
usleep_range(HWRM_MIN_TIMEOUT,
HWRM_MAX_TIMEOUT);
}
}
if (READ_ONCE(token->state) != BNXT_HWRM_COMPLETE) {
hwrm_err(bp, ctx, "Resp cmpl intr err msg: 0x%x\n",
req_type);
goto exit;
}
len = le16_to_cpu(READ_ONCE(ctx->resp->resp_len));
valid = ((u8 *)ctx->resp) + len - 1;
} else {
__le16 seen_out_of_seq = ctx->req->seq_id; /* will never see */
int j;
/* Check if response len is updated */
for (i = 0; i < tmo_count; i++) {
/* Abort the wait for completion if the FW health
* check has failed.
*/
if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
goto exit;
if (token &&
READ_ONCE(token->state) == BNXT_HWRM_DEFERRED) {
__hwrm_release_token(bp, token);
token = NULL;
}
len = le16_to_cpu(READ_ONCE(ctx->resp->resp_len));
if (len) {
__le16 resp_seq = READ_ONCE(ctx->resp->seq_id);
if (resp_seq == ctx->req->seq_id)
break;
if (resp_seq != seen_out_of_seq) {
netdev_warn(bp->dev, "Discarding out of seq response: 0x%x for msg {0x%x 0x%x}\n",
le16_to_cpu(resp_seq),
req_type,
le16_to_cpu(ctx->req->seq_id));
seen_out_of_seq = resp_seq;
}
}
/* on first few passes, just barely sleep */
if (i < HWRM_SHORT_TIMEOUT_COUNTER) {
usleep_range(HWRM_SHORT_MIN_TIMEOUT,
HWRM_SHORT_MAX_TIMEOUT);
} else {
if (hwrm_wait_must_abort(bp, req_type, &sts)) {
hwrm_err(bp, ctx, "Abandoning msg {0x%x 0x%x} len: %d due to firmware status: 0x%x\n",
req_type,
le16_to_cpu(ctx->req->seq_id),
len, sts);
goto exit;
}
usleep_range(HWRM_MIN_TIMEOUT,
HWRM_MAX_TIMEOUT);
}
}
if (i >= tmo_count) {
hwrm_err(bp, ctx, "Error (timeout: %u) msg {0x%x 0x%x} len:%d\n",
hwrm_total_timeout(i), req_type,
le16_to_cpu(ctx->req->seq_id), len);
goto exit;
}
/* Last byte of resp contains valid bit */
valid = ((u8 *)ctx->resp) + len - 1;
for (j = 0; j < HWRM_VALID_BIT_DELAY_USEC; ) {
/* make sure we read from updated DMA memory */
dma_rmb();
if (*valid)
break;
if (j < 10) {
udelay(1);
j++;
} else {
usleep_range(20, 30);
j += 20;
}
}
if (j >= HWRM_VALID_BIT_DELAY_USEC) {
hwrm_err(bp, ctx, "Error (timeout: %u) msg {0x%x 0x%x} len:%d v:%d\n",
hwrm_total_timeout(i) + j, req_type,
le16_to_cpu(ctx->req->seq_id), len, *valid);
goto exit;
}
}
/* Zero valid bit for compatibility. Valid bit in an older spec
* may become a new field in a newer spec. We must make sure that
* a new field not implemented by old spec will read zero.
*/
*valid = 0;
rc = le16_to_cpu(ctx->resp->error_code);
if (rc == HWRM_ERR_CODE_BUSY && !(ctx->flags & BNXT_HWRM_CTX_SILENT))
netdev_warn(bp->dev, "FW returned busy, hwrm req_type 0x%x\n",
req_type);
else if (rc && rc != HWRM_ERR_CODE_PF_UNAVAILABLE)
hwrm_err(bp, ctx, "hwrm req_type 0x%x seq id 0x%x error 0x%x\n",
req_type, token->seq_id, rc);
rc = __hwrm_to_stderr(rc);
exit:
if (token)
__hwrm_release_token(bp, token);
if (ctx->flags & BNXT_HWRM_INTERNAL_CTX_OWNED)
ctx->flags |= BNXT_HWRM_INTERNAL_RESP_DIRTY;
else
__hwrm_ctx_drop(bp, ctx);
return rc;
}
/**
* hwrm_req_send() - Execute an HWRM command.
* @bp: The driver context.
* @req: A pointer to the request to send. The DMA resources associated with
* the request will be released (ie. the request will be consumed) unless
* ownership of the request has been assumed by the caller via a call to
* hwrm_req_hold().
*
* Send an HWRM request to the device and wait for a response. The request is
* consumed if it is not owned by the caller. This function will block until
* the request has either completed or times out due to an error.
*
* Return: A result code.
*
* The result is zero on success, otherwise the negative error code indicates
* one of the following errors:
* E2BIG: The request was too large.
* EBUSY: The firmware is in a fatal state or the request timed out
* EACCESS: HWRM access denied.
* ENOSPC: HWRM resource allocation error.
* EINVAL: Request parameters are invalid.
* ENOMEM: HWRM has no buffers.
* EAGAIN: HWRM busy or reset in progress.
* EOPNOTSUPP: Invalid request type.
* EIO: Any other error.
* Error handling is orthogonal to request ownership. An unowned request will
* still be consumed on error. If the caller owns the request, then the caller
* is responsible for releasing the resources. Otherwise, hwrm_req_send() will
* always consume the request.
*/
int hwrm_req_send(struct bnxt *bp, void *req)
{
struct bnxt_hwrm_ctx *ctx = __hwrm_ctx(bp, req);
if (!ctx)
return -EINVAL;
return __hwrm_send(bp, ctx);
}
/**
* hwrm_req_send_silent() - A silent version of hwrm_req_send().
* @bp: The driver context.
* @req: The request to send without logging.
*
* The same as hwrm_req_send(), except that the request is silenced using
* hwrm_req_silence() prior the call. This version of the function is
* provided solely to preserve the legacy APIs flavor for this functionality.
*
* Return: A result code, see hwrm_req_send().
*/
int hwrm_req_send_silent(struct bnxt *bp, void *req)
{
hwrm_req_flags(bp, req, BNXT_HWRM_CTX_SILENT);
return hwrm_req_send(bp, req);
}
/**
* hwrm_req_dma_slice() - Allocate a slice of DMA mapped memory.
* @bp: The driver context.
* @req: The request for which indirect data will be associated.
* @size: The size of the allocation.
* @dma_handle: The bus address associated with the allocation. The HWRM API has
* no knowledge about the type of the request and so cannot infer how the
* caller intends to use the indirect data. Thus, the caller is
* responsible for configuring the request object appropriately to
* point to the associated indirect memory. Note, DMA handle has the
* same definition as it does in dma_alloc_coherent(), the caller is
* responsible for endian conversions via cpu_to_le64() before assigning
* this address.
*
* Allocates DMA mapped memory for indirect data related to a request. The
* lifetime of the DMA resources will be bound to that of the request (ie.
* they will be automatically released when the request is either consumed by
* hwrm_req_send() or dropped by hwrm_req_drop()). Small allocations are
* efficiently suballocated out of the request buffer space, hence the name
* slice, while larger requests are satisfied via an underlying call to
* dma_alloc_coherent(). Multiple suballocations are supported, however, only
* one externally mapped region is.
*
* Return: The kernel virtual address of the DMA mapping.
*/
void *
hwrm_req_dma_slice(struct bnxt *bp, void *req, u32 size, dma_addr_t *dma_handle)
{
struct bnxt_hwrm_ctx *ctx = __hwrm_ctx(bp, req);
u8 *end = ((u8 *)req) + BNXT_HWRM_DMA_SIZE;
struct input *input = req;
u8 *addr, *req_addr = req;
u32 max_offset, offset;
if (!ctx)
return NULL;
max_offset = BNXT_HWRM_DMA_SIZE - ctx->allocated;
offset = max_offset - size;
offset = ALIGN_DOWN(offset, BNXT_HWRM_DMA_ALIGN);
addr = req_addr + offset;
if (addr < req_addr + max_offset && req_addr + ctx->req_len <= addr) {
ctx->allocated = end - addr;
*dma_handle = ctx->dma_handle + offset;
return addr;
}
/* could not suballocate from ctx buffer, try create a new mapping */
if (ctx->slice_addr) {
/* if one exists, can only be due to software bug, be loud */
netdev_err(bp->dev, "HWRM refusing to reallocate DMA slice, req_type = %u\n",
(u32)le16_to_cpu(input->req_type));
dump_stack();
return NULL;
}
addr = dma_alloc_coherent(&bp->pdev->dev, size, dma_handle, ctx->gfp);
if (!addr)
return NULL;
ctx->slice_addr = addr;
ctx->slice_size = size;
ctx->slice_handle = *dma_handle;
return addr;
}