linux-zen-server/drivers/net/ethernet/cavium/liquidio/octeon_network.h

627 lines
15 KiB
C

/**********************************************************************
* Author: Cavium, Inc.
*
* Contact: support@cavium.com
* Please include "LiquidIO" in the subject.
*
* Copyright (c) 2003-2016 Cavium, Inc.
*
* This file is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License, Version 2, as
* published by the Free Software Foundation.
*
* This file is distributed in the hope that it will be useful, but
* AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
* NONINFRINGEMENT. See the GNU General Public License for more
* details.
**********************************************************************/
/*! \file octeon_network.h
* \brief Host NIC Driver: Structure and Macro definitions used by NIC Module.
*/
#ifndef __OCTEON_NETWORK_H__
#define __OCTEON_NETWORK_H__
#include <linux/ptp_clock_kernel.h>
#define LIO_MAX_MTU_SIZE (OCTNET_MAX_FRM_SIZE - OCTNET_FRM_HEADER_SIZE)
#define LIO_MIN_MTU_SIZE ETH_MIN_MTU
/* Bit mask values for lio->ifstate */
#define LIO_IFSTATE_DROQ_OPS 0x01
#define LIO_IFSTATE_REGISTERED 0x02
#define LIO_IFSTATE_RUNNING 0x04
#define LIO_IFSTATE_RX_TIMESTAMP_ENABLED 0x08
#define LIO_IFSTATE_RESETTING 0x10
struct liquidio_if_cfg_resp {
u64 rh;
struct liquidio_if_cfg_info cfg_info;
u64 status;
};
#define LIO_IFCFG_WAIT_TIME 3000 /* In milli seconds */
#define LIQUIDIO_NDEV_STATS_POLL_TIME_MS 200
/* Structure of a node in list of gather components maintained by
* NIC driver for each network device.
*/
struct octnic_gather {
/* List manipulation. Next and prev pointers. */
struct list_head list;
/* Size of the gather component at sg in bytes. */
int sg_size;
/* Number of bytes that sg was adjusted to make it 8B-aligned. */
int adjust;
/* Gather component that can accommodate max sized fragment list
* received from the IP layer.
*/
struct octeon_sg_entry *sg;
dma_addr_t sg_dma_ptr;
};
struct oct_nic_stats_resp {
u64 rh;
struct oct_link_stats stats;
u64 status;
};
struct oct_nic_vf_stats_resp {
u64 rh;
u64 spoofmac_cnt;
u64 status;
};
struct oct_nic_stats_ctrl {
struct completion complete;
struct net_device *netdev;
};
struct oct_nic_seapi_resp {
u64 rh;
union {
u32 fec_setting;
u32 speed;
};
u64 status;
};
/** LiquidIO per-interface network private data */
struct lio {
/** State of the interface. Rx/Tx happens only in the RUNNING state. */
atomic_t ifstate;
/** Octeon Interface index number. This device will be represented as
* oct<ifidx> in the system.
*/
int ifidx;
/** Octeon Input queue to use to transmit for this network interface. */
int txq;
/** Octeon Output queue from which pkts arrive
* for this network interface.
*/
int rxq;
/** Guards each glist */
spinlock_t *glist_lock;
/** Array of gather component linked lists */
struct list_head *glist;
void **glists_virt_base;
dma_addr_t *glists_dma_base;
u32 glist_entry_size;
/** Pointer to the NIC properties for the Octeon device this network
* interface is associated with.
*/
struct octdev_props *octprops;
/** Pointer to the octeon device structure. */
struct octeon_device *oct_dev;
struct net_device *netdev;
/** Link information sent by the core application for this interface. */
struct oct_link_info linfo;
/** counter of link changes */
u64 link_changes;
/** Size of Tx queue for this octeon device. */
u32 tx_qsize;
/** Size of Rx queue for this octeon device. */
u32 rx_qsize;
/** Size of MTU this octeon device. */
u32 mtu;
/** msg level flag per interface. */
u32 msg_enable;
/** Copy of Interface capabilities: TSO, TSO6, LRO, Chescksums . */
u64 dev_capability;
/* Copy of transmit encapsulation capabilities:
* TSO, TSO6, Checksums for this device for Kernel
* 3.10.0 onwards
*/
u64 enc_dev_capability;
/** Copy of beacaon reg in phy */
u32 phy_beacon_val;
/** Copy of ctrl reg in phy */
u32 led_ctrl_val;
/* PTP clock information */
struct ptp_clock_info ptp_info;
struct ptp_clock *ptp_clock;
s64 ptp_adjust;
/* for atomic access to Octeon PTP reg and data struct */
spinlock_t ptp_lock;
/* Interface info */
u32 intf_open;
/* work queue for txq status */
struct cavium_wq txq_status_wq;
/* work queue for rxq oom status */
struct cavium_wq rxq_status_wq[MAX_POSSIBLE_OCTEON_OUTPUT_QUEUES];
/* work queue for link status */
struct cavium_wq link_status_wq;
/* work queue to regularly send local time to octeon firmware */
struct cavium_wq sync_octeon_time_wq;
int netdev_uc_count;
struct cavium_wk stats_wk;
};
#define LIO_SIZE (sizeof(struct lio))
#define GET_LIO(netdev) ((struct lio *)netdev_priv(netdev))
#define LIO_MAX_CORES 16
/**
* \brief Enable or disable feature
* @param netdev pointer to network device
* @param cmd Command that just requires acknowledgment
* @param param1 Parameter to command
*/
int liquidio_set_feature(struct net_device *netdev, int cmd, u16 param1);
int setup_rx_oom_poll_fn(struct net_device *netdev);
void cleanup_rx_oom_poll_fn(struct net_device *netdev);
/**
* \brief Link control command completion callback
* @param nctrl_ptr pointer to control packet structure
*
* This routine is called by the callback function when a ctrl pkt sent to
* core app completes. The nctrl_ptr contains a copy of the command type
* and data sent to the core app. This routine is only called if the ctrl
* pkt was sent successfully to the core app.
*/
void liquidio_link_ctrl_cmd_completion(void *nctrl_ptr);
int liquidio_setup_io_queues(struct octeon_device *octeon_dev, int ifidx,
u32 num_iqs, u32 num_oqs);
irqreturn_t liquidio_msix_intr_handler(int irq __attribute__((unused)),
void *dev);
int octeon_setup_interrupt(struct octeon_device *oct, u32 num_ioqs);
void lio_fetch_stats(struct work_struct *work);
int lio_wait_for_clean_oq(struct octeon_device *oct);
/**
* \brief Register ethtool operations
* @param netdev pointer to network device
*/
void liquidio_set_ethtool_ops(struct net_device *netdev);
void lio_delete_glists(struct lio *lio);
int lio_setup_glists(struct octeon_device *oct, struct lio *lio, int num_qs);
int liquidio_get_speed(struct lio *lio);
int liquidio_set_speed(struct lio *lio, int speed);
int liquidio_get_fec(struct lio *lio);
int liquidio_set_fec(struct lio *lio, int on_off);
/**
* \brief Net device change_mtu
* @param netdev network device
*/
int liquidio_change_mtu(struct net_device *netdev, int new_mtu);
#define LIO_CHANGE_MTU_SUCCESS 1
#define LIO_CHANGE_MTU_FAIL 2
#define SKB_ADJ_MASK 0x3F
#define SKB_ADJ (SKB_ADJ_MASK + 1)
#define MIN_SKB_SIZE 256 /* 8 bytes and more - 8 bytes for PTP */
#define LIO_RXBUFFER_SZ 2048
static inline void
*recv_buffer_alloc(struct octeon_device *oct,
struct octeon_skb_page_info *pg_info)
{
struct page *page;
struct sk_buff *skb;
struct octeon_skb_page_info *skb_pg_info;
page = alloc_page(GFP_ATOMIC);
if (unlikely(!page))
return NULL;
skb = dev_alloc_skb(MIN_SKB_SIZE + SKB_ADJ);
if (unlikely(!skb)) {
__free_page(page);
pg_info->page = NULL;
return NULL;
}
if ((unsigned long)skb->data & SKB_ADJ_MASK) {
u32 r = SKB_ADJ - ((unsigned long)skb->data & SKB_ADJ_MASK);
skb_reserve(skb, r);
}
skb_pg_info = ((struct octeon_skb_page_info *)(skb->cb));
/* Get DMA info */
pg_info->dma = dma_map_page(&oct->pci_dev->dev, page, 0,
PAGE_SIZE, DMA_FROM_DEVICE);
/* Mapping failed!! */
if (dma_mapping_error(&oct->pci_dev->dev, pg_info->dma)) {
__free_page(page);
dev_kfree_skb_any((struct sk_buff *)skb);
pg_info->page = NULL;
return NULL;
}
pg_info->page = page;
pg_info->page_offset = 0;
skb_pg_info->page = page;
skb_pg_info->page_offset = 0;
skb_pg_info->dma = pg_info->dma;
return (void *)skb;
}
static inline void
*recv_buffer_fast_alloc(u32 size)
{
struct sk_buff *skb;
struct octeon_skb_page_info *skb_pg_info;
skb = dev_alloc_skb(size + SKB_ADJ);
if (unlikely(!skb))
return NULL;
if ((unsigned long)skb->data & SKB_ADJ_MASK) {
u32 r = SKB_ADJ - ((unsigned long)skb->data & SKB_ADJ_MASK);
skb_reserve(skb, r);
}
skb_pg_info = ((struct octeon_skb_page_info *)(skb->cb));
skb_pg_info->page = NULL;
skb_pg_info->page_offset = 0;
skb_pg_info->dma = 0;
return skb;
}
static inline int
recv_buffer_recycle(struct octeon_device *oct, void *buf)
{
struct octeon_skb_page_info *pg_info = buf;
if (!pg_info->page) {
dev_err(&oct->pci_dev->dev, "%s: pg_info->page NULL\n",
__func__);
return -ENOMEM;
}
if (unlikely(page_count(pg_info->page) != 1) ||
unlikely(page_to_nid(pg_info->page) != numa_node_id())) {
dma_unmap_page(&oct->pci_dev->dev,
pg_info->dma, (PAGE_SIZE << 0),
DMA_FROM_DEVICE);
pg_info->dma = 0;
pg_info->page = NULL;
pg_info->page_offset = 0;
return -ENOMEM;
}
/* Flip to other half of the buffer */
if (pg_info->page_offset == 0)
pg_info->page_offset = LIO_RXBUFFER_SZ;
else
pg_info->page_offset = 0;
page_ref_inc(pg_info->page);
return 0;
}
static inline void
*recv_buffer_reuse(struct octeon_device *oct, void *buf)
{
struct octeon_skb_page_info *pg_info = buf, *skb_pg_info;
struct sk_buff *skb;
skb = dev_alloc_skb(MIN_SKB_SIZE + SKB_ADJ);
if (unlikely(!skb)) {
dma_unmap_page(&oct->pci_dev->dev,
pg_info->dma, (PAGE_SIZE << 0),
DMA_FROM_DEVICE);
return NULL;
}
if ((unsigned long)skb->data & SKB_ADJ_MASK) {
u32 r = SKB_ADJ - ((unsigned long)skb->data & SKB_ADJ_MASK);
skb_reserve(skb, r);
}
skb_pg_info = ((struct octeon_skb_page_info *)(skb->cb));
skb_pg_info->page = pg_info->page;
skb_pg_info->page_offset = pg_info->page_offset;
skb_pg_info->dma = pg_info->dma;
return skb;
}
static inline void
recv_buffer_destroy(void *buffer, struct octeon_skb_page_info *pg_info)
{
struct sk_buff *skb = (struct sk_buff *)buffer;
put_page(pg_info->page);
pg_info->dma = 0;
pg_info->page = NULL;
pg_info->page_offset = 0;
if (skb)
dev_kfree_skb_any(skb);
}
static inline void recv_buffer_free(void *buffer)
{
struct sk_buff *skb = (struct sk_buff *)buffer;
struct octeon_skb_page_info *pg_info;
pg_info = ((struct octeon_skb_page_info *)(skb->cb));
if (pg_info->page) {
put_page(pg_info->page);
pg_info->dma = 0;
pg_info->page = NULL;
pg_info->page_offset = 0;
}
dev_kfree_skb_any((struct sk_buff *)buffer);
}
static inline void
recv_buffer_fast_free(void *buffer)
{
dev_kfree_skb_any((struct sk_buff *)buffer);
}
static inline void tx_buffer_free(void *buffer)
{
dev_kfree_skb_any((struct sk_buff *)buffer);
}
#define lio_dma_alloc(oct, size, dma_addr) \
dma_alloc_coherent(&(oct)->pci_dev->dev, size, dma_addr, GFP_KERNEL)
#define lio_dma_free(oct, size, virt_addr, dma_addr) \
dma_free_coherent(&(oct)->pci_dev->dev, size, virt_addr, dma_addr)
static inline
void *get_rbd(struct sk_buff *skb)
{
struct octeon_skb_page_info *pg_info;
unsigned char *va;
pg_info = ((struct octeon_skb_page_info *)(skb->cb));
va = page_address(pg_info->page) + pg_info->page_offset;
return va;
}
static inline u64
lio_map_ring(void *buf)
{
dma_addr_t dma_addr;
struct sk_buff *skb = (struct sk_buff *)buf;
struct octeon_skb_page_info *pg_info;
pg_info = ((struct octeon_skb_page_info *)(skb->cb));
if (!pg_info->page) {
pr_err("%s: pg_info->page NULL\n", __func__);
WARN_ON(1);
}
/* Get DMA info */
dma_addr = pg_info->dma;
if (!pg_info->dma) {
pr_err("%s: ERROR it should be already available\n",
__func__);
WARN_ON(1);
}
dma_addr += pg_info->page_offset;
return (u64)dma_addr;
}
static inline void
lio_unmap_ring(struct pci_dev *pci_dev,
u64 buf_ptr)
{
dma_unmap_page(&pci_dev->dev,
buf_ptr, (PAGE_SIZE << 0),
DMA_FROM_DEVICE);
}
static inline void *octeon_fast_packet_alloc(u32 size)
{
return recv_buffer_fast_alloc(size);
}
static inline void octeon_fast_packet_next(struct octeon_droq *droq,
struct sk_buff *nicbuf,
int copy_len,
int idx)
{
skb_put_data(nicbuf, get_rbd(droq->recv_buf_list[idx].buffer),
copy_len);
}
/**
* \brief check interface state
* @param lio per-network private data
* @param state_flag flag state to check
*/
static inline int ifstate_check(struct lio *lio, int state_flag)
{
return atomic_read(&lio->ifstate) & state_flag;
}
/**
* \brief set interface state
* @param lio per-network private data
* @param state_flag flag state to set
*/
static inline void ifstate_set(struct lio *lio, int state_flag)
{
atomic_set(&lio->ifstate, (atomic_read(&lio->ifstate) | state_flag));
}
/**
* \brief clear interface state
* @param lio per-network private data
* @param state_flag flag state to clear
*/
static inline void ifstate_reset(struct lio *lio, int state_flag)
{
atomic_set(&lio->ifstate, (atomic_read(&lio->ifstate) & ~(state_flag)));
}
/**
* \brief wait for all pending requests to complete
* @param oct Pointer to Octeon device
*
* Called during shutdown sequence
*/
static inline int wait_for_pending_requests(struct octeon_device *oct)
{
int i, pcount = 0;
for (i = 0; i < MAX_IO_PENDING_PKT_COUNT; i++) {
pcount = atomic_read(
&oct->response_list[OCTEON_ORDERED_SC_LIST]
.pending_req_count);
if (pcount)
schedule_timeout_uninterruptible(HZ / 10);
else
break;
}
if (pcount)
return 1;
return 0;
}
/**
* \brief Stop Tx queues
* @param netdev network device
*/
static inline void stop_txqs(struct net_device *netdev)
{
int i;
for (i = 0; i < netdev->real_num_tx_queues; i++)
netif_stop_subqueue(netdev, i);
}
/**
* \brief Wake Tx queues
* @param netdev network device
*/
static inline void wake_txqs(struct net_device *netdev)
{
struct lio *lio = GET_LIO(netdev);
int i, qno;
for (i = 0; i < netdev->real_num_tx_queues; i++) {
qno = lio->linfo.txpciq[i % lio->oct_dev->num_iqs].s.q_no;
if (__netif_subqueue_stopped(netdev, i)) {
INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, qno,
tx_restart, 1);
netif_wake_subqueue(netdev, i);
}
}
}
/**
* \brief Start Tx queues
* @param netdev network device
*/
static inline void start_txqs(struct net_device *netdev)
{
struct lio *lio = GET_LIO(netdev);
int i;
if (lio->linfo.link.s.link_up) {
for (i = 0; i < netdev->real_num_tx_queues; i++)
netif_start_subqueue(netdev, i);
}
}
static inline int skb_iq(struct octeon_device *oct, struct sk_buff *skb)
{
return skb->queue_mapping % oct->num_iqs;
}
/**
* Remove the node at the head of the list. The list would be empty at
* the end of this call if there are no more nodes in the list.
*/
static inline struct list_head *lio_list_delete_head(struct list_head *root)
{
struct list_head *node;
if (list_empty_careful(root))
node = NULL;
else
node = root->next;
if (node)
list_del(node);
return node;
}
#endif