linux-zen-server/drivers/net/ethernet/chelsio/inline_crypto/chtls/chtls_main.c

642 lines
15 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2018 Chelsio Communications, Inc.
*
* Written by: Atul Gupta (atul.gupta@chelsio.com)
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/skbuff.h>
#include <linux/socket.h>
#include <linux/hash.h>
#include <linux/in.h>
#include <linux/net.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <net/ipv6.h>
#include <net/transp_v6.h>
#include <net/tcp.h>
#include <net/tls.h>
#include "chtls.h"
#include "chtls_cm.h"
#define DRV_NAME "chtls"
/*
* chtls device management
* maintains a list of the chtls devices
*/
static LIST_HEAD(cdev_list);
static DEFINE_MUTEX(cdev_mutex);
static DEFINE_MUTEX(notify_mutex);
static RAW_NOTIFIER_HEAD(listen_notify_list);
static struct proto chtls_cpl_prot, chtls_cpl_protv6;
struct request_sock_ops chtls_rsk_ops, chtls_rsk_opsv6;
static uint send_page_order = (14 - PAGE_SHIFT < 0) ? 0 : 14 - PAGE_SHIFT;
static void register_listen_notifier(struct notifier_block *nb)
{
mutex_lock(&notify_mutex);
raw_notifier_chain_register(&listen_notify_list, nb);
mutex_unlock(&notify_mutex);
}
static void unregister_listen_notifier(struct notifier_block *nb)
{
mutex_lock(&notify_mutex);
raw_notifier_chain_unregister(&listen_notify_list, nb);
mutex_unlock(&notify_mutex);
}
static int listen_notify_handler(struct notifier_block *this,
unsigned long event, void *data)
{
struct chtls_listen *clisten;
int ret = NOTIFY_DONE;
clisten = (struct chtls_listen *)data;
switch (event) {
case CHTLS_LISTEN_START:
ret = chtls_listen_start(clisten->cdev, clisten->sk);
kfree(clisten);
break;
case CHTLS_LISTEN_STOP:
chtls_listen_stop(clisten->cdev, clisten->sk);
kfree(clisten);
break;
}
return ret;
}
static struct notifier_block listen_notifier = {
.notifier_call = listen_notify_handler
};
static int listen_backlog_rcv(struct sock *sk, struct sk_buff *skb)
{
if (likely(skb_transport_header(skb) != skb_network_header(skb)))
return tcp_v4_do_rcv(sk, skb);
BLOG_SKB_CB(skb)->backlog_rcv(sk, skb);
return 0;
}
static int chtls_start_listen(struct chtls_dev *cdev, struct sock *sk)
{
struct chtls_listen *clisten;
if (sk->sk_protocol != IPPROTO_TCP)
return -EPROTONOSUPPORT;
if (sk->sk_family == PF_INET &&
LOOPBACK(inet_sk(sk)->inet_rcv_saddr))
return -EADDRNOTAVAIL;
sk->sk_backlog_rcv = listen_backlog_rcv;
clisten = kmalloc(sizeof(*clisten), GFP_KERNEL);
if (!clisten)
return -ENOMEM;
clisten->cdev = cdev;
clisten->sk = sk;
mutex_lock(&notify_mutex);
raw_notifier_call_chain(&listen_notify_list,
CHTLS_LISTEN_START, clisten);
mutex_unlock(&notify_mutex);
return 0;
}
static void chtls_stop_listen(struct chtls_dev *cdev, struct sock *sk)
{
struct chtls_listen *clisten;
if (sk->sk_protocol != IPPROTO_TCP)
return;
clisten = kmalloc(sizeof(*clisten), GFP_KERNEL);
if (!clisten)
return;
clisten->cdev = cdev;
clisten->sk = sk;
mutex_lock(&notify_mutex);
raw_notifier_call_chain(&listen_notify_list,
CHTLS_LISTEN_STOP, clisten);
mutex_unlock(&notify_mutex);
}
static int chtls_inline_feature(struct tls_toe_device *dev)
{
struct net_device *netdev;
struct chtls_dev *cdev;
int i;
cdev = to_chtls_dev(dev);
for (i = 0; i < cdev->lldi->nports; i++) {
netdev = cdev->ports[i];
if (netdev->features & NETIF_F_HW_TLS_RECORD)
return 1;
}
return 0;
}
static int chtls_create_hash(struct tls_toe_device *dev, struct sock *sk)
{
struct chtls_dev *cdev = to_chtls_dev(dev);
if (sk->sk_state == TCP_LISTEN)
return chtls_start_listen(cdev, sk);
return 0;
}
static void chtls_destroy_hash(struct tls_toe_device *dev, struct sock *sk)
{
struct chtls_dev *cdev = to_chtls_dev(dev);
if (sk->sk_state == TCP_LISTEN)
chtls_stop_listen(cdev, sk);
}
static void chtls_free_uld(struct chtls_dev *cdev)
{
int i;
tls_toe_unregister_device(&cdev->tlsdev);
kvfree(cdev->kmap.addr);
idr_destroy(&cdev->hwtid_idr);
for (i = 0; i < (1 << RSPQ_HASH_BITS); i++)
kfree_skb(cdev->rspq_skb_cache[i]);
kfree(cdev->lldi);
kfree_skb(cdev->askb);
kfree(cdev);
}
static inline void chtls_dev_release(struct kref *kref)
{
struct tls_toe_device *dev;
struct chtls_dev *cdev;
struct adapter *adap;
dev = container_of(kref, struct tls_toe_device, kref);
cdev = to_chtls_dev(dev);
/* Reset tls rx/tx stats */
adap = pci_get_drvdata(cdev->pdev);
atomic_set(&adap->chcr_stats.tls_pdu_tx, 0);
atomic_set(&adap->chcr_stats.tls_pdu_rx, 0);
chtls_free_uld(cdev);
}
static void chtls_register_dev(struct chtls_dev *cdev)
{
struct tls_toe_device *tlsdev = &cdev->tlsdev;
strscpy(tlsdev->name, "chtls", TLS_TOE_DEVICE_NAME_MAX);
strlcat(tlsdev->name, cdev->lldi->ports[0]->name,
TLS_TOE_DEVICE_NAME_MAX);
tlsdev->feature = chtls_inline_feature;
tlsdev->hash = chtls_create_hash;
tlsdev->unhash = chtls_destroy_hash;
tlsdev->release = chtls_dev_release;
kref_init(&tlsdev->kref);
tls_toe_register_device(tlsdev);
cdev->cdev_state = CHTLS_CDEV_STATE_UP;
}
static void process_deferq(struct work_struct *task_param)
{
struct chtls_dev *cdev = container_of(task_param,
struct chtls_dev, deferq_task);
struct sk_buff *skb;
spin_lock_bh(&cdev->deferq.lock);
while ((skb = __skb_dequeue(&cdev->deferq)) != NULL) {
spin_unlock_bh(&cdev->deferq.lock);
DEFERRED_SKB_CB(skb)->handler(cdev, skb);
spin_lock_bh(&cdev->deferq.lock);
}
spin_unlock_bh(&cdev->deferq.lock);
}
static int chtls_get_skb(struct chtls_dev *cdev)
{
cdev->askb = alloc_skb(sizeof(struct tcphdr), GFP_KERNEL);
if (!cdev->askb)
return -ENOMEM;
skb_put(cdev->askb, sizeof(struct tcphdr));
skb_reset_transport_header(cdev->askb);
memset(cdev->askb->data, 0, cdev->askb->len);
return 0;
}
static void *chtls_uld_add(const struct cxgb4_lld_info *info)
{
struct cxgb4_lld_info *lldi;
struct chtls_dev *cdev;
int i, j;
cdev = kzalloc(sizeof(*cdev), GFP_KERNEL);
if (!cdev)
goto out;
lldi = kzalloc(sizeof(*lldi), GFP_KERNEL);
if (!lldi)
goto out_lldi;
if (chtls_get_skb(cdev))
goto out_skb;
*lldi = *info;
cdev->lldi = lldi;
cdev->pdev = lldi->pdev;
cdev->tids = lldi->tids;
cdev->ports = lldi->ports;
cdev->mtus = lldi->mtus;
cdev->tids = lldi->tids;
cdev->pfvf = FW_VIID_PFN_G(cxgb4_port_viid(lldi->ports[0]))
<< FW_VIID_PFN_S;
for (i = 0; i < (1 << RSPQ_HASH_BITS); i++) {
unsigned int size = 64 - sizeof(struct rsp_ctrl) - 8;
cdev->rspq_skb_cache[i] = __alloc_skb(size,
gfp_any(), 0,
lldi->nodeid);
if (unlikely(!cdev->rspq_skb_cache[i]))
goto out_rspq_skb;
}
idr_init(&cdev->hwtid_idr);
INIT_WORK(&cdev->deferq_task, process_deferq);
spin_lock_init(&cdev->listen_lock);
spin_lock_init(&cdev->idr_lock);
cdev->send_page_order = min_t(uint, get_order(32768),
send_page_order);
cdev->max_host_sndbuf = 48 * 1024;
if (lldi->vr->key.size)
if (chtls_init_kmap(cdev, lldi))
goto out_rspq_skb;
mutex_lock(&cdev_mutex);
list_add_tail(&cdev->list, &cdev_list);
mutex_unlock(&cdev_mutex);
return cdev;
out_rspq_skb:
for (j = 0; j < i; j++)
kfree_skb(cdev->rspq_skb_cache[j]);
kfree_skb(cdev->askb);
out_skb:
kfree(lldi);
out_lldi:
kfree(cdev);
out:
return NULL;
}
static void chtls_free_all_uld(void)
{
struct chtls_dev *cdev, *tmp;
mutex_lock(&cdev_mutex);
list_for_each_entry_safe(cdev, tmp, &cdev_list, list) {
if (cdev->cdev_state == CHTLS_CDEV_STATE_UP) {
list_del(&cdev->list);
kref_put(&cdev->tlsdev.kref, cdev->tlsdev.release);
}
}
mutex_unlock(&cdev_mutex);
}
static int chtls_uld_state_change(void *handle, enum cxgb4_state new_state)
{
struct chtls_dev *cdev = handle;
switch (new_state) {
case CXGB4_STATE_UP:
chtls_register_dev(cdev);
break;
case CXGB4_STATE_DOWN:
break;
case CXGB4_STATE_START_RECOVERY:
break;
case CXGB4_STATE_DETACH:
mutex_lock(&cdev_mutex);
list_del(&cdev->list);
mutex_unlock(&cdev_mutex);
kref_put(&cdev->tlsdev.kref, cdev->tlsdev.release);
break;
default:
break;
}
return 0;
}
static struct sk_buff *copy_gl_to_skb_pkt(const struct pkt_gl *gl,
const __be64 *rsp,
u32 pktshift)
{
struct sk_buff *skb;
/* Allocate space for cpl_pass_accpet_req which will be synthesized by
* driver. Once driver synthesizes cpl_pass_accpet_req the skb will go
* through the regular cpl_pass_accept_req processing in TOM.
*/
skb = alloc_skb(gl->tot_len + sizeof(struct cpl_pass_accept_req)
- pktshift, GFP_ATOMIC);
if (unlikely(!skb))
return NULL;
__skb_put(skb, gl->tot_len + sizeof(struct cpl_pass_accept_req)
- pktshift);
/* For now we will copy cpl_rx_pkt in the skb */
skb_copy_to_linear_data(skb, rsp, sizeof(struct cpl_rx_pkt));
skb_copy_to_linear_data_offset(skb, sizeof(struct cpl_pass_accept_req)
, gl->va + pktshift,
gl->tot_len - pktshift);
return skb;
}
static int chtls_recv_packet(struct chtls_dev *cdev,
const struct pkt_gl *gl, const __be64 *rsp)
{
unsigned int opcode = *(u8 *)rsp;
struct sk_buff *skb;
int ret;
skb = copy_gl_to_skb_pkt(gl, rsp, cdev->lldi->sge_pktshift);
if (!skb)
return -ENOMEM;
ret = chtls_handlers[opcode](cdev, skb);
if (ret & CPL_RET_BUF_DONE)
kfree_skb(skb);
return 0;
}
static int chtls_recv_rsp(struct chtls_dev *cdev, const __be64 *rsp)
{
unsigned long rspq_bin;
unsigned int opcode;
struct sk_buff *skb;
unsigned int len;
int ret;
len = 64 - sizeof(struct rsp_ctrl) - 8;
opcode = *(u8 *)rsp;
rspq_bin = hash_ptr((void *)rsp, RSPQ_HASH_BITS);
skb = cdev->rspq_skb_cache[rspq_bin];
if (skb && !skb_is_nonlinear(skb) &&
!skb_shared(skb) && !skb_cloned(skb)) {
refcount_inc(&skb->users);
if (refcount_read(&skb->users) == 2) {
__skb_trim(skb, 0);
if (skb_tailroom(skb) >= len)
goto copy_out;
}
refcount_dec(&skb->users);
}
skb = alloc_skb(len, GFP_ATOMIC);
if (unlikely(!skb))
return -ENOMEM;
copy_out:
__skb_put(skb, len);
skb_copy_to_linear_data(skb, rsp, len);
skb_reset_network_header(skb);
skb_reset_transport_header(skb);
ret = chtls_handlers[opcode](cdev, skb);
if (ret & CPL_RET_BUF_DONE)
kfree_skb(skb);
return 0;
}
static void chtls_recv(struct chtls_dev *cdev,
struct sk_buff **skbs, const __be64 *rsp)
{
struct sk_buff *skb = *skbs;
unsigned int opcode;
int ret;
opcode = *(u8 *)rsp;
__skb_push(skb, sizeof(struct rss_header));
skb_copy_to_linear_data(skb, rsp, sizeof(struct rss_header));
ret = chtls_handlers[opcode](cdev, skb);
if (ret & CPL_RET_BUF_DONE)
kfree_skb(skb);
}
static int chtls_uld_rx_handler(void *handle, const __be64 *rsp,
const struct pkt_gl *gl)
{
struct chtls_dev *cdev = handle;
unsigned int opcode;
struct sk_buff *skb;
opcode = *(u8 *)rsp;
if (unlikely(opcode == CPL_RX_PKT)) {
if (chtls_recv_packet(cdev, gl, rsp) < 0)
goto nomem;
return 0;
}
if (!gl)
return chtls_recv_rsp(cdev, rsp);
#define RX_PULL_LEN 128
skb = cxgb4_pktgl_to_skb(gl, RX_PULL_LEN, RX_PULL_LEN);
if (unlikely(!skb))
goto nomem;
chtls_recv(cdev, &skb, rsp);
return 0;
nomem:
return -ENOMEM;
}
static int do_chtls_getsockopt(struct sock *sk, char __user *optval,
int __user *optlen)
{
struct tls_crypto_info crypto_info = { 0 };
crypto_info.version = TLS_1_2_VERSION;
if (copy_to_user(optval, &crypto_info, sizeof(struct tls_crypto_info)))
return -EFAULT;
return 0;
}
static int chtls_getsockopt(struct sock *sk, int level, int optname,
char __user *optval, int __user *optlen)
{
struct tls_context *ctx = tls_get_ctx(sk);
if (level != SOL_TLS)
return ctx->sk_proto->getsockopt(sk, level,
optname, optval, optlen);
return do_chtls_getsockopt(sk, optval, optlen);
}
static int do_chtls_setsockopt(struct sock *sk, int optname,
sockptr_t optval, unsigned int optlen)
{
struct tls_crypto_info *crypto_info, tmp_crypto_info;
struct chtls_sock *csk;
int keylen;
int cipher_type;
int rc = 0;
csk = rcu_dereference_sk_user_data(sk);
if (sockptr_is_null(optval) || optlen < sizeof(*crypto_info)) {
rc = -EINVAL;
goto out;
}
rc = copy_from_sockptr(&tmp_crypto_info, optval, sizeof(*crypto_info));
if (rc) {
rc = -EFAULT;
goto out;
}
/* check version */
if (tmp_crypto_info.version != TLS_1_2_VERSION) {
rc = -ENOTSUPP;
goto out;
}
crypto_info = (struct tls_crypto_info *)&csk->tlshws.crypto_info;
/* GCM mode of AES supports 128 and 256 bit encryption, so
* copy keys from user based on GCM cipher type.
*/
switch (tmp_crypto_info.cipher_type) {
case TLS_CIPHER_AES_GCM_128: {
/* Obtain version and type from previous copy */
crypto_info[0] = tmp_crypto_info;
/* Now copy the following data */
rc = copy_from_sockptr_offset((char *)crypto_info +
sizeof(*crypto_info),
optval, sizeof(*crypto_info),
sizeof(struct tls12_crypto_info_aes_gcm_128)
- sizeof(*crypto_info));
if (rc) {
rc = -EFAULT;
goto out;
}
keylen = TLS_CIPHER_AES_GCM_128_KEY_SIZE;
cipher_type = TLS_CIPHER_AES_GCM_128;
break;
}
case TLS_CIPHER_AES_GCM_256: {
crypto_info[0] = tmp_crypto_info;
rc = copy_from_sockptr_offset((char *)crypto_info +
sizeof(*crypto_info),
optval, sizeof(*crypto_info),
sizeof(struct tls12_crypto_info_aes_gcm_256)
- sizeof(*crypto_info));
if (rc) {
rc = -EFAULT;
goto out;
}
keylen = TLS_CIPHER_AES_GCM_256_KEY_SIZE;
cipher_type = TLS_CIPHER_AES_GCM_256;
break;
}
default:
rc = -EINVAL;
goto out;
}
rc = chtls_setkey(csk, keylen, optname, cipher_type);
out:
return rc;
}
static int chtls_setsockopt(struct sock *sk, int level, int optname,
sockptr_t optval, unsigned int optlen)
{
struct tls_context *ctx = tls_get_ctx(sk);
if (level != SOL_TLS)
return ctx->sk_proto->setsockopt(sk, level,
optname, optval, optlen);
return do_chtls_setsockopt(sk, optname, optval, optlen);
}
static struct cxgb4_uld_info chtls_uld_info = {
.name = DRV_NAME,
.nrxq = MAX_ULD_QSETS,
.ntxq = MAX_ULD_QSETS,
.rxq_size = 1024,
.add = chtls_uld_add,
.state_change = chtls_uld_state_change,
.rx_handler = chtls_uld_rx_handler,
};
void chtls_install_cpl_ops(struct sock *sk)
{
if (sk->sk_family == AF_INET)
sk->sk_prot = &chtls_cpl_prot;
else
sk->sk_prot = &chtls_cpl_protv6;
}
static void __init chtls_init_ulp_ops(void)
{
chtls_cpl_prot = tcp_prot;
chtls_init_rsk_ops(&chtls_cpl_prot, &chtls_rsk_ops,
&tcp_prot, PF_INET);
chtls_cpl_prot.close = chtls_close;
chtls_cpl_prot.disconnect = chtls_disconnect;
chtls_cpl_prot.destroy = chtls_destroy_sock;
chtls_cpl_prot.shutdown = chtls_shutdown;
chtls_cpl_prot.sendmsg = chtls_sendmsg;
chtls_cpl_prot.sendpage = chtls_sendpage;
chtls_cpl_prot.recvmsg = chtls_recvmsg;
chtls_cpl_prot.setsockopt = chtls_setsockopt;
chtls_cpl_prot.getsockopt = chtls_getsockopt;
#if IS_ENABLED(CONFIG_IPV6)
chtls_cpl_protv6 = chtls_cpl_prot;
chtls_init_rsk_ops(&chtls_cpl_protv6, &chtls_rsk_opsv6,
&tcpv6_prot, PF_INET6);
#endif
}
static int __init chtls_register(void)
{
chtls_init_ulp_ops();
register_listen_notifier(&listen_notifier);
cxgb4_register_uld(CXGB4_ULD_TLS, &chtls_uld_info);
return 0;
}
static void __exit chtls_unregister(void)
{
unregister_listen_notifier(&listen_notifier);
chtls_free_all_uld();
cxgb4_unregister_uld(CXGB4_ULD_TLS);
}
module_init(chtls_register);
module_exit(chtls_unregister);
MODULE_DESCRIPTION("Chelsio TLS Inline driver");
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Chelsio Communications");
MODULE_VERSION(CHTLS_DRV_VERSION);