864 lines
23 KiB
C
864 lines
23 KiB
C
// SPDX-License-Identifier: (GPL-2.0 OR MIT)
|
|
/* Google virtual Ethernet (gve) driver
|
|
*
|
|
* Copyright (C) 2015-2021 Google, Inc.
|
|
*/
|
|
|
|
#include "gve.h"
|
|
#include "gve_adminq.h"
|
|
#include "gve_utils.h"
|
|
#include <linux/etherdevice.h>
|
|
|
|
static void gve_rx_free_buffer(struct device *dev,
|
|
struct gve_rx_slot_page_info *page_info,
|
|
union gve_rx_data_slot *data_slot)
|
|
{
|
|
dma_addr_t dma = (dma_addr_t)(be64_to_cpu(data_slot->addr) &
|
|
GVE_DATA_SLOT_ADDR_PAGE_MASK);
|
|
|
|
page_ref_sub(page_info->page, page_info->pagecnt_bias - 1);
|
|
gve_free_page(dev, page_info->page, dma, DMA_FROM_DEVICE);
|
|
}
|
|
|
|
static void gve_rx_unfill_pages(struct gve_priv *priv, struct gve_rx_ring *rx)
|
|
{
|
|
u32 slots = rx->mask + 1;
|
|
int i;
|
|
|
|
if (rx->data.raw_addressing) {
|
|
for (i = 0; i < slots; i++)
|
|
gve_rx_free_buffer(&priv->pdev->dev, &rx->data.page_info[i],
|
|
&rx->data.data_ring[i]);
|
|
} else {
|
|
for (i = 0; i < slots; i++)
|
|
page_ref_sub(rx->data.page_info[i].page,
|
|
rx->data.page_info[i].pagecnt_bias - 1);
|
|
gve_unassign_qpl(priv, rx->data.qpl->id);
|
|
rx->data.qpl = NULL;
|
|
|
|
for (i = 0; i < rx->qpl_copy_pool_mask + 1; i++) {
|
|
page_ref_sub(rx->qpl_copy_pool[i].page,
|
|
rx->qpl_copy_pool[i].pagecnt_bias - 1);
|
|
put_page(rx->qpl_copy_pool[i].page);
|
|
}
|
|
}
|
|
kvfree(rx->data.page_info);
|
|
rx->data.page_info = NULL;
|
|
}
|
|
|
|
static void gve_rx_free_ring(struct gve_priv *priv, int idx)
|
|
{
|
|
struct gve_rx_ring *rx = &priv->rx[idx];
|
|
struct device *dev = &priv->pdev->dev;
|
|
u32 slots = rx->mask + 1;
|
|
size_t bytes;
|
|
|
|
gve_rx_remove_from_block(priv, idx);
|
|
|
|
bytes = sizeof(struct gve_rx_desc) * priv->rx_desc_cnt;
|
|
dma_free_coherent(dev, bytes, rx->desc.desc_ring, rx->desc.bus);
|
|
rx->desc.desc_ring = NULL;
|
|
|
|
dma_free_coherent(dev, sizeof(*rx->q_resources),
|
|
rx->q_resources, rx->q_resources_bus);
|
|
rx->q_resources = NULL;
|
|
|
|
gve_rx_unfill_pages(priv, rx);
|
|
|
|
bytes = sizeof(*rx->data.data_ring) * slots;
|
|
dma_free_coherent(dev, bytes, rx->data.data_ring,
|
|
rx->data.data_bus);
|
|
rx->data.data_ring = NULL;
|
|
|
|
kvfree(rx->qpl_copy_pool);
|
|
rx->qpl_copy_pool = NULL;
|
|
|
|
netif_dbg(priv, drv, priv->dev, "freed rx ring %d\n", idx);
|
|
}
|
|
|
|
static void gve_setup_rx_buffer(struct gve_rx_slot_page_info *page_info,
|
|
dma_addr_t addr, struct page *page, __be64 *slot_addr)
|
|
{
|
|
page_info->page = page;
|
|
page_info->page_offset = 0;
|
|
page_info->page_address = page_address(page);
|
|
*slot_addr = cpu_to_be64(addr);
|
|
/* The page already has 1 ref */
|
|
page_ref_add(page, INT_MAX - 1);
|
|
page_info->pagecnt_bias = INT_MAX;
|
|
}
|
|
|
|
static int gve_rx_alloc_buffer(struct gve_priv *priv, struct device *dev,
|
|
struct gve_rx_slot_page_info *page_info,
|
|
union gve_rx_data_slot *data_slot)
|
|
{
|
|
struct page *page;
|
|
dma_addr_t dma;
|
|
int err;
|
|
|
|
err = gve_alloc_page(priv, dev, &page, &dma, DMA_FROM_DEVICE,
|
|
GFP_ATOMIC);
|
|
if (err)
|
|
return err;
|
|
|
|
gve_setup_rx_buffer(page_info, dma, page, &data_slot->addr);
|
|
return 0;
|
|
}
|
|
|
|
static int gve_prefill_rx_pages(struct gve_rx_ring *rx)
|
|
{
|
|
struct gve_priv *priv = rx->gve;
|
|
u32 slots;
|
|
int err;
|
|
int i;
|
|
int j;
|
|
|
|
/* Allocate one page per Rx queue slot. Each page is split into two
|
|
* packet buffers, when possible we "page flip" between the two.
|
|
*/
|
|
slots = rx->mask + 1;
|
|
|
|
rx->data.page_info = kvzalloc(slots *
|
|
sizeof(*rx->data.page_info), GFP_KERNEL);
|
|
if (!rx->data.page_info)
|
|
return -ENOMEM;
|
|
|
|
if (!rx->data.raw_addressing) {
|
|
rx->data.qpl = gve_assign_rx_qpl(priv);
|
|
if (!rx->data.qpl) {
|
|
kvfree(rx->data.page_info);
|
|
rx->data.page_info = NULL;
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
for (i = 0; i < slots; i++) {
|
|
if (!rx->data.raw_addressing) {
|
|
struct page *page = rx->data.qpl->pages[i];
|
|
dma_addr_t addr = i * PAGE_SIZE;
|
|
|
|
gve_setup_rx_buffer(&rx->data.page_info[i], addr, page,
|
|
&rx->data.data_ring[i].qpl_offset);
|
|
continue;
|
|
}
|
|
err = gve_rx_alloc_buffer(priv, &priv->pdev->dev, &rx->data.page_info[i],
|
|
&rx->data.data_ring[i]);
|
|
if (err)
|
|
goto alloc_err;
|
|
}
|
|
|
|
if (!rx->data.raw_addressing) {
|
|
for (j = 0; j < rx->qpl_copy_pool_mask + 1; j++) {
|
|
struct page *page = alloc_page(GFP_KERNEL);
|
|
|
|
if (!page) {
|
|
err = -ENOMEM;
|
|
goto alloc_err_qpl;
|
|
}
|
|
|
|
rx->qpl_copy_pool[j].page = page;
|
|
rx->qpl_copy_pool[j].page_offset = 0;
|
|
rx->qpl_copy_pool[j].page_address = page_address(page);
|
|
|
|
/* The page already has 1 ref. */
|
|
page_ref_add(page, INT_MAX - 1);
|
|
rx->qpl_copy_pool[j].pagecnt_bias = INT_MAX;
|
|
}
|
|
}
|
|
|
|
return slots;
|
|
|
|
alloc_err_qpl:
|
|
while (j--) {
|
|
page_ref_sub(rx->qpl_copy_pool[j].page,
|
|
rx->qpl_copy_pool[j].pagecnt_bias - 1);
|
|
put_page(rx->qpl_copy_pool[j].page);
|
|
}
|
|
alloc_err:
|
|
while (i--)
|
|
gve_rx_free_buffer(&priv->pdev->dev,
|
|
&rx->data.page_info[i],
|
|
&rx->data.data_ring[i]);
|
|
return err;
|
|
}
|
|
|
|
static void gve_rx_ctx_clear(struct gve_rx_ctx *ctx)
|
|
{
|
|
ctx->skb_head = NULL;
|
|
ctx->skb_tail = NULL;
|
|
ctx->total_size = 0;
|
|
ctx->frag_cnt = 0;
|
|
ctx->drop_pkt = false;
|
|
}
|
|
|
|
static int gve_rx_alloc_ring(struct gve_priv *priv, int idx)
|
|
{
|
|
struct gve_rx_ring *rx = &priv->rx[idx];
|
|
struct device *hdev = &priv->pdev->dev;
|
|
u32 slots, npages;
|
|
int filled_pages;
|
|
size_t bytes;
|
|
int err;
|
|
|
|
netif_dbg(priv, drv, priv->dev, "allocating rx ring\n");
|
|
/* Make sure everything is zeroed to start with */
|
|
memset(rx, 0, sizeof(*rx));
|
|
|
|
rx->gve = priv;
|
|
rx->q_num = idx;
|
|
|
|
slots = priv->rx_data_slot_cnt;
|
|
rx->mask = slots - 1;
|
|
rx->data.raw_addressing = priv->queue_format == GVE_GQI_RDA_FORMAT;
|
|
|
|
/* alloc rx data ring */
|
|
bytes = sizeof(*rx->data.data_ring) * slots;
|
|
rx->data.data_ring = dma_alloc_coherent(hdev, bytes,
|
|
&rx->data.data_bus,
|
|
GFP_KERNEL);
|
|
if (!rx->data.data_ring)
|
|
return -ENOMEM;
|
|
|
|
rx->qpl_copy_pool_mask = min_t(u32, U32_MAX, slots * 2) - 1;
|
|
rx->qpl_copy_pool_head = 0;
|
|
rx->qpl_copy_pool = kvcalloc(rx->qpl_copy_pool_mask + 1,
|
|
sizeof(rx->qpl_copy_pool[0]),
|
|
GFP_KERNEL);
|
|
|
|
if (!rx->qpl_copy_pool) {
|
|
err = -ENOMEM;
|
|
goto abort_with_slots;
|
|
}
|
|
|
|
filled_pages = gve_prefill_rx_pages(rx);
|
|
if (filled_pages < 0) {
|
|
err = -ENOMEM;
|
|
goto abort_with_copy_pool;
|
|
}
|
|
rx->fill_cnt = filled_pages;
|
|
/* Ensure data ring slots (packet buffers) are visible. */
|
|
dma_wmb();
|
|
|
|
/* Alloc gve_queue_resources */
|
|
rx->q_resources =
|
|
dma_alloc_coherent(hdev,
|
|
sizeof(*rx->q_resources),
|
|
&rx->q_resources_bus,
|
|
GFP_KERNEL);
|
|
if (!rx->q_resources) {
|
|
err = -ENOMEM;
|
|
goto abort_filled;
|
|
}
|
|
netif_dbg(priv, drv, priv->dev, "rx[%d]->data.data_bus=%lx\n", idx,
|
|
(unsigned long)rx->data.data_bus);
|
|
|
|
/* alloc rx desc ring */
|
|
bytes = sizeof(struct gve_rx_desc) * priv->rx_desc_cnt;
|
|
npages = bytes / PAGE_SIZE;
|
|
if (npages * PAGE_SIZE != bytes) {
|
|
err = -EIO;
|
|
goto abort_with_q_resources;
|
|
}
|
|
|
|
rx->desc.desc_ring = dma_alloc_coherent(hdev, bytes, &rx->desc.bus,
|
|
GFP_KERNEL);
|
|
if (!rx->desc.desc_ring) {
|
|
err = -ENOMEM;
|
|
goto abort_with_q_resources;
|
|
}
|
|
rx->cnt = 0;
|
|
rx->db_threshold = priv->rx_desc_cnt / 2;
|
|
rx->desc.seqno = 1;
|
|
|
|
/* Allocating half-page buffers allows page-flipping which is faster
|
|
* than copying or allocating new pages.
|
|
*/
|
|
rx->packet_buffer_size = PAGE_SIZE / 2;
|
|
gve_rx_ctx_clear(&rx->ctx);
|
|
gve_rx_add_to_block(priv, idx);
|
|
|
|
return 0;
|
|
|
|
abort_with_q_resources:
|
|
dma_free_coherent(hdev, sizeof(*rx->q_resources),
|
|
rx->q_resources, rx->q_resources_bus);
|
|
rx->q_resources = NULL;
|
|
abort_filled:
|
|
gve_rx_unfill_pages(priv, rx);
|
|
abort_with_copy_pool:
|
|
kvfree(rx->qpl_copy_pool);
|
|
rx->qpl_copy_pool = NULL;
|
|
abort_with_slots:
|
|
bytes = sizeof(*rx->data.data_ring) * slots;
|
|
dma_free_coherent(hdev, bytes, rx->data.data_ring, rx->data.data_bus);
|
|
rx->data.data_ring = NULL;
|
|
|
|
return err;
|
|
}
|
|
|
|
int gve_rx_alloc_rings(struct gve_priv *priv)
|
|
{
|
|
int err = 0;
|
|
int i;
|
|
|
|
for (i = 0; i < priv->rx_cfg.num_queues; i++) {
|
|
err = gve_rx_alloc_ring(priv, i);
|
|
if (err) {
|
|
netif_err(priv, drv, priv->dev,
|
|
"Failed to alloc rx ring=%d: err=%d\n",
|
|
i, err);
|
|
break;
|
|
}
|
|
}
|
|
/* Unallocate if there was an error */
|
|
if (err) {
|
|
int j;
|
|
|
|
for (j = 0; j < i; j++)
|
|
gve_rx_free_ring(priv, j);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
void gve_rx_free_rings_gqi(struct gve_priv *priv)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < priv->rx_cfg.num_queues; i++)
|
|
gve_rx_free_ring(priv, i);
|
|
}
|
|
|
|
void gve_rx_write_doorbell(struct gve_priv *priv, struct gve_rx_ring *rx)
|
|
{
|
|
u32 db_idx = be32_to_cpu(rx->q_resources->db_index);
|
|
|
|
iowrite32be(rx->fill_cnt, &priv->db_bar2[db_idx]);
|
|
}
|
|
|
|
static enum pkt_hash_types gve_rss_type(__be16 pkt_flags)
|
|
{
|
|
if (likely(pkt_flags & (GVE_RXF_TCP | GVE_RXF_UDP)))
|
|
return PKT_HASH_TYPE_L4;
|
|
if (pkt_flags & (GVE_RXF_IPV4 | GVE_RXF_IPV6))
|
|
return PKT_HASH_TYPE_L3;
|
|
return PKT_HASH_TYPE_L2;
|
|
}
|
|
|
|
static struct sk_buff *gve_rx_add_frags(struct napi_struct *napi,
|
|
struct gve_rx_slot_page_info *page_info,
|
|
u16 packet_buffer_size, u16 len,
|
|
struct gve_rx_ctx *ctx)
|
|
{
|
|
u32 offset = page_info->page_offset + page_info->pad;
|
|
struct sk_buff *skb = ctx->skb_tail;
|
|
int num_frags = 0;
|
|
|
|
if (!skb) {
|
|
skb = napi_get_frags(napi);
|
|
if (unlikely(!skb))
|
|
return NULL;
|
|
|
|
ctx->skb_head = skb;
|
|
ctx->skb_tail = skb;
|
|
} else {
|
|
num_frags = skb_shinfo(ctx->skb_tail)->nr_frags;
|
|
if (num_frags == MAX_SKB_FRAGS) {
|
|
skb = napi_alloc_skb(napi, 0);
|
|
if (!skb)
|
|
return NULL;
|
|
|
|
// We will never chain more than two SKBs: 2 * 16 * 2k > 64k
|
|
// which is why we do not need to chain by using skb->next
|
|
skb_shinfo(ctx->skb_tail)->frag_list = skb;
|
|
|
|
ctx->skb_tail = skb;
|
|
num_frags = 0;
|
|
}
|
|
}
|
|
|
|
if (skb != ctx->skb_head) {
|
|
ctx->skb_head->len += len;
|
|
ctx->skb_head->data_len += len;
|
|
ctx->skb_head->truesize += packet_buffer_size;
|
|
}
|
|
skb_add_rx_frag(skb, num_frags, page_info->page,
|
|
offset, len, packet_buffer_size);
|
|
|
|
return ctx->skb_head;
|
|
}
|
|
|
|
static void gve_rx_flip_buff(struct gve_rx_slot_page_info *page_info, __be64 *slot_addr)
|
|
{
|
|
const __be64 offset = cpu_to_be64(PAGE_SIZE / 2);
|
|
|
|
/* "flip" to other packet buffer on this page */
|
|
page_info->page_offset ^= PAGE_SIZE / 2;
|
|
*(slot_addr) ^= offset;
|
|
}
|
|
|
|
static int gve_rx_can_recycle_buffer(struct gve_rx_slot_page_info *page_info)
|
|
{
|
|
int pagecount = page_count(page_info->page);
|
|
|
|
/* This page is not being used by any SKBs - reuse */
|
|
if (pagecount == page_info->pagecnt_bias)
|
|
return 1;
|
|
/* This page is still being used by an SKB - we can't reuse */
|
|
else if (pagecount > page_info->pagecnt_bias)
|
|
return 0;
|
|
WARN(pagecount < page_info->pagecnt_bias,
|
|
"Pagecount should never be less than the bias.");
|
|
return -1;
|
|
}
|
|
|
|
static struct sk_buff *
|
|
gve_rx_raw_addressing(struct device *dev, struct net_device *netdev,
|
|
struct gve_rx_slot_page_info *page_info, u16 len,
|
|
struct napi_struct *napi,
|
|
union gve_rx_data_slot *data_slot,
|
|
u16 packet_buffer_size, struct gve_rx_ctx *ctx)
|
|
{
|
|
struct sk_buff *skb = gve_rx_add_frags(napi, page_info, packet_buffer_size, len, ctx);
|
|
|
|
if (!skb)
|
|
return NULL;
|
|
|
|
/* Optimistically stop the kernel from freeing the page.
|
|
* We will check again in refill to determine if we need to alloc a
|
|
* new page.
|
|
*/
|
|
gve_dec_pagecnt_bias(page_info);
|
|
|
|
return skb;
|
|
}
|
|
|
|
static struct sk_buff *gve_rx_copy_to_pool(struct gve_rx_ring *rx,
|
|
struct gve_rx_slot_page_info *page_info,
|
|
u16 len, struct napi_struct *napi)
|
|
{
|
|
u32 pool_idx = rx->qpl_copy_pool_head & rx->qpl_copy_pool_mask;
|
|
void *src = page_info->page_address + page_info->page_offset;
|
|
struct gve_rx_slot_page_info *copy_page_info;
|
|
struct gve_rx_ctx *ctx = &rx->ctx;
|
|
bool alloc_page = false;
|
|
struct sk_buff *skb;
|
|
void *dst;
|
|
|
|
copy_page_info = &rx->qpl_copy_pool[pool_idx];
|
|
if (!copy_page_info->can_flip) {
|
|
int recycle = gve_rx_can_recycle_buffer(copy_page_info);
|
|
|
|
if (unlikely(recycle < 0)) {
|
|
gve_schedule_reset(rx->gve);
|
|
return NULL;
|
|
}
|
|
alloc_page = !recycle;
|
|
}
|
|
|
|
if (alloc_page) {
|
|
struct gve_rx_slot_page_info alloc_page_info;
|
|
struct page *page;
|
|
|
|
/* The least recently used page turned out to be
|
|
* still in use by the kernel. Ignoring it and moving
|
|
* on alleviates head-of-line blocking.
|
|
*/
|
|
rx->qpl_copy_pool_head++;
|
|
|
|
page = alloc_page(GFP_ATOMIC);
|
|
if (!page)
|
|
return NULL;
|
|
|
|
alloc_page_info.page = page;
|
|
alloc_page_info.page_offset = 0;
|
|
alloc_page_info.page_address = page_address(page);
|
|
alloc_page_info.pad = page_info->pad;
|
|
|
|
memcpy(alloc_page_info.page_address, src, page_info->pad + len);
|
|
skb = gve_rx_add_frags(napi, &alloc_page_info,
|
|
rx->packet_buffer_size,
|
|
len, ctx);
|
|
|
|
u64_stats_update_begin(&rx->statss);
|
|
rx->rx_frag_copy_cnt++;
|
|
rx->rx_frag_alloc_cnt++;
|
|
u64_stats_update_end(&rx->statss);
|
|
|
|
return skb;
|
|
}
|
|
|
|
dst = copy_page_info->page_address + copy_page_info->page_offset;
|
|
memcpy(dst, src, page_info->pad + len);
|
|
copy_page_info->pad = page_info->pad;
|
|
|
|
skb = gve_rx_add_frags(napi, copy_page_info,
|
|
rx->packet_buffer_size, len, ctx);
|
|
if (unlikely(!skb))
|
|
return NULL;
|
|
|
|
gve_dec_pagecnt_bias(copy_page_info);
|
|
copy_page_info->page_offset += rx->packet_buffer_size;
|
|
copy_page_info->page_offset &= (PAGE_SIZE - 1);
|
|
|
|
if (copy_page_info->can_flip) {
|
|
/* We have used both halves of this copy page, it
|
|
* is time for it to go to the back of the queue.
|
|
*/
|
|
copy_page_info->can_flip = false;
|
|
rx->qpl_copy_pool_head++;
|
|
prefetch(rx->qpl_copy_pool[rx->qpl_copy_pool_head & rx->qpl_copy_pool_mask].page);
|
|
} else {
|
|
copy_page_info->can_flip = true;
|
|
}
|
|
|
|
u64_stats_update_begin(&rx->statss);
|
|
rx->rx_frag_copy_cnt++;
|
|
u64_stats_update_end(&rx->statss);
|
|
|
|
return skb;
|
|
}
|
|
|
|
static struct sk_buff *
|
|
gve_rx_qpl(struct device *dev, struct net_device *netdev,
|
|
struct gve_rx_ring *rx, struct gve_rx_slot_page_info *page_info,
|
|
u16 len, struct napi_struct *napi,
|
|
union gve_rx_data_slot *data_slot)
|
|
{
|
|
struct gve_rx_ctx *ctx = &rx->ctx;
|
|
struct sk_buff *skb;
|
|
|
|
/* if raw_addressing mode is not enabled gvnic can only receive into
|
|
* registered segments. If the buffer can't be recycled, our only
|
|
* choice is to copy the data out of it so that we can return it to the
|
|
* device.
|
|
*/
|
|
if (page_info->can_flip) {
|
|
skb = gve_rx_add_frags(napi, page_info, rx->packet_buffer_size, len, ctx);
|
|
/* No point in recycling if we didn't get the skb */
|
|
if (skb) {
|
|
/* Make sure that the page isn't freed. */
|
|
gve_dec_pagecnt_bias(page_info);
|
|
gve_rx_flip_buff(page_info, &data_slot->qpl_offset);
|
|
}
|
|
} else {
|
|
skb = gve_rx_copy_to_pool(rx, page_info, len, napi);
|
|
}
|
|
return skb;
|
|
}
|
|
|
|
static struct sk_buff *gve_rx_skb(struct gve_priv *priv, struct gve_rx_ring *rx,
|
|
struct gve_rx_slot_page_info *page_info, struct napi_struct *napi,
|
|
u16 len, union gve_rx_data_slot *data_slot,
|
|
bool is_only_frag)
|
|
{
|
|
struct net_device *netdev = priv->dev;
|
|
struct gve_rx_ctx *ctx = &rx->ctx;
|
|
struct sk_buff *skb = NULL;
|
|
|
|
if (len <= priv->rx_copybreak && is_only_frag) {
|
|
/* Just copy small packets */
|
|
skb = gve_rx_copy(netdev, napi, page_info, len, GVE_RX_PAD);
|
|
if (skb) {
|
|
u64_stats_update_begin(&rx->statss);
|
|
rx->rx_copied_pkt++;
|
|
rx->rx_frag_copy_cnt++;
|
|
rx->rx_copybreak_pkt++;
|
|
u64_stats_update_end(&rx->statss);
|
|
}
|
|
} else {
|
|
int recycle = gve_rx_can_recycle_buffer(page_info);
|
|
|
|
if (unlikely(recycle < 0)) {
|
|
gve_schedule_reset(priv);
|
|
return NULL;
|
|
}
|
|
page_info->can_flip = recycle;
|
|
if (page_info->can_flip) {
|
|
u64_stats_update_begin(&rx->statss);
|
|
rx->rx_frag_flip_cnt++;
|
|
u64_stats_update_end(&rx->statss);
|
|
}
|
|
|
|
if (rx->data.raw_addressing) {
|
|
skb = gve_rx_raw_addressing(&priv->pdev->dev, netdev,
|
|
page_info, len, napi,
|
|
data_slot,
|
|
rx->packet_buffer_size, ctx);
|
|
} else {
|
|
skb = gve_rx_qpl(&priv->pdev->dev, netdev, rx,
|
|
page_info, len, napi, data_slot);
|
|
}
|
|
}
|
|
return skb;
|
|
}
|
|
|
|
#define GVE_PKTCONT_BIT_IS_SET(x) (GVE_RXF_PKT_CONT & (x))
|
|
static void gve_rx(struct gve_rx_ring *rx, netdev_features_t feat,
|
|
struct gve_rx_desc *desc, u32 idx,
|
|
struct gve_rx_cnts *cnts)
|
|
{
|
|
bool is_last_frag = !GVE_PKTCONT_BIT_IS_SET(desc->flags_seq);
|
|
struct gve_rx_slot_page_info *page_info;
|
|
u16 frag_size = be16_to_cpu(desc->len);
|
|
struct gve_rx_ctx *ctx = &rx->ctx;
|
|
union gve_rx_data_slot *data_slot;
|
|
struct gve_priv *priv = rx->gve;
|
|
struct sk_buff *skb = NULL;
|
|
dma_addr_t page_bus;
|
|
void *va;
|
|
|
|
struct napi_struct *napi = &priv->ntfy_blocks[rx->ntfy_id].napi;
|
|
bool is_first_frag = ctx->frag_cnt == 0;
|
|
|
|
bool is_only_frag = is_first_frag && is_last_frag;
|
|
|
|
if (unlikely(ctx->drop_pkt))
|
|
goto finish_frag;
|
|
|
|
if (desc->flags_seq & GVE_RXF_ERR) {
|
|
ctx->drop_pkt = true;
|
|
cnts->desc_err_pkt_cnt++;
|
|
napi_free_frags(napi);
|
|
goto finish_frag;
|
|
}
|
|
|
|
if (unlikely(frag_size > rx->packet_buffer_size)) {
|
|
netdev_warn(priv->dev, "Unexpected frag size %d, can't exceed %d, scheduling reset",
|
|
frag_size, rx->packet_buffer_size);
|
|
ctx->drop_pkt = true;
|
|
napi_free_frags(napi);
|
|
gve_schedule_reset(rx->gve);
|
|
goto finish_frag;
|
|
}
|
|
|
|
/* Prefetch two packet buffers ahead, we will need it soon. */
|
|
page_info = &rx->data.page_info[(idx + 2) & rx->mask];
|
|
va = page_info->page_address + page_info->page_offset;
|
|
prefetch(page_info->page); /* Kernel page struct. */
|
|
prefetch(va); /* Packet header. */
|
|
prefetch(va + 64); /* Next cacheline too. */
|
|
|
|
page_info = &rx->data.page_info[idx];
|
|
data_slot = &rx->data.data_ring[idx];
|
|
page_bus = (rx->data.raw_addressing) ?
|
|
be64_to_cpu(data_slot->addr) - page_info->page_offset :
|
|
rx->data.qpl->page_buses[idx];
|
|
dma_sync_single_for_cpu(&priv->pdev->dev, page_bus,
|
|
PAGE_SIZE, DMA_FROM_DEVICE);
|
|
page_info->pad = is_first_frag ? GVE_RX_PAD : 0;
|
|
frag_size -= page_info->pad;
|
|
|
|
skb = gve_rx_skb(priv, rx, page_info, napi, frag_size,
|
|
data_slot, is_only_frag);
|
|
if (!skb) {
|
|
u64_stats_update_begin(&rx->statss);
|
|
rx->rx_skb_alloc_fail++;
|
|
u64_stats_update_end(&rx->statss);
|
|
|
|
napi_free_frags(napi);
|
|
ctx->drop_pkt = true;
|
|
goto finish_frag;
|
|
}
|
|
ctx->total_size += frag_size;
|
|
|
|
if (is_first_frag) {
|
|
if (likely(feat & NETIF_F_RXCSUM)) {
|
|
/* NIC passes up the partial sum */
|
|
if (desc->csum)
|
|
skb->ip_summed = CHECKSUM_COMPLETE;
|
|
else
|
|
skb->ip_summed = CHECKSUM_NONE;
|
|
skb->csum = csum_unfold(desc->csum);
|
|
}
|
|
|
|
/* parse flags & pass relevant info up */
|
|
if (likely(feat & NETIF_F_RXHASH) &&
|
|
gve_needs_rss(desc->flags_seq))
|
|
skb_set_hash(skb, be32_to_cpu(desc->rss_hash),
|
|
gve_rss_type(desc->flags_seq));
|
|
}
|
|
|
|
if (is_last_frag) {
|
|
skb_record_rx_queue(skb, rx->q_num);
|
|
if (skb_is_nonlinear(skb))
|
|
napi_gro_frags(napi);
|
|
else
|
|
napi_gro_receive(napi, skb);
|
|
goto finish_ok_pkt;
|
|
}
|
|
|
|
goto finish_frag;
|
|
|
|
finish_ok_pkt:
|
|
cnts->ok_pkt_bytes += ctx->total_size;
|
|
cnts->ok_pkt_cnt++;
|
|
finish_frag:
|
|
ctx->frag_cnt++;
|
|
if (is_last_frag) {
|
|
cnts->total_pkt_cnt++;
|
|
cnts->cont_pkt_cnt += (ctx->frag_cnt > 1);
|
|
gve_rx_ctx_clear(ctx);
|
|
}
|
|
}
|
|
|
|
bool gve_rx_work_pending(struct gve_rx_ring *rx)
|
|
{
|
|
struct gve_rx_desc *desc;
|
|
__be16 flags_seq;
|
|
u32 next_idx;
|
|
|
|
next_idx = rx->cnt & rx->mask;
|
|
desc = rx->desc.desc_ring + next_idx;
|
|
|
|
flags_seq = desc->flags_seq;
|
|
|
|
return (GVE_SEQNO(flags_seq) == rx->desc.seqno);
|
|
}
|
|
|
|
static bool gve_rx_refill_buffers(struct gve_priv *priv, struct gve_rx_ring *rx)
|
|
{
|
|
int refill_target = rx->mask + 1;
|
|
u32 fill_cnt = rx->fill_cnt;
|
|
|
|
while (fill_cnt - rx->cnt < refill_target) {
|
|
struct gve_rx_slot_page_info *page_info;
|
|
u32 idx = fill_cnt & rx->mask;
|
|
|
|
page_info = &rx->data.page_info[idx];
|
|
if (page_info->can_flip) {
|
|
/* The other half of the page is free because it was
|
|
* free when we processed the descriptor. Flip to it.
|
|
*/
|
|
union gve_rx_data_slot *data_slot =
|
|
&rx->data.data_ring[idx];
|
|
|
|
gve_rx_flip_buff(page_info, &data_slot->addr);
|
|
page_info->can_flip = 0;
|
|
} else {
|
|
/* It is possible that the networking stack has already
|
|
* finished processing all outstanding packets in the buffer
|
|
* and it can be reused.
|
|
* Flipping is unnecessary here - if the networking stack still
|
|
* owns half the page it is impossible to tell which half. Either
|
|
* the whole page is free or it needs to be replaced.
|
|
*/
|
|
int recycle = gve_rx_can_recycle_buffer(page_info);
|
|
|
|
if (recycle < 0) {
|
|
if (!rx->data.raw_addressing)
|
|
gve_schedule_reset(priv);
|
|
return false;
|
|
}
|
|
if (!recycle) {
|
|
/* We can't reuse the buffer - alloc a new one*/
|
|
union gve_rx_data_slot *data_slot =
|
|
&rx->data.data_ring[idx];
|
|
struct device *dev = &priv->pdev->dev;
|
|
gve_rx_free_buffer(dev, page_info, data_slot);
|
|
page_info->page = NULL;
|
|
if (gve_rx_alloc_buffer(priv, dev, page_info,
|
|
data_slot)) {
|
|
u64_stats_update_begin(&rx->statss);
|
|
rx->rx_buf_alloc_fail++;
|
|
u64_stats_update_end(&rx->statss);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
fill_cnt++;
|
|
}
|
|
rx->fill_cnt = fill_cnt;
|
|
return true;
|
|
}
|
|
|
|
static int gve_clean_rx_done(struct gve_rx_ring *rx, int budget,
|
|
netdev_features_t feat)
|
|
{
|
|
struct gve_rx_ctx *ctx = &rx->ctx;
|
|
struct gve_priv *priv = rx->gve;
|
|
struct gve_rx_cnts cnts = {0};
|
|
struct gve_rx_desc *next_desc;
|
|
u32 idx = rx->cnt & rx->mask;
|
|
u32 work_done = 0;
|
|
|
|
struct gve_rx_desc *desc = &rx->desc.desc_ring[idx];
|
|
|
|
// Exceed budget only if (and till) the inflight packet is consumed.
|
|
while ((GVE_SEQNO(desc->flags_seq) == rx->desc.seqno) &&
|
|
(work_done < budget || ctx->frag_cnt)) {
|
|
next_desc = &rx->desc.desc_ring[(idx + 1) & rx->mask];
|
|
prefetch(next_desc);
|
|
|
|
gve_rx(rx, feat, desc, idx, &cnts);
|
|
|
|
rx->cnt++;
|
|
idx = rx->cnt & rx->mask;
|
|
desc = &rx->desc.desc_ring[idx];
|
|
rx->desc.seqno = gve_next_seqno(rx->desc.seqno);
|
|
work_done++;
|
|
}
|
|
|
|
// The device will only send whole packets.
|
|
if (unlikely(ctx->frag_cnt)) {
|
|
struct napi_struct *napi = &priv->ntfy_blocks[rx->ntfy_id].napi;
|
|
|
|
napi_free_frags(napi);
|
|
gve_rx_ctx_clear(&rx->ctx);
|
|
netdev_warn(priv->dev, "Unexpected seq number %d with incomplete packet, expected %d, scheduling reset",
|
|
GVE_SEQNO(desc->flags_seq), rx->desc.seqno);
|
|
gve_schedule_reset(rx->gve);
|
|
}
|
|
|
|
if (!work_done && rx->fill_cnt - rx->cnt > rx->db_threshold)
|
|
return 0;
|
|
|
|
if (work_done) {
|
|
u64_stats_update_begin(&rx->statss);
|
|
rx->rpackets += cnts.ok_pkt_cnt;
|
|
rx->rbytes += cnts.ok_pkt_bytes;
|
|
rx->rx_cont_packet_cnt += cnts.cont_pkt_cnt;
|
|
rx->rx_desc_err_dropped_pkt += cnts.desc_err_pkt_cnt;
|
|
u64_stats_update_end(&rx->statss);
|
|
}
|
|
|
|
/* restock ring slots */
|
|
if (!rx->data.raw_addressing) {
|
|
/* In QPL mode buffs are refilled as the desc are processed */
|
|
rx->fill_cnt += work_done;
|
|
} else if (rx->fill_cnt - rx->cnt <= rx->db_threshold) {
|
|
/* In raw addressing mode buffs are only refilled if the avail
|
|
* falls below a threshold.
|
|
*/
|
|
if (!gve_rx_refill_buffers(priv, rx))
|
|
return 0;
|
|
|
|
/* If we were not able to completely refill buffers, we'll want
|
|
* to schedule this queue for work again to refill buffers.
|
|
*/
|
|
if (rx->fill_cnt - rx->cnt <= rx->db_threshold) {
|
|
gve_rx_write_doorbell(priv, rx);
|
|
return budget;
|
|
}
|
|
}
|
|
|
|
gve_rx_write_doorbell(priv, rx);
|
|
return cnts.total_pkt_cnt;
|
|
}
|
|
|
|
int gve_rx_poll(struct gve_notify_block *block, int budget)
|
|
{
|
|
struct gve_rx_ring *rx = block->rx;
|
|
netdev_features_t feat;
|
|
int work_done = 0;
|
|
|
|
feat = block->napi.dev->features;
|
|
|
|
/* If budget is 0, do all the work */
|
|
if (budget == 0)
|
|
budget = INT_MAX;
|
|
|
|
if (budget > 0)
|
|
work_done = gve_clean_rx_done(rx, budget, feat);
|
|
|
|
return work_done;
|
|
}
|