linux-zen-server/drivers/net/ethernet/marvell/octeontx2/af/rvu_cn10k.c

562 lines
16 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* Marvell RPM CN10K driver
*
* Copyright (C) 2020 Marvell.
*/
#include <linux/bitfield.h>
#include <linux/pci.h>
#include "rvu.h"
#include "cgx.h"
#include "rvu_reg.h"
/* RVU LMTST */
#define LMT_TBL_OP_READ 0
#define LMT_TBL_OP_WRITE 1
#define LMT_MAP_TABLE_SIZE (128 * 1024)
#define LMT_MAPTBL_ENTRY_SIZE 16
/* Function to perform operations (read/write) on lmtst map table */
static int lmtst_map_table_ops(struct rvu *rvu, u32 index, u64 *val,
int lmt_tbl_op)
{
void __iomem *lmt_map_base;
u64 tbl_base;
tbl_base = rvu_read64(rvu, BLKADDR_APR, APR_AF_LMT_MAP_BASE);
lmt_map_base = ioremap_wc(tbl_base, LMT_MAP_TABLE_SIZE);
if (!lmt_map_base) {
dev_err(rvu->dev, "Failed to setup lmt map table mapping!!\n");
return -ENOMEM;
}
if (lmt_tbl_op == LMT_TBL_OP_READ) {
*val = readq(lmt_map_base + index);
} else {
writeq((*val), (lmt_map_base + index));
/* Flushing the AP interceptor cache to make APR_LMT_MAP_ENTRY_S
* changes effective. Write 1 for flush and read is being used as a
* barrier and sets up a data dependency. Write to 0 after a write
* to 1 to complete the flush.
*/
rvu_write64(rvu, BLKADDR_APR, APR_AF_LMT_CTL, BIT_ULL(0));
rvu_read64(rvu, BLKADDR_APR, APR_AF_LMT_CTL);
rvu_write64(rvu, BLKADDR_APR, APR_AF_LMT_CTL, 0x00);
}
iounmap(lmt_map_base);
return 0;
}
#define LMT_MAP_TBL_W1_OFF 8
static u32 rvu_get_lmtst_tbl_index(struct rvu *rvu, u16 pcifunc)
{
return ((rvu_get_pf(pcifunc) * rvu->hw->total_vfs) +
(pcifunc & RVU_PFVF_FUNC_MASK)) * LMT_MAPTBL_ENTRY_SIZE;
}
static int rvu_get_lmtaddr(struct rvu *rvu, u16 pcifunc,
u64 iova, u64 *lmt_addr)
{
u64 pa, val, pf;
int err = 0;
if (!iova) {
dev_err(rvu->dev, "%s Requested Null address for transulation\n", __func__);
return -EINVAL;
}
mutex_lock(&rvu->rsrc_lock);
rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_SMMU_ADDR_REQ, iova);
pf = rvu_get_pf(pcifunc) & 0x1F;
val = BIT_ULL(63) | BIT_ULL(14) | BIT_ULL(13) | pf << 8 |
((pcifunc & RVU_PFVF_FUNC_MASK) & 0xFF);
rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_SMMU_TXN_REQ, val);
err = rvu_poll_reg(rvu, BLKADDR_RVUM, RVU_AF_SMMU_ADDR_RSP_STS, BIT_ULL(0), false);
if (err) {
dev_err(rvu->dev, "%s LMTLINE iova transulation failed\n", __func__);
goto exit;
}
val = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_SMMU_ADDR_RSP_STS);
if (val & ~0x1ULL) {
dev_err(rvu->dev, "%s LMTLINE iova transulation failed err:%llx\n", __func__, val);
err = -EIO;
goto exit;
}
/* PA[51:12] = RVU_AF_SMMU_TLN_FLIT0[57:18]
* PA[11:0] = IOVA[11:0]
*/
pa = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_SMMU_TLN_FLIT0) >> 18;
pa &= GENMASK_ULL(39, 0);
*lmt_addr = (pa << 12) | (iova & 0xFFF);
exit:
mutex_unlock(&rvu->rsrc_lock);
return err;
}
static int rvu_update_lmtaddr(struct rvu *rvu, u16 pcifunc, u64 lmt_addr)
{
struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
u32 tbl_idx;
int err = 0;
u64 val;
/* Read the current lmt addr of pcifunc */
tbl_idx = rvu_get_lmtst_tbl_index(rvu, pcifunc);
err = lmtst_map_table_ops(rvu, tbl_idx, &val, LMT_TBL_OP_READ);
if (err) {
dev_err(rvu->dev,
"Failed to read LMT map table: index 0x%x err %d\n",
tbl_idx, err);
return err;
}
/* Storing the seondary's lmt base address as this needs to be
* reverted in FLR. Also making sure this default value doesn't
* get overwritten on multiple calls to this mailbox.
*/
if (!pfvf->lmt_base_addr)
pfvf->lmt_base_addr = val;
/* Update the LMT table with new addr */
err = lmtst_map_table_ops(rvu, tbl_idx, &lmt_addr, LMT_TBL_OP_WRITE);
if (err) {
dev_err(rvu->dev,
"Failed to update LMT map table: index 0x%x err %d\n",
tbl_idx, err);
return err;
}
return 0;
}
int rvu_mbox_handler_lmtst_tbl_setup(struct rvu *rvu,
struct lmtst_tbl_setup_req *req,
struct msg_rsp *rsp)
{
struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, req->hdr.pcifunc);
u32 pri_tbl_idx, tbl_idx;
u64 lmt_addr;
int err = 0;
u64 val;
/* Check if PF_FUNC wants to use it's own local memory as LMTLINE
* region, if so, convert that IOVA to physical address and
* populate LMT table with that address
*/
if (req->use_local_lmt_region) {
err = rvu_get_lmtaddr(rvu, req->hdr.pcifunc,
req->lmt_iova, &lmt_addr);
if (err < 0)
return err;
/* Update the lmt addr for this PFFUNC in the LMT table */
err = rvu_update_lmtaddr(rvu, req->hdr.pcifunc, lmt_addr);
if (err)
return err;
}
/* Reconfiguring lmtst map table in lmt region shared mode i.e. make
* multiple PF_FUNCs to share an LMTLINE region, so primary/base
* pcifunc (which is passed as an argument to mailbox) is the one
* whose lmt base address will be shared among other secondary
* pcifunc (will be the one who is calling this mailbox).
*/
if (req->base_pcifunc) {
/* Calculating the LMT table index equivalent to primary
* pcifunc.
*/
pri_tbl_idx = rvu_get_lmtst_tbl_index(rvu, req->base_pcifunc);
/* Read the base lmt addr of the primary pcifunc */
err = lmtst_map_table_ops(rvu, pri_tbl_idx, &val,
LMT_TBL_OP_READ);
if (err) {
dev_err(rvu->dev,
"Failed to read LMT map table: index 0x%x err %d\n",
pri_tbl_idx, err);
goto error;
}
/* Update the base lmt addr of secondary with primary's base
* lmt addr.
*/
err = rvu_update_lmtaddr(rvu, req->hdr.pcifunc, val);
if (err)
return err;
}
/* This mailbox can also be used to update word1 of APR_LMT_MAP_ENTRY_S
* like enabling scheduled LMTST, disable LMTLINE prefetch, disable
* early completion for ordered LMTST.
*/
if (req->sch_ena || req->dis_sched_early_comp || req->dis_line_pref) {
tbl_idx = rvu_get_lmtst_tbl_index(rvu, req->hdr.pcifunc);
err = lmtst_map_table_ops(rvu, tbl_idx + LMT_MAP_TBL_W1_OFF,
&val, LMT_TBL_OP_READ);
if (err) {
dev_err(rvu->dev,
"Failed to read LMT map table: index 0x%x err %d\n",
tbl_idx + LMT_MAP_TBL_W1_OFF, err);
goto error;
}
/* Storing lmt map table entry word1 default value as this needs
* to be reverted in FLR. Also making sure this default value
* doesn't get overwritten on multiple calls to this mailbox.
*/
if (!pfvf->lmt_map_ent_w1)
pfvf->lmt_map_ent_w1 = val;
/* Disable early completion for Ordered LMTSTs. */
if (req->dis_sched_early_comp)
val |= (req->dis_sched_early_comp <<
APR_LMT_MAP_ENT_DIS_SCH_CMP_SHIFT);
/* Enable scheduled LMTST */
if (req->sch_ena)
val |= (req->sch_ena << APR_LMT_MAP_ENT_SCH_ENA_SHIFT) |
req->ssow_pf_func;
/* Disables LMTLINE prefetch before receiving store data. */
if (req->dis_line_pref)
val |= (req->dis_line_pref <<
APR_LMT_MAP_ENT_DIS_LINE_PREF_SHIFT);
err = lmtst_map_table_ops(rvu, tbl_idx + LMT_MAP_TBL_W1_OFF,
&val, LMT_TBL_OP_WRITE);
if (err) {
dev_err(rvu->dev,
"Failed to update LMT map table: index 0x%x err %d\n",
tbl_idx + LMT_MAP_TBL_W1_OFF, err);
goto error;
}
}
error:
return err;
}
/* Resetting the lmtst map table to original base addresses */
void rvu_reset_lmt_map_tbl(struct rvu *rvu, u16 pcifunc)
{
struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
u32 tbl_idx;
int err;
if (is_rvu_otx2(rvu))
return;
if (pfvf->lmt_base_addr || pfvf->lmt_map_ent_w1) {
/* This corresponds to lmt map table index */
tbl_idx = rvu_get_lmtst_tbl_index(rvu, pcifunc);
/* Reverting back original lmt base addr for respective
* pcifunc.
*/
if (pfvf->lmt_base_addr) {
err = lmtst_map_table_ops(rvu, tbl_idx,
&pfvf->lmt_base_addr,
LMT_TBL_OP_WRITE);
if (err)
dev_err(rvu->dev,
"Failed to update LMT map table: index 0x%x err %d\n",
tbl_idx, err);
pfvf->lmt_base_addr = 0;
}
/* Reverting back to orginal word1 val of lmtst map table entry
* which underwent changes.
*/
if (pfvf->lmt_map_ent_w1) {
err = lmtst_map_table_ops(rvu,
tbl_idx + LMT_MAP_TBL_W1_OFF,
&pfvf->lmt_map_ent_w1,
LMT_TBL_OP_WRITE);
if (err)
dev_err(rvu->dev,
"Failed to update LMT map table: index 0x%x err %d\n",
tbl_idx + LMT_MAP_TBL_W1_OFF, err);
pfvf->lmt_map_ent_w1 = 0;
}
}
}
int rvu_set_channels_base(struct rvu *rvu)
{
u16 nr_lbk_chans, nr_sdp_chans, nr_cgx_chans, nr_cpt_chans;
u16 sdp_chan_base, cgx_chan_base, cpt_chan_base;
struct rvu_hwinfo *hw = rvu->hw;
u64 nix_const, nix_const1;
int blkaddr;
blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, 0);
if (blkaddr < 0)
return blkaddr;
nix_const = rvu_read64(rvu, blkaddr, NIX_AF_CONST);
nix_const1 = rvu_read64(rvu, blkaddr, NIX_AF_CONST1);
hw->cgx = (nix_const >> 12) & 0xFULL;
hw->lmac_per_cgx = (nix_const >> 8) & 0xFULL;
hw->cgx_links = hw->cgx * hw->lmac_per_cgx;
hw->lbk_links = (nix_const >> 24) & 0xFULL;
hw->cpt_links = (nix_const >> 44) & 0xFULL;
hw->sdp_links = 1;
hw->cgx_chan_base = NIX_CHAN_CGX_LMAC_CHX(0, 0, 0);
hw->lbk_chan_base = NIX_CHAN_LBK_CHX(0, 0);
hw->sdp_chan_base = NIX_CHAN_SDP_CH_START;
/* No Programmable channels */
if (!(nix_const & BIT_ULL(60)))
return 0;
hw->cap.programmable_chans = true;
/* If programmable channels are present then configure
* channels such that all channel numbers are contiguous
* leaving no holes. This way the new CPT channels can be
* accomodated. The order of channel numbers assigned is
* LBK, SDP, CGX and CPT. Also the base channel number
* of a block must be multiple of number of channels
* of the block.
*/
nr_lbk_chans = (nix_const >> 16) & 0xFFULL;
nr_sdp_chans = nix_const1 & 0xFFFULL;
nr_cgx_chans = nix_const & 0xFFULL;
nr_cpt_chans = (nix_const >> 32) & 0xFFFULL;
sdp_chan_base = hw->lbk_chan_base + hw->lbk_links * nr_lbk_chans;
/* Round up base channel to multiple of number of channels */
hw->sdp_chan_base = ALIGN(sdp_chan_base, nr_sdp_chans);
cgx_chan_base = hw->sdp_chan_base + hw->sdp_links * nr_sdp_chans;
hw->cgx_chan_base = ALIGN(cgx_chan_base, nr_cgx_chans);
cpt_chan_base = hw->cgx_chan_base + hw->cgx_links * nr_cgx_chans;
hw->cpt_chan_base = ALIGN(cpt_chan_base, nr_cpt_chans);
/* Out of 4096 channels start CPT from 2048 so
* that MSB for CPT channels is always set
*/
if (cpt_chan_base <= NIX_CHAN_CPT_CH_START) {
hw->cpt_chan_base = NIX_CHAN_CPT_CH_START;
} else {
dev_err(rvu->dev,
"CPT channels could not fit in the range 2048-4095\n");
return -EINVAL;
}
return 0;
}
#define LBK_CONNECT_NIXX(a) (0x0 + (a))
static void __rvu_lbk_set_chans(struct rvu *rvu, void __iomem *base,
u64 offset, int lbkid, u16 chans)
{
struct rvu_hwinfo *hw = rvu->hw;
u64 cfg;
cfg = readq(base + offset);
cfg &= ~(LBK_LINK_CFG_RANGE_MASK |
LBK_LINK_CFG_ID_MASK | LBK_LINK_CFG_BASE_MASK);
cfg |= FIELD_PREP(LBK_LINK_CFG_RANGE_MASK, ilog2(chans));
cfg |= FIELD_PREP(LBK_LINK_CFG_ID_MASK, lbkid);
cfg |= FIELD_PREP(LBK_LINK_CFG_BASE_MASK, hw->lbk_chan_base);
writeq(cfg, base + offset);
}
static void rvu_lbk_set_channels(struct rvu *rvu)
{
struct pci_dev *pdev = NULL;
void __iomem *base;
u64 lbk_const;
u8 src, dst;
u16 chans;
/* To loopback packets between multiple NIX blocks
* mutliple LBK blocks are needed. With two NIX blocks,
* four LBK blocks are needed and each LBK block
* source and destination are as follows:
* LBK0 - source NIX0 and destination NIX1
* LBK1 - source NIX0 and destination NIX1
* LBK2 - source NIX1 and destination NIX0
* LBK3 - source NIX1 and destination NIX1
* As per the HRM channel numbers should be programmed as:
* P2X and X2P of LBK0 as same
* P2X and X2P of LBK3 as same
* P2X of LBK1 and X2P of LBK2 as same
* P2X of LBK2 and X2P of LBK1 as same
*/
while (true) {
pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM,
PCI_DEVID_OCTEONTX2_LBK, pdev);
if (!pdev)
return;
base = pci_ioremap_bar(pdev, 0);
if (!base)
goto err_put;
lbk_const = readq(base + LBK_CONST);
chans = FIELD_GET(LBK_CONST_CHANS, lbk_const);
dst = FIELD_GET(LBK_CONST_DST, lbk_const);
src = FIELD_GET(LBK_CONST_SRC, lbk_const);
if (src == dst) {
if (src == LBK_CONNECT_NIXX(0)) { /* LBK0 */
__rvu_lbk_set_chans(rvu, base, LBK_LINK_CFG_X2P,
0, chans);
__rvu_lbk_set_chans(rvu, base, LBK_LINK_CFG_P2X,
0, chans);
} else if (src == LBK_CONNECT_NIXX(1)) { /* LBK3 */
__rvu_lbk_set_chans(rvu, base, LBK_LINK_CFG_X2P,
1, chans);
__rvu_lbk_set_chans(rvu, base, LBK_LINK_CFG_P2X,
1, chans);
}
} else {
if (src == LBK_CONNECT_NIXX(0)) { /* LBK1 */
__rvu_lbk_set_chans(rvu, base, LBK_LINK_CFG_X2P,
0, chans);
__rvu_lbk_set_chans(rvu, base, LBK_LINK_CFG_P2X,
1, chans);
} else if (src == LBK_CONNECT_NIXX(1)) { /* LBK2 */
__rvu_lbk_set_chans(rvu, base, LBK_LINK_CFG_X2P,
1, chans);
__rvu_lbk_set_chans(rvu, base, LBK_LINK_CFG_P2X,
0, chans);
}
}
iounmap(base);
}
err_put:
pci_dev_put(pdev);
}
static void __rvu_nix_set_channels(struct rvu *rvu, int blkaddr)
{
u64 nix_const1 = rvu_read64(rvu, blkaddr, NIX_AF_CONST1);
u64 nix_const = rvu_read64(rvu, blkaddr, NIX_AF_CONST);
u16 cgx_chans, lbk_chans, sdp_chans, cpt_chans;
struct rvu_hwinfo *hw = rvu->hw;
int link, nix_link = 0;
u16 start;
u64 cfg;
cgx_chans = nix_const & 0xFFULL;
lbk_chans = (nix_const >> 16) & 0xFFULL;
sdp_chans = nix_const1 & 0xFFFULL;
cpt_chans = (nix_const >> 32) & 0xFFFULL;
start = hw->cgx_chan_base;
for (link = 0; link < hw->cgx_links; link++, nix_link++) {
cfg = rvu_read64(rvu, blkaddr, NIX_AF_LINKX_CFG(nix_link));
cfg &= ~(NIX_AF_LINKX_BASE_MASK | NIX_AF_LINKX_RANGE_MASK);
cfg |= FIELD_PREP(NIX_AF_LINKX_RANGE_MASK, ilog2(cgx_chans));
cfg |= FIELD_PREP(NIX_AF_LINKX_BASE_MASK, start);
rvu_write64(rvu, blkaddr, NIX_AF_LINKX_CFG(nix_link), cfg);
start += cgx_chans;
}
start = hw->lbk_chan_base;
for (link = 0; link < hw->lbk_links; link++, nix_link++) {
cfg = rvu_read64(rvu, blkaddr, NIX_AF_LINKX_CFG(nix_link));
cfg &= ~(NIX_AF_LINKX_BASE_MASK | NIX_AF_LINKX_RANGE_MASK);
cfg |= FIELD_PREP(NIX_AF_LINKX_RANGE_MASK, ilog2(lbk_chans));
cfg |= FIELD_PREP(NIX_AF_LINKX_BASE_MASK, start);
rvu_write64(rvu, blkaddr, NIX_AF_LINKX_CFG(nix_link), cfg);
start += lbk_chans;
}
start = hw->sdp_chan_base;
for (link = 0; link < hw->sdp_links; link++, nix_link++) {
cfg = rvu_read64(rvu, blkaddr, NIX_AF_LINKX_CFG(nix_link));
cfg &= ~(NIX_AF_LINKX_BASE_MASK | NIX_AF_LINKX_RANGE_MASK);
cfg |= FIELD_PREP(NIX_AF_LINKX_RANGE_MASK, ilog2(sdp_chans));
cfg |= FIELD_PREP(NIX_AF_LINKX_BASE_MASK, start);
rvu_write64(rvu, blkaddr, NIX_AF_LINKX_CFG(nix_link), cfg);
start += sdp_chans;
}
start = hw->cpt_chan_base;
for (link = 0; link < hw->cpt_links; link++, nix_link++) {
cfg = rvu_read64(rvu, blkaddr, NIX_AF_LINKX_CFG(nix_link));
cfg &= ~(NIX_AF_LINKX_BASE_MASK | NIX_AF_LINKX_RANGE_MASK);
cfg |= FIELD_PREP(NIX_AF_LINKX_RANGE_MASK, ilog2(cpt_chans));
cfg |= FIELD_PREP(NIX_AF_LINKX_BASE_MASK, start);
rvu_write64(rvu, blkaddr, NIX_AF_LINKX_CFG(nix_link), cfg);
start += cpt_chans;
}
}
static void rvu_nix_set_channels(struct rvu *rvu)
{
int blkaddr = 0;
blkaddr = rvu_get_next_nix_blkaddr(rvu, blkaddr);
while (blkaddr) {
__rvu_nix_set_channels(rvu, blkaddr);
blkaddr = rvu_get_next_nix_blkaddr(rvu, blkaddr);
}
}
static void __rvu_rpm_set_channels(int cgxid, int lmacid, u16 base)
{
u64 cfg;
cfg = cgx_lmac_read(cgxid, lmacid, RPMX_CMRX_LINK_CFG);
cfg &= ~(RPMX_CMRX_LINK_BASE_MASK | RPMX_CMRX_LINK_RANGE_MASK);
/* There is no read-only constant register to read
* the number of channels for LMAC and it is always 16.
*/
cfg |= FIELD_PREP(RPMX_CMRX_LINK_RANGE_MASK, ilog2(16));
cfg |= FIELD_PREP(RPMX_CMRX_LINK_BASE_MASK, base);
cgx_lmac_write(cgxid, lmacid, RPMX_CMRX_LINK_CFG, cfg);
}
static void rvu_rpm_set_channels(struct rvu *rvu)
{
struct rvu_hwinfo *hw = rvu->hw;
u16 base = hw->cgx_chan_base;
int cgx, lmac;
for (cgx = 0; cgx < rvu->cgx_cnt_max; cgx++) {
for (lmac = 0; lmac < hw->lmac_per_cgx; lmac++) {
__rvu_rpm_set_channels(cgx, lmac, base);
base += 16;
}
}
}
void rvu_program_channels(struct rvu *rvu)
{
struct rvu_hwinfo *hw = rvu->hw;
if (!hw->cap.programmable_chans)
return;
rvu_nix_set_channels(rvu);
rvu_lbk_set_channels(rvu);
rvu_rpm_set_channels(rvu);
}
void rvu_nix_block_cn10k_init(struct rvu *rvu, struct nix_hw *nix_hw)
{
int blkaddr = nix_hw->blkaddr;
u64 cfg;
/* Set AF vWQE timer interval to a LF configurable range of
* 6.4us to 1.632ms.
*/
rvu_write64(rvu, blkaddr, NIX_AF_VWQE_TIMER, 0x3FULL);
/* Enable NIX RX stream and global conditional clock to
* avoild multiple free of NPA buffers.
*/
cfg = rvu_read64(rvu, blkaddr, NIX_AF_CFG);
cfg |= BIT_ULL(1) | BIT_ULL(2);
rvu_write64(rvu, blkaddr, NIX_AF_CFG, cfg);
}