linux-zen-server/drivers/net/ethernet/xilinx/xilinx_axienet_main.c

2270 lines
64 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Xilinx Axi Ethernet device driver
*
* Copyright (c) 2008 Nissin Systems Co., Ltd., Yoshio Kashiwagi
* Copyright (c) 2005-2008 DLA Systems, David H. Lynch Jr. <dhlii@dlasys.net>
* Copyright (c) 2008-2009 Secret Lab Technologies Ltd.
* Copyright (c) 2010 - 2011 Michal Simek <monstr@monstr.eu>
* Copyright (c) 2010 - 2011 PetaLogix
* Copyright (c) 2019 - 2022 Calian Advanced Technologies
* Copyright (c) 2010 - 2012 Xilinx, Inc. All rights reserved.
*
* This is a driver for the Xilinx Axi Ethernet which is used in the Virtex6
* and Spartan6.
*
* TODO:
* - Add Axi Fifo support.
* - Factor out Axi DMA code into separate driver.
* - Test and fix basic multicast filtering.
* - Add support for extended multicast filtering.
* - Test basic VLAN support.
* - Add support for extended VLAN support.
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/etherdevice.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/of_mdio.h>
#include <linux/of_net.h>
#include <linux/of_platform.h>
#include <linux/of_irq.h>
#include <linux/of_address.h>
#include <linux/skbuff.h>
#include <linux/math64.h>
#include <linux/phy.h>
#include <linux/mii.h>
#include <linux/ethtool.h>
#include "xilinx_axienet.h"
/* Descriptors defines for Tx and Rx DMA */
#define TX_BD_NUM_DEFAULT 128
#define RX_BD_NUM_DEFAULT 1024
#define TX_BD_NUM_MIN (MAX_SKB_FRAGS + 1)
#define TX_BD_NUM_MAX 4096
#define RX_BD_NUM_MAX 4096
/* Must be shorter than length of ethtool_drvinfo.driver field to fit */
#define DRIVER_NAME "xaxienet"
#define DRIVER_DESCRIPTION "Xilinx Axi Ethernet driver"
#define DRIVER_VERSION "1.00a"
#define AXIENET_REGS_N 40
/* Match table for of_platform binding */
static const struct of_device_id axienet_of_match[] = {
{ .compatible = "xlnx,axi-ethernet-1.00.a", },
{ .compatible = "xlnx,axi-ethernet-1.01.a", },
{ .compatible = "xlnx,axi-ethernet-2.01.a", },
{},
};
MODULE_DEVICE_TABLE(of, axienet_of_match);
/* Option table for setting up Axi Ethernet hardware options */
static struct axienet_option axienet_options[] = {
/* Turn on jumbo packet support for both Rx and Tx */
{
.opt = XAE_OPTION_JUMBO,
.reg = XAE_TC_OFFSET,
.m_or = XAE_TC_JUM_MASK,
}, {
.opt = XAE_OPTION_JUMBO,
.reg = XAE_RCW1_OFFSET,
.m_or = XAE_RCW1_JUM_MASK,
}, { /* Turn on VLAN packet support for both Rx and Tx */
.opt = XAE_OPTION_VLAN,
.reg = XAE_TC_OFFSET,
.m_or = XAE_TC_VLAN_MASK,
}, {
.opt = XAE_OPTION_VLAN,
.reg = XAE_RCW1_OFFSET,
.m_or = XAE_RCW1_VLAN_MASK,
}, { /* Turn on FCS stripping on receive packets */
.opt = XAE_OPTION_FCS_STRIP,
.reg = XAE_RCW1_OFFSET,
.m_or = XAE_RCW1_FCS_MASK,
}, { /* Turn on FCS insertion on transmit packets */
.opt = XAE_OPTION_FCS_INSERT,
.reg = XAE_TC_OFFSET,
.m_or = XAE_TC_FCS_MASK,
}, { /* Turn off length/type field checking on receive packets */
.opt = XAE_OPTION_LENTYPE_ERR,
.reg = XAE_RCW1_OFFSET,
.m_or = XAE_RCW1_LT_DIS_MASK,
}, { /* Turn on Rx flow control */
.opt = XAE_OPTION_FLOW_CONTROL,
.reg = XAE_FCC_OFFSET,
.m_or = XAE_FCC_FCRX_MASK,
}, { /* Turn on Tx flow control */
.opt = XAE_OPTION_FLOW_CONTROL,
.reg = XAE_FCC_OFFSET,
.m_or = XAE_FCC_FCTX_MASK,
}, { /* Turn on promiscuous frame filtering */
.opt = XAE_OPTION_PROMISC,
.reg = XAE_FMI_OFFSET,
.m_or = XAE_FMI_PM_MASK,
}, { /* Enable transmitter */
.opt = XAE_OPTION_TXEN,
.reg = XAE_TC_OFFSET,
.m_or = XAE_TC_TX_MASK,
}, { /* Enable receiver */
.opt = XAE_OPTION_RXEN,
.reg = XAE_RCW1_OFFSET,
.m_or = XAE_RCW1_RX_MASK,
},
{}
};
/**
* axienet_dma_in32 - Memory mapped Axi DMA register read
* @lp: Pointer to axienet local structure
* @reg: Address offset from the base address of the Axi DMA core
*
* Return: The contents of the Axi DMA register
*
* This function returns the contents of the corresponding Axi DMA register.
*/
static inline u32 axienet_dma_in32(struct axienet_local *lp, off_t reg)
{
return ioread32(lp->dma_regs + reg);
}
static void desc_set_phys_addr(struct axienet_local *lp, dma_addr_t addr,
struct axidma_bd *desc)
{
desc->phys = lower_32_bits(addr);
if (lp->features & XAE_FEATURE_DMA_64BIT)
desc->phys_msb = upper_32_bits(addr);
}
static dma_addr_t desc_get_phys_addr(struct axienet_local *lp,
struct axidma_bd *desc)
{
dma_addr_t ret = desc->phys;
if (lp->features & XAE_FEATURE_DMA_64BIT)
ret |= ((dma_addr_t)desc->phys_msb << 16) << 16;
return ret;
}
/**
* axienet_dma_bd_release - Release buffer descriptor rings
* @ndev: Pointer to the net_device structure
*
* This function is used to release the descriptors allocated in
* axienet_dma_bd_init. axienet_dma_bd_release is called when Axi Ethernet
* driver stop api is called.
*/
static void axienet_dma_bd_release(struct net_device *ndev)
{
int i;
struct axienet_local *lp = netdev_priv(ndev);
/* If we end up here, tx_bd_v must have been DMA allocated. */
dma_free_coherent(lp->dev,
sizeof(*lp->tx_bd_v) * lp->tx_bd_num,
lp->tx_bd_v,
lp->tx_bd_p);
if (!lp->rx_bd_v)
return;
for (i = 0; i < lp->rx_bd_num; i++) {
dma_addr_t phys;
/* A NULL skb means this descriptor has not been initialised
* at all.
*/
if (!lp->rx_bd_v[i].skb)
break;
dev_kfree_skb(lp->rx_bd_v[i].skb);
/* For each descriptor, we programmed cntrl with the (non-zero)
* descriptor size, after it had been successfully allocated.
* So a non-zero value in there means we need to unmap it.
*/
if (lp->rx_bd_v[i].cntrl) {
phys = desc_get_phys_addr(lp, &lp->rx_bd_v[i]);
dma_unmap_single(lp->dev, phys,
lp->max_frm_size, DMA_FROM_DEVICE);
}
}
dma_free_coherent(lp->dev,
sizeof(*lp->rx_bd_v) * lp->rx_bd_num,
lp->rx_bd_v,
lp->rx_bd_p);
}
/**
* axienet_usec_to_timer - Calculate IRQ delay timer value
* @lp: Pointer to the axienet_local structure
* @coalesce_usec: Microseconds to convert into timer value
*/
static u32 axienet_usec_to_timer(struct axienet_local *lp, u32 coalesce_usec)
{
u32 result;
u64 clk_rate = 125000000; /* arbitrary guess if no clock rate set */
if (lp->axi_clk)
clk_rate = clk_get_rate(lp->axi_clk);
/* 1 Timeout Interval = 125 * (clock period of SG clock) */
result = DIV64_U64_ROUND_CLOSEST((u64)coalesce_usec * clk_rate,
(u64)125000000);
if (result > 255)
result = 255;
return result;
}
/**
* axienet_dma_start - Set up DMA registers and start DMA operation
* @lp: Pointer to the axienet_local structure
*/
static void axienet_dma_start(struct axienet_local *lp)
{
/* Start updating the Rx channel control register */
lp->rx_dma_cr = (lp->coalesce_count_rx << XAXIDMA_COALESCE_SHIFT) |
XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_ERROR_MASK;
/* Only set interrupt delay timer if not generating an interrupt on
* the first RX packet. Otherwise leave at 0 to disable delay interrupt.
*/
if (lp->coalesce_count_rx > 1)
lp->rx_dma_cr |= (axienet_usec_to_timer(lp, lp->coalesce_usec_rx)
<< XAXIDMA_DELAY_SHIFT) |
XAXIDMA_IRQ_DELAY_MASK;
axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, lp->rx_dma_cr);
/* Start updating the Tx channel control register */
lp->tx_dma_cr = (lp->coalesce_count_tx << XAXIDMA_COALESCE_SHIFT) |
XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_ERROR_MASK;
/* Only set interrupt delay timer if not generating an interrupt on
* the first TX packet. Otherwise leave at 0 to disable delay interrupt.
*/
if (lp->coalesce_count_tx > 1)
lp->tx_dma_cr |= (axienet_usec_to_timer(lp, lp->coalesce_usec_tx)
<< XAXIDMA_DELAY_SHIFT) |
XAXIDMA_IRQ_DELAY_MASK;
axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, lp->tx_dma_cr);
/* Populate the tail pointer and bring the Rx Axi DMA engine out of
* halted state. This will make the Rx side ready for reception.
*/
axienet_dma_out_addr(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
lp->rx_dma_cr |= XAXIDMA_CR_RUNSTOP_MASK;
axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, lp->rx_dma_cr);
axienet_dma_out_addr(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
(sizeof(*lp->rx_bd_v) * (lp->rx_bd_num - 1)));
/* Write to the RS (Run-stop) bit in the Tx channel control register.
* Tx channel is now ready to run. But only after we write to the
* tail pointer register that the Tx channel will start transmitting.
*/
axienet_dma_out_addr(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
lp->tx_dma_cr |= XAXIDMA_CR_RUNSTOP_MASK;
axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, lp->tx_dma_cr);
}
/**
* axienet_dma_bd_init - Setup buffer descriptor rings for Axi DMA
* @ndev: Pointer to the net_device structure
*
* Return: 0, on success -ENOMEM, on failure
*
* This function is called to initialize the Rx and Tx DMA descriptor
* rings. This initializes the descriptors with required default values
* and is called when Axi Ethernet driver reset is called.
*/
static int axienet_dma_bd_init(struct net_device *ndev)
{
int i;
struct sk_buff *skb;
struct axienet_local *lp = netdev_priv(ndev);
/* Reset the indexes which are used for accessing the BDs */
lp->tx_bd_ci = 0;
lp->tx_bd_tail = 0;
lp->rx_bd_ci = 0;
/* Allocate the Tx and Rx buffer descriptors. */
lp->tx_bd_v = dma_alloc_coherent(lp->dev,
sizeof(*lp->tx_bd_v) * lp->tx_bd_num,
&lp->tx_bd_p, GFP_KERNEL);
if (!lp->tx_bd_v)
return -ENOMEM;
lp->rx_bd_v = dma_alloc_coherent(lp->dev,
sizeof(*lp->rx_bd_v) * lp->rx_bd_num,
&lp->rx_bd_p, GFP_KERNEL);
if (!lp->rx_bd_v)
goto out;
for (i = 0; i < lp->tx_bd_num; i++) {
dma_addr_t addr = lp->tx_bd_p +
sizeof(*lp->tx_bd_v) *
((i + 1) % lp->tx_bd_num);
lp->tx_bd_v[i].next = lower_32_bits(addr);
if (lp->features & XAE_FEATURE_DMA_64BIT)
lp->tx_bd_v[i].next_msb = upper_32_bits(addr);
}
for (i = 0; i < lp->rx_bd_num; i++) {
dma_addr_t addr;
addr = lp->rx_bd_p + sizeof(*lp->rx_bd_v) *
((i + 1) % lp->rx_bd_num);
lp->rx_bd_v[i].next = lower_32_bits(addr);
if (lp->features & XAE_FEATURE_DMA_64BIT)
lp->rx_bd_v[i].next_msb = upper_32_bits(addr);
skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
if (!skb)
goto out;
lp->rx_bd_v[i].skb = skb;
addr = dma_map_single(lp->dev, skb->data,
lp->max_frm_size, DMA_FROM_DEVICE);
if (dma_mapping_error(lp->dev, addr)) {
netdev_err(ndev, "DMA mapping error\n");
goto out;
}
desc_set_phys_addr(lp, addr, &lp->rx_bd_v[i]);
lp->rx_bd_v[i].cntrl = lp->max_frm_size;
}
axienet_dma_start(lp);
return 0;
out:
axienet_dma_bd_release(ndev);
return -ENOMEM;
}
/**
* axienet_set_mac_address - Write the MAC address
* @ndev: Pointer to the net_device structure
* @address: 6 byte Address to be written as MAC address
*
* This function is called to initialize the MAC address of the Axi Ethernet
* core. It writes to the UAW0 and UAW1 registers of the core.
*/
static void axienet_set_mac_address(struct net_device *ndev,
const void *address)
{
struct axienet_local *lp = netdev_priv(ndev);
if (address)
eth_hw_addr_set(ndev, address);
if (!is_valid_ether_addr(ndev->dev_addr))
eth_hw_addr_random(ndev);
/* Set up unicast MAC address filter set its mac address */
axienet_iow(lp, XAE_UAW0_OFFSET,
(ndev->dev_addr[0]) |
(ndev->dev_addr[1] << 8) |
(ndev->dev_addr[2] << 16) |
(ndev->dev_addr[3] << 24));
axienet_iow(lp, XAE_UAW1_OFFSET,
(((axienet_ior(lp, XAE_UAW1_OFFSET)) &
~XAE_UAW1_UNICASTADDR_MASK) |
(ndev->dev_addr[4] |
(ndev->dev_addr[5] << 8))));
}
/**
* netdev_set_mac_address - Write the MAC address (from outside the driver)
* @ndev: Pointer to the net_device structure
* @p: 6 byte Address to be written as MAC address
*
* Return: 0 for all conditions. Presently, there is no failure case.
*
* This function is called to initialize the MAC address of the Axi Ethernet
* core. It calls the core specific axienet_set_mac_address. This is the
* function that goes into net_device_ops structure entry ndo_set_mac_address.
*/
static int netdev_set_mac_address(struct net_device *ndev, void *p)
{
struct sockaddr *addr = p;
axienet_set_mac_address(ndev, addr->sa_data);
return 0;
}
/**
* axienet_set_multicast_list - Prepare the multicast table
* @ndev: Pointer to the net_device structure
*
* This function is called to initialize the multicast table during
* initialization. The Axi Ethernet basic multicast support has a four-entry
* multicast table which is initialized here. Additionally this function
* goes into the net_device_ops structure entry ndo_set_multicast_list. This
* means whenever the multicast table entries need to be updated this
* function gets called.
*/
static void axienet_set_multicast_list(struct net_device *ndev)
{
int i;
u32 reg, af0reg, af1reg;
struct axienet_local *lp = netdev_priv(ndev);
if (ndev->flags & (IFF_ALLMULTI | IFF_PROMISC) ||
netdev_mc_count(ndev) > XAE_MULTICAST_CAM_TABLE_NUM) {
/* We must make the kernel realize we had to move into
* promiscuous mode. If it was a promiscuous mode request
* the flag is already set. If not we set it.
*/
ndev->flags |= IFF_PROMISC;
reg = axienet_ior(lp, XAE_FMI_OFFSET);
reg |= XAE_FMI_PM_MASK;
axienet_iow(lp, XAE_FMI_OFFSET, reg);
dev_info(&ndev->dev, "Promiscuous mode enabled.\n");
} else if (!netdev_mc_empty(ndev)) {
struct netdev_hw_addr *ha;
i = 0;
netdev_for_each_mc_addr(ha, ndev) {
if (i >= XAE_MULTICAST_CAM_TABLE_NUM)
break;
af0reg = (ha->addr[0]);
af0reg |= (ha->addr[1] << 8);
af0reg |= (ha->addr[2] << 16);
af0reg |= (ha->addr[3] << 24);
af1reg = (ha->addr[4]);
af1reg |= (ha->addr[5] << 8);
reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
reg |= i;
axienet_iow(lp, XAE_FMI_OFFSET, reg);
axienet_iow(lp, XAE_AF0_OFFSET, af0reg);
axienet_iow(lp, XAE_AF1_OFFSET, af1reg);
i++;
}
} else {
reg = axienet_ior(lp, XAE_FMI_OFFSET);
reg &= ~XAE_FMI_PM_MASK;
axienet_iow(lp, XAE_FMI_OFFSET, reg);
for (i = 0; i < XAE_MULTICAST_CAM_TABLE_NUM; i++) {
reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
reg |= i;
axienet_iow(lp, XAE_FMI_OFFSET, reg);
axienet_iow(lp, XAE_AF0_OFFSET, 0);
axienet_iow(lp, XAE_AF1_OFFSET, 0);
}
dev_info(&ndev->dev, "Promiscuous mode disabled.\n");
}
}
/**
* axienet_setoptions - Set an Axi Ethernet option
* @ndev: Pointer to the net_device structure
* @options: Option to be enabled/disabled
*
* The Axi Ethernet core has multiple features which can be selectively turned
* on or off. The typical options could be jumbo frame option, basic VLAN
* option, promiscuous mode option etc. This function is used to set or clear
* these options in the Axi Ethernet hardware. This is done through
* axienet_option structure .
*/
static void axienet_setoptions(struct net_device *ndev, u32 options)
{
int reg;
struct axienet_local *lp = netdev_priv(ndev);
struct axienet_option *tp = &axienet_options[0];
while (tp->opt) {
reg = ((axienet_ior(lp, tp->reg)) & ~(tp->m_or));
if (options & tp->opt)
reg |= tp->m_or;
axienet_iow(lp, tp->reg, reg);
tp++;
}
lp->options |= options;
}
static int __axienet_device_reset(struct axienet_local *lp)
{
u32 value;
int ret;
/* Reset Axi DMA. This would reset Axi Ethernet core as well. The reset
* process of Axi DMA takes a while to complete as all pending
* commands/transfers will be flushed or completed during this
* reset process.
* Note that even though both TX and RX have their own reset register,
* they both reset the entire DMA core, so only one needs to be used.
*/
axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, XAXIDMA_CR_RESET_MASK);
ret = read_poll_timeout(axienet_dma_in32, value,
!(value & XAXIDMA_CR_RESET_MASK),
DELAY_OF_ONE_MILLISEC, 50000, false, lp,
XAXIDMA_TX_CR_OFFSET);
if (ret) {
dev_err(lp->dev, "%s: DMA reset timeout!\n", __func__);
return ret;
}
/* Wait for PhyRstCmplt bit to be set, indicating the PHY reset has finished */
ret = read_poll_timeout(axienet_ior, value,
value & XAE_INT_PHYRSTCMPLT_MASK,
DELAY_OF_ONE_MILLISEC, 50000, false, lp,
XAE_IS_OFFSET);
if (ret) {
dev_err(lp->dev, "%s: timeout waiting for PhyRstCmplt\n", __func__);
return ret;
}
return 0;
}
/**
* axienet_dma_stop - Stop DMA operation
* @lp: Pointer to the axienet_local structure
*/
static void axienet_dma_stop(struct axienet_local *lp)
{
int count;
u32 cr, sr;
cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
cr &= ~(XAXIDMA_CR_RUNSTOP_MASK | XAXIDMA_IRQ_ALL_MASK);
axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
synchronize_irq(lp->rx_irq);
cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
cr &= ~(XAXIDMA_CR_RUNSTOP_MASK | XAXIDMA_IRQ_ALL_MASK);
axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
synchronize_irq(lp->tx_irq);
/* Give DMAs a chance to halt gracefully */
sr = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
for (count = 0; !(sr & XAXIDMA_SR_HALT_MASK) && count < 5; ++count) {
msleep(20);
sr = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
}
sr = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
for (count = 0; !(sr & XAXIDMA_SR_HALT_MASK) && count < 5; ++count) {
msleep(20);
sr = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
}
/* Do a reset to ensure DMA is really stopped */
axienet_lock_mii(lp);
__axienet_device_reset(lp);
axienet_unlock_mii(lp);
}
/**
* axienet_device_reset - Reset and initialize the Axi Ethernet hardware.
* @ndev: Pointer to the net_device structure
*
* This function is called to reset and initialize the Axi Ethernet core. This
* is typically called during initialization. It does a reset of the Axi DMA
* Rx/Tx channels and initializes the Axi DMA BDs. Since Axi DMA reset lines
* are connected to Axi Ethernet reset lines, this in turn resets the Axi
* Ethernet core. No separate hardware reset is done for the Axi Ethernet
* core.
* Returns 0 on success or a negative error number otherwise.
*/
static int axienet_device_reset(struct net_device *ndev)
{
u32 axienet_status;
struct axienet_local *lp = netdev_priv(ndev);
int ret;
ret = __axienet_device_reset(lp);
if (ret)
return ret;
lp->max_frm_size = XAE_MAX_VLAN_FRAME_SIZE;
lp->options |= XAE_OPTION_VLAN;
lp->options &= (~XAE_OPTION_JUMBO);
if ((ndev->mtu > XAE_MTU) &&
(ndev->mtu <= XAE_JUMBO_MTU)) {
lp->max_frm_size = ndev->mtu + VLAN_ETH_HLEN +
XAE_TRL_SIZE;
if (lp->max_frm_size <= lp->rxmem)
lp->options |= XAE_OPTION_JUMBO;
}
ret = axienet_dma_bd_init(ndev);
if (ret) {
netdev_err(ndev, "%s: descriptor allocation failed\n",
__func__);
return ret;
}
axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
axienet_status &= ~XAE_RCW1_RX_MASK;
axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
if (axienet_status & XAE_INT_RXRJECT_MASK)
axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
axienet_iow(lp, XAE_IE_OFFSET, lp->eth_irq > 0 ?
XAE_INT_RECV_ERROR_MASK : 0);
axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
/* Sync default options with HW but leave receiver and
* transmitter disabled.
*/
axienet_setoptions(ndev, lp->options &
~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
axienet_set_mac_address(ndev, NULL);
axienet_set_multicast_list(ndev);
axienet_setoptions(ndev, lp->options);
netif_trans_update(ndev);
return 0;
}
/**
* axienet_free_tx_chain - Clean up a series of linked TX descriptors.
* @lp: Pointer to the axienet_local structure
* @first_bd: Index of first descriptor to clean up
* @nr_bds: Max number of descriptors to clean up
* @force: Whether to clean descriptors even if not complete
* @sizep: Pointer to a u32 filled with the total sum of all bytes
* in all cleaned-up descriptors. Ignored if NULL.
* @budget: NAPI budget (use 0 when not called from NAPI poll)
*
* Would either be called after a successful transmit operation, or after
* there was an error when setting up the chain.
* Returns the number of descriptors handled.
*/
static int axienet_free_tx_chain(struct axienet_local *lp, u32 first_bd,
int nr_bds, bool force, u32 *sizep, int budget)
{
struct axidma_bd *cur_p;
unsigned int status;
dma_addr_t phys;
int i;
for (i = 0; i < nr_bds; i++) {
cur_p = &lp->tx_bd_v[(first_bd + i) % lp->tx_bd_num];
status = cur_p->status;
/* If force is not specified, clean up only descriptors
* that have been completed by the MAC.
*/
if (!force && !(status & XAXIDMA_BD_STS_COMPLETE_MASK))
break;
/* Ensure we see complete descriptor update */
dma_rmb();
phys = desc_get_phys_addr(lp, cur_p);
dma_unmap_single(lp->dev, phys,
(cur_p->cntrl & XAXIDMA_BD_CTRL_LENGTH_MASK),
DMA_TO_DEVICE);
if (cur_p->skb && (status & XAXIDMA_BD_STS_COMPLETE_MASK))
napi_consume_skb(cur_p->skb, budget);
cur_p->app0 = 0;
cur_p->app1 = 0;
cur_p->app2 = 0;
cur_p->app4 = 0;
cur_p->skb = NULL;
/* ensure our transmit path and device don't prematurely see status cleared */
wmb();
cur_p->cntrl = 0;
cur_p->status = 0;
if (sizep)
*sizep += status & XAXIDMA_BD_STS_ACTUAL_LEN_MASK;
}
return i;
}
/**
* axienet_check_tx_bd_space - Checks if a BD/group of BDs are currently busy
* @lp: Pointer to the axienet_local structure
* @num_frag: The number of BDs to check for
*
* Return: 0, on success
* NETDEV_TX_BUSY, if any of the descriptors are not free
*
* This function is invoked before BDs are allocated and transmission starts.
* This function returns 0 if a BD or group of BDs can be allocated for
* transmission. If the BD or any of the BDs are not free the function
* returns a busy status.
*/
static inline int axienet_check_tx_bd_space(struct axienet_local *lp,
int num_frag)
{
struct axidma_bd *cur_p;
/* Ensure we see all descriptor updates from device or TX polling */
rmb();
cur_p = &lp->tx_bd_v[(READ_ONCE(lp->tx_bd_tail) + num_frag) %
lp->tx_bd_num];
if (cur_p->cntrl)
return NETDEV_TX_BUSY;
return 0;
}
/**
* axienet_tx_poll - Invoked once a transmit is completed by the
* Axi DMA Tx channel.
* @napi: Pointer to NAPI structure.
* @budget: Max number of TX packets to process.
*
* Return: Number of TX packets processed.
*
* This function is invoked from the NAPI processing to notify the completion
* of transmit operation. It clears fields in the corresponding Tx BDs and
* unmaps the corresponding buffer so that CPU can regain ownership of the
* buffer. It finally invokes "netif_wake_queue" to restart transmission if
* required.
*/
static int axienet_tx_poll(struct napi_struct *napi, int budget)
{
struct axienet_local *lp = container_of(napi, struct axienet_local, napi_tx);
struct net_device *ndev = lp->ndev;
u32 size = 0;
int packets;
packets = axienet_free_tx_chain(lp, lp->tx_bd_ci, budget, false, &size, budget);
if (packets) {
lp->tx_bd_ci += packets;
if (lp->tx_bd_ci >= lp->tx_bd_num)
lp->tx_bd_ci %= lp->tx_bd_num;
u64_stats_update_begin(&lp->tx_stat_sync);
u64_stats_add(&lp->tx_packets, packets);
u64_stats_add(&lp->tx_bytes, size);
u64_stats_update_end(&lp->tx_stat_sync);
/* Matches barrier in axienet_start_xmit */
smp_mb();
if (!axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1))
netif_wake_queue(ndev);
}
if (packets < budget && napi_complete_done(napi, packets)) {
/* Re-enable TX completion interrupts. This should
* cause an immediate interrupt if any TX packets are
* already pending.
*/
axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, lp->tx_dma_cr);
}
return packets;
}
/**
* axienet_start_xmit - Starts the transmission.
* @skb: sk_buff pointer that contains data to be Txed.
* @ndev: Pointer to net_device structure.
*
* Return: NETDEV_TX_OK, on success
* NETDEV_TX_BUSY, if any of the descriptors are not free
*
* This function is invoked from upper layers to initiate transmission. The
* function uses the next available free BDs and populates their fields to
* start the transmission. Additionally if checksum offloading is supported,
* it populates AXI Stream Control fields with appropriate values.
*/
static netdev_tx_t
axienet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
{
u32 ii;
u32 num_frag;
u32 csum_start_off;
u32 csum_index_off;
skb_frag_t *frag;
dma_addr_t tail_p, phys;
u32 orig_tail_ptr, new_tail_ptr;
struct axienet_local *lp = netdev_priv(ndev);
struct axidma_bd *cur_p;
orig_tail_ptr = lp->tx_bd_tail;
new_tail_ptr = orig_tail_ptr;
num_frag = skb_shinfo(skb)->nr_frags;
cur_p = &lp->tx_bd_v[orig_tail_ptr];
if (axienet_check_tx_bd_space(lp, num_frag + 1)) {
/* Should not happen as last start_xmit call should have
* checked for sufficient space and queue should only be
* woken when sufficient space is available.
*/
netif_stop_queue(ndev);
if (net_ratelimit())
netdev_warn(ndev, "TX ring unexpectedly full\n");
return NETDEV_TX_BUSY;
}
if (skb->ip_summed == CHECKSUM_PARTIAL) {
if (lp->features & XAE_FEATURE_FULL_TX_CSUM) {
/* Tx Full Checksum Offload Enabled */
cur_p->app0 |= 2;
} else if (lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) {
csum_start_off = skb_transport_offset(skb);
csum_index_off = csum_start_off + skb->csum_offset;
/* Tx Partial Checksum Offload Enabled */
cur_p->app0 |= 1;
cur_p->app1 = (csum_start_off << 16) | csum_index_off;
}
} else if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
cur_p->app0 |= 2; /* Tx Full Checksum Offload Enabled */
}
phys = dma_map_single(lp->dev, skb->data,
skb_headlen(skb), DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(lp->dev, phys))) {
if (net_ratelimit())
netdev_err(ndev, "TX DMA mapping error\n");
ndev->stats.tx_dropped++;
return NETDEV_TX_OK;
}
desc_set_phys_addr(lp, phys, cur_p);
cur_p->cntrl = skb_headlen(skb) | XAXIDMA_BD_CTRL_TXSOF_MASK;
for (ii = 0; ii < num_frag; ii++) {
if (++new_tail_ptr >= lp->tx_bd_num)
new_tail_ptr = 0;
cur_p = &lp->tx_bd_v[new_tail_ptr];
frag = &skb_shinfo(skb)->frags[ii];
phys = dma_map_single(lp->dev,
skb_frag_address(frag),
skb_frag_size(frag),
DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(lp->dev, phys))) {
if (net_ratelimit())
netdev_err(ndev, "TX DMA mapping error\n");
ndev->stats.tx_dropped++;
axienet_free_tx_chain(lp, orig_tail_ptr, ii + 1,
true, NULL, 0);
return NETDEV_TX_OK;
}
desc_set_phys_addr(lp, phys, cur_p);
cur_p->cntrl = skb_frag_size(frag);
}
cur_p->cntrl |= XAXIDMA_BD_CTRL_TXEOF_MASK;
cur_p->skb = skb;
tail_p = lp->tx_bd_p + sizeof(*lp->tx_bd_v) * new_tail_ptr;
if (++new_tail_ptr >= lp->tx_bd_num)
new_tail_ptr = 0;
WRITE_ONCE(lp->tx_bd_tail, new_tail_ptr);
/* Start the transfer */
axienet_dma_out_addr(lp, XAXIDMA_TX_TDESC_OFFSET, tail_p);
/* Stop queue if next transmit may not have space */
if (axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1)) {
netif_stop_queue(ndev);
/* Matches barrier in axienet_tx_poll */
smp_mb();
/* Space might have just been freed - check again */
if (!axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1))
netif_wake_queue(ndev);
}
return NETDEV_TX_OK;
}
/**
* axienet_rx_poll - Triggered by RX ISR to complete the BD processing.
* @napi: Pointer to NAPI structure.
* @budget: Max number of RX packets to process.
*
* Return: Number of RX packets processed.
*/
static int axienet_rx_poll(struct napi_struct *napi, int budget)
{
u32 length;
u32 csumstatus;
u32 size = 0;
int packets = 0;
dma_addr_t tail_p = 0;
struct axidma_bd *cur_p;
struct sk_buff *skb, *new_skb;
struct axienet_local *lp = container_of(napi, struct axienet_local, napi_rx);
cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
while (packets < budget && (cur_p->status & XAXIDMA_BD_STS_COMPLETE_MASK)) {
dma_addr_t phys;
/* Ensure we see complete descriptor update */
dma_rmb();
skb = cur_p->skb;
cur_p->skb = NULL;
/* skb could be NULL if a previous pass already received the
* packet for this slot in the ring, but failed to refill it
* with a newly allocated buffer. In this case, don't try to
* receive it again.
*/
if (likely(skb)) {
length = cur_p->app4 & 0x0000FFFF;
phys = desc_get_phys_addr(lp, cur_p);
dma_unmap_single(lp->dev, phys, lp->max_frm_size,
DMA_FROM_DEVICE);
skb_put(skb, length);
skb->protocol = eth_type_trans(skb, lp->ndev);
/*skb_checksum_none_assert(skb);*/
skb->ip_summed = CHECKSUM_NONE;
/* if we're doing Rx csum offload, set it up */
if (lp->features & XAE_FEATURE_FULL_RX_CSUM) {
csumstatus = (cur_p->app2 &
XAE_FULL_CSUM_STATUS_MASK) >> 3;
if (csumstatus == XAE_IP_TCP_CSUM_VALIDATED ||
csumstatus == XAE_IP_UDP_CSUM_VALIDATED) {
skb->ip_summed = CHECKSUM_UNNECESSARY;
}
} else if ((lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) != 0 &&
skb->protocol == htons(ETH_P_IP) &&
skb->len > 64) {
skb->csum = be32_to_cpu(cur_p->app3 & 0xFFFF);
skb->ip_summed = CHECKSUM_COMPLETE;
}
napi_gro_receive(napi, skb);
size += length;
packets++;
}
new_skb = napi_alloc_skb(napi, lp->max_frm_size);
if (!new_skb)
break;
phys = dma_map_single(lp->dev, new_skb->data,
lp->max_frm_size,
DMA_FROM_DEVICE);
if (unlikely(dma_mapping_error(lp->dev, phys))) {
if (net_ratelimit())
netdev_err(lp->ndev, "RX DMA mapping error\n");
dev_kfree_skb(new_skb);
break;
}
desc_set_phys_addr(lp, phys, cur_p);
cur_p->cntrl = lp->max_frm_size;
cur_p->status = 0;
cur_p->skb = new_skb;
/* Only update tail_p to mark this slot as usable after it has
* been successfully refilled.
*/
tail_p = lp->rx_bd_p + sizeof(*lp->rx_bd_v) * lp->rx_bd_ci;
if (++lp->rx_bd_ci >= lp->rx_bd_num)
lp->rx_bd_ci = 0;
cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
}
u64_stats_update_begin(&lp->rx_stat_sync);
u64_stats_add(&lp->rx_packets, packets);
u64_stats_add(&lp->rx_bytes, size);
u64_stats_update_end(&lp->rx_stat_sync);
if (tail_p)
axienet_dma_out_addr(lp, XAXIDMA_RX_TDESC_OFFSET, tail_p);
if (packets < budget && napi_complete_done(napi, packets)) {
/* Re-enable RX completion interrupts. This should
* cause an immediate interrupt if any RX packets are
* already pending.
*/
axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, lp->rx_dma_cr);
}
return packets;
}
/**
* axienet_tx_irq - Tx Done Isr.
* @irq: irq number
* @_ndev: net_device pointer
*
* Return: IRQ_HANDLED if device generated a TX interrupt, IRQ_NONE otherwise.
*
* This is the Axi DMA Tx done Isr. It invokes NAPI polling to complete the
* TX BD processing.
*/
static irqreturn_t axienet_tx_irq(int irq, void *_ndev)
{
unsigned int status;
struct net_device *ndev = _ndev;
struct axienet_local *lp = netdev_priv(ndev);
status = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
if (!(status & XAXIDMA_IRQ_ALL_MASK))
return IRQ_NONE;
axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status);
if (unlikely(status & XAXIDMA_IRQ_ERROR_MASK)) {
netdev_err(ndev, "DMA Tx error 0x%x\n", status);
netdev_err(ndev, "Current BD is at: 0x%x%08x\n",
(lp->tx_bd_v[lp->tx_bd_ci]).phys_msb,
(lp->tx_bd_v[lp->tx_bd_ci]).phys);
schedule_work(&lp->dma_err_task);
} else {
/* Disable further TX completion interrupts and schedule
* NAPI to handle the completions.
*/
u32 cr = lp->tx_dma_cr;
cr &= ~(XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK);
axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
napi_schedule(&lp->napi_tx);
}
return IRQ_HANDLED;
}
/**
* axienet_rx_irq - Rx Isr.
* @irq: irq number
* @_ndev: net_device pointer
*
* Return: IRQ_HANDLED if device generated a RX interrupt, IRQ_NONE otherwise.
*
* This is the Axi DMA Rx Isr. It invokes NAPI polling to complete the RX BD
* processing.
*/
static irqreturn_t axienet_rx_irq(int irq, void *_ndev)
{
unsigned int status;
struct net_device *ndev = _ndev;
struct axienet_local *lp = netdev_priv(ndev);
status = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
if (!(status & XAXIDMA_IRQ_ALL_MASK))
return IRQ_NONE;
axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status);
if (unlikely(status & XAXIDMA_IRQ_ERROR_MASK)) {
netdev_err(ndev, "DMA Rx error 0x%x\n", status);
netdev_err(ndev, "Current BD is at: 0x%x%08x\n",
(lp->rx_bd_v[lp->rx_bd_ci]).phys_msb,
(lp->rx_bd_v[lp->rx_bd_ci]).phys);
schedule_work(&lp->dma_err_task);
} else {
/* Disable further RX completion interrupts and schedule
* NAPI receive.
*/
u32 cr = lp->rx_dma_cr;
cr &= ~(XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK);
axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
napi_schedule(&lp->napi_rx);
}
return IRQ_HANDLED;
}
/**
* axienet_eth_irq - Ethernet core Isr.
* @irq: irq number
* @_ndev: net_device pointer
*
* Return: IRQ_HANDLED if device generated a core interrupt, IRQ_NONE otherwise.
*
* Handle miscellaneous conditions indicated by Ethernet core IRQ.
*/
static irqreturn_t axienet_eth_irq(int irq, void *_ndev)
{
struct net_device *ndev = _ndev;
struct axienet_local *lp = netdev_priv(ndev);
unsigned int pending;
pending = axienet_ior(lp, XAE_IP_OFFSET);
if (!pending)
return IRQ_NONE;
if (pending & XAE_INT_RXFIFOOVR_MASK)
ndev->stats.rx_missed_errors++;
if (pending & XAE_INT_RXRJECT_MASK)
ndev->stats.rx_frame_errors++;
axienet_iow(lp, XAE_IS_OFFSET, pending);
return IRQ_HANDLED;
}
static void axienet_dma_err_handler(struct work_struct *work);
/**
* axienet_open - Driver open routine.
* @ndev: Pointer to net_device structure
*
* Return: 0, on success.
* non-zero error value on failure
*
* This is the driver open routine. It calls phylink_start to start the
* PHY device.
* It also allocates interrupt service routines, enables the interrupt lines
* and ISR handling. Axi Ethernet core is reset through Axi DMA core. Buffer
* descriptors are initialized.
*/
static int axienet_open(struct net_device *ndev)
{
int ret;
struct axienet_local *lp = netdev_priv(ndev);
dev_dbg(&ndev->dev, "axienet_open()\n");
/* When we do an Axi Ethernet reset, it resets the complete core
* including the MDIO. MDIO must be disabled before resetting.
* Hold MDIO bus lock to avoid MDIO accesses during the reset.
*/
axienet_lock_mii(lp);
ret = axienet_device_reset(ndev);
axienet_unlock_mii(lp);
ret = phylink_of_phy_connect(lp->phylink, lp->dev->of_node, 0);
if (ret) {
dev_err(lp->dev, "phylink_of_phy_connect() failed: %d\n", ret);
return ret;
}
phylink_start(lp->phylink);
/* Enable worker thread for Axi DMA error handling */
INIT_WORK(&lp->dma_err_task, axienet_dma_err_handler);
napi_enable(&lp->napi_rx);
napi_enable(&lp->napi_tx);
/* Enable interrupts for Axi DMA Tx */
ret = request_irq(lp->tx_irq, axienet_tx_irq, IRQF_SHARED,
ndev->name, ndev);
if (ret)
goto err_tx_irq;
/* Enable interrupts for Axi DMA Rx */
ret = request_irq(lp->rx_irq, axienet_rx_irq, IRQF_SHARED,
ndev->name, ndev);
if (ret)
goto err_rx_irq;
/* Enable interrupts for Axi Ethernet core (if defined) */
if (lp->eth_irq > 0) {
ret = request_irq(lp->eth_irq, axienet_eth_irq, IRQF_SHARED,
ndev->name, ndev);
if (ret)
goto err_eth_irq;
}
return 0;
err_eth_irq:
free_irq(lp->rx_irq, ndev);
err_rx_irq:
free_irq(lp->tx_irq, ndev);
err_tx_irq:
napi_disable(&lp->napi_tx);
napi_disable(&lp->napi_rx);
phylink_stop(lp->phylink);
phylink_disconnect_phy(lp->phylink);
cancel_work_sync(&lp->dma_err_task);
dev_err(lp->dev, "request_irq() failed\n");
return ret;
}
/**
* axienet_stop - Driver stop routine.
* @ndev: Pointer to net_device structure
*
* Return: 0, on success.
*
* This is the driver stop routine. It calls phylink_disconnect to stop the PHY
* device. It also removes the interrupt handlers and disables the interrupts.
* The Axi DMA Tx/Rx BDs are released.
*/
static int axienet_stop(struct net_device *ndev)
{
struct axienet_local *lp = netdev_priv(ndev);
dev_dbg(&ndev->dev, "axienet_close()\n");
napi_disable(&lp->napi_tx);
napi_disable(&lp->napi_rx);
phylink_stop(lp->phylink);
phylink_disconnect_phy(lp->phylink);
axienet_setoptions(ndev, lp->options &
~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
axienet_dma_stop(lp);
axienet_iow(lp, XAE_IE_OFFSET, 0);
cancel_work_sync(&lp->dma_err_task);
if (lp->eth_irq > 0)
free_irq(lp->eth_irq, ndev);
free_irq(lp->tx_irq, ndev);
free_irq(lp->rx_irq, ndev);
axienet_dma_bd_release(ndev);
return 0;
}
/**
* axienet_change_mtu - Driver change mtu routine.
* @ndev: Pointer to net_device structure
* @new_mtu: New mtu value to be applied
*
* Return: Always returns 0 (success).
*
* This is the change mtu driver routine. It checks if the Axi Ethernet
* hardware supports jumbo frames before changing the mtu. This can be
* called only when the device is not up.
*/
static int axienet_change_mtu(struct net_device *ndev, int new_mtu)
{
struct axienet_local *lp = netdev_priv(ndev);
if (netif_running(ndev))
return -EBUSY;
if ((new_mtu + VLAN_ETH_HLEN +
XAE_TRL_SIZE) > lp->rxmem)
return -EINVAL;
ndev->mtu = new_mtu;
return 0;
}
#ifdef CONFIG_NET_POLL_CONTROLLER
/**
* axienet_poll_controller - Axi Ethernet poll mechanism.
* @ndev: Pointer to net_device structure
*
* This implements Rx/Tx ISR poll mechanisms. The interrupts are disabled prior
* to polling the ISRs and are enabled back after the polling is done.
*/
static void axienet_poll_controller(struct net_device *ndev)
{
struct axienet_local *lp = netdev_priv(ndev);
disable_irq(lp->tx_irq);
disable_irq(lp->rx_irq);
axienet_rx_irq(lp->tx_irq, ndev);
axienet_tx_irq(lp->rx_irq, ndev);
enable_irq(lp->tx_irq);
enable_irq(lp->rx_irq);
}
#endif
static int axienet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
struct axienet_local *lp = netdev_priv(dev);
if (!netif_running(dev))
return -EINVAL;
return phylink_mii_ioctl(lp->phylink, rq, cmd);
}
static void
axienet_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
{
struct axienet_local *lp = netdev_priv(dev);
unsigned int start;
netdev_stats_to_stats64(stats, &dev->stats);
do {
start = u64_stats_fetch_begin(&lp->rx_stat_sync);
stats->rx_packets = u64_stats_read(&lp->rx_packets);
stats->rx_bytes = u64_stats_read(&lp->rx_bytes);
} while (u64_stats_fetch_retry(&lp->rx_stat_sync, start));
do {
start = u64_stats_fetch_begin(&lp->tx_stat_sync);
stats->tx_packets = u64_stats_read(&lp->tx_packets);
stats->tx_bytes = u64_stats_read(&lp->tx_bytes);
} while (u64_stats_fetch_retry(&lp->tx_stat_sync, start));
}
static const struct net_device_ops axienet_netdev_ops = {
.ndo_open = axienet_open,
.ndo_stop = axienet_stop,
.ndo_start_xmit = axienet_start_xmit,
.ndo_get_stats64 = axienet_get_stats64,
.ndo_change_mtu = axienet_change_mtu,
.ndo_set_mac_address = netdev_set_mac_address,
.ndo_validate_addr = eth_validate_addr,
.ndo_eth_ioctl = axienet_ioctl,
.ndo_set_rx_mode = axienet_set_multicast_list,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = axienet_poll_controller,
#endif
};
/**
* axienet_ethtools_get_drvinfo - Get various Axi Ethernet driver information.
* @ndev: Pointer to net_device structure
* @ed: Pointer to ethtool_drvinfo structure
*
* This implements ethtool command for getting the driver information.
* Issue "ethtool -i ethX" under linux prompt to execute this function.
*/
static void axienet_ethtools_get_drvinfo(struct net_device *ndev,
struct ethtool_drvinfo *ed)
{
strscpy(ed->driver, DRIVER_NAME, sizeof(ed->driver));
strscpy(ed->version, DRIVER_VERSION, sizeof(ed->version));
}
/**
* axienet_ethtools_get_regs_len - Get the total regs length present in the
* AxiEthernet core.
* @ndev: Pointer to net_device structure
*
* This implements ethtool command for getting the total register length
* information.
*
* Return: the total regs length
*/
static int axienet_ethtools_get_regs_len(struct net_device *ndev)
{
return sizeof(u32) * AXIENET_REGS_N;
}
/**
* axienet_ethtools_get_regs - Dump the contents of all registers present
* in AxiEthernet core.
* @ndev: Pointer to net_device structure
* @regs: Pointer to ethtool_regs structure
* @ret: Void pointer used to return the contents of the registers.
*
* This implements ethtool command for getting the Axi Ethernet register dump.
* Issue "ethtool -d ethX" to execute this function.
*/
static void axienet_ethtools_get_regs(struct net_device *ndev,
struct ethtool_regs *regs, void *ret)
{
u32 *data = (u32 *)ret;
size_t len = sizeof(u32) * AXIENET_REGS_N;
struct axienet_local *lp = netdev_priv(ndev);
regs->version = 0;
regs->len = len;
memset(data, 0, len);
data[0] = axienet_ior(lp, XAE_RAF_OFFSET);
data[1] = axienet_ior(lp, XAE_TPF_OFFSET);
data[2] = axienet_ior(lp, XAE_IFGP_OFFSET);
data[3] = axienet_ior(lp, XAE_IS_OFFSET);
data[4] = axienet_ior(lp, XAE_IP_OFFSET);
data[5] = axienet_ior(lp, XAE_IE_OFFSET);
data[6] = axienet_ior(lp, XAE_TTAG_OFFSET);
data[7] = axienet_ior(lp, XAE_RTAG_OFFSET);
data[8] = axienet_ior(lp, XAE_UAWL_OFFSET);
data[9] = axienet_ior(lp, XAE_UAWU_OFFSET);
data[10] = axienet_ior(lp, XAE_TPID0_OFFSET);
data[11] = axienet_ior(lp, XAE_TPID1_OFFSET);
data[12] = axienet_ior(lp, XAE_PPST_OFFSET);
data[13] = axienet_ior(lp, XAE_RCW0_OFFSET);
data[14] = axienet_ior(lp, XAE_RCW1_OFFSET);
data[15] = axienet_ior(lp, XAE_TC_OFFSET);
data[16] = axienet_ior(lp, XAE_FCC_OFFSET);
data[17] = axienet_ior(lp, XAE_EMMC_OFFSET);
data[18] = axienet_ior(lp, XAE_PHYC_OFFSET);
data[19] = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
data[20] = axienet_ior(lp, XAE_MDIO_MCR_OFFSET);
data[21] = axienet_ior(lp, XAE_MDIO_MWD_OFFSET);
data[22] = axienet_ior(lp, XAE_MDIO_MRD_OFFSET);
data[27] = axienet_ior(lp, XAE_UAW0_OFFSET);
data[28] = axienet_ior(lp, XAE_UAW1_OFFSET);
data[29] = axienet_ior(lp, XAE_FMI_OFFSET);
data[30] = axienet_ior(lp, XAE_AF0_OFFSET);
data[31] = axienet_ior(lp, XAE_AF1_OFFSET);
data[32] = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
data[33] = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
data[34] = axienet_dma_in32(lp, XAXIDMA_TX_CDESC_OFFSET);
data[35] = axienet_dma_in32(lp, XAXIDMA_TX_TDESC_OFFSET);
data[36] = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
data[37] = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
data[38] = axienet_dma_in32(lp, XAXIDMA_RX_CDESC_OFFSET);
data[39] = axienet_dma_in32(lp, XAXIDMA_RX_TDESC_OFFSET);
}
static void
axienet_ethtools_get_ringparam(struct net_device *ndev,
struct ethtool_ringparam *ering,
struct kernel_ethtool_ringparam *kernel_ering,
struct netlink_ext_ack *extack)
{
struct axienet_local *lp = netdev_priv(ndev);
ering->rx_max_pending = RX_BD_NUM_MAX;
ering->rx_mini_max_pending = 0;
ering->rx_jumbo_max_pending = 0;
ering->tx_max_pending = TX_BD_NUM_MAX;
ering->rx_pending = lp->rx_bd_num;
ering->rx_mini_pending = 0;
ering->rx_jumbo_pending = 0;
ering->tx_pending = lp->tx_bd_num;
}
static int
axienet_ethtools_set_ringparam(struct net_device *ndev,
struct ethtool_ringparam *ering,
struct kernel_ethtool_ringparam *kernel_ering,
struct netlink_ext_ack *extack)
{
struct axienet_local *lp = netdev_priv(ndev);
if (ering->rx_pending > RX_BD_NUM_MAX ||
ering->rx_mini_pending ||
ering->rx_jumbo_pending ||
ering->tx_pending < TX_BD_NUM_MIN ||
ering->tx_pending > TX_BD_NUM_MAX)
return -EINVAL;
if (netif_running(ndev))
return -EBUSY;
lp->rx_bd_num = ering->rx_pending;
lp->tx_bd_num = ering->tx_pending;
return 0;
}
/**
* axienet_ethtools_get_pauseparam - Get the pause parameter setting for
* Tx and Rx paths.
* @ndev: Pointer to net_device structure
* @epauseparm: Pointer to ethtool_pauseparam structure.
*
* This implements ethtool command for getting axi ethernet pause frame
* setting. Issue "ethtool -a ethX" to execute this function.
*/
static void
axienet_ethtools_get_pauseparam(struct net_device *ndev,
struct ethtool_pauseparam *epauseparm)
{
struct axienet_local *lp = netdev_priv(ndev);
phylink_ethtool_get_pauseparam(lp->phylink, epauseparm);
}
/**
* axienet_ethtools_set_pauseparam - Set device pause parameter(flow control)
* settings.
* @ndev: Pointer to net_device structure
* @epauseparm:Pointer to ethtool_pauseparam structure
*
* This implements ethtool command for enabling flow control on Rx and Tx
* paths. Issue "ethtool -A ethX tx on|off" under linux prompt to execute this
* function.
*
* Return: 0 on success, -EFAULT if device is running
*/
static int
axienet_ethtools_set_pauseparam(struct net_device *ndev,
struct ethtool_pauseparam *epauseparm)
{
struct axienet_local *lp = netdev_priv(ndev);
return phylink_ethtool_set_pauseparam(lp->phylink, epauseparm);
}
/**
* axienet_ethtools_get_coalesce - Get DMA interrupt coalescing count.
* @ndev: Pointer to net_device structure
* @ecoalesce: Pointer to ethtool_coalesce structure
* @kernel_coal: ethtool CQE mode setting structure
* @extack: extack for reporting error messages
*
* This implements ethtool command for getting the DMA interrupt coalescing
* count on Tx and Rx paths. Issue "ethtool -c ethX" under linux prompt to
* execute this function.
*
* Return: 0 always
*/
static int
axienet_ethtools_get_coalesce(struct net_device *ndev,
struct ethtool_coalesce *ecoalesce,
struct kernel_ethtool_coalesce *kernel_coal,
struct netlink_ext_ack *extack)
{
struct axienet_local *lp = netdev_priv(ndev);
ecoalesce->rx_max_coalesced_frames = lp->coalesce_count_rx;
ecoalesce->rx_coalesce_usecs = lp->coalesce_usec_rx;
ecoalesce->tx_max_coalesced_frames = lp->coalesce_count_tx;
ecoalesce->tx_coalesce_usecs = lp->coalesce_usec_tx;
return 0;
}
/**
* axienet_ethtools_set_coalesce - Set DMA interrupt coalescing count.
* @ndev: Pointer to net_device structure
* @ecoalesce: Pointer to ethtool_coalesce structure
* @kernel_coal: ethtool CQE mode setting structure
* @extack: extack for reporting error messages
*
* This implements ethtool command for setting the DMA interrupt coalescing
* count on Tx and Rx paths. Issue "ethtool -C ethX rx-frames 5" under linux
* prompt to execute this function.
*
* Return: 0, on success, Non-zero error value on failure.
*/
static int
axienet_ethtools_set_coalesce(struct net_device *ndev,
struct ethtool_coalesce *ecoalesce,
struct kernel_ethtool_coalesce *kernel_coal,
struct netlink_ext_ack *extack)
{
struct axienet_local *lp = netdev_priv(ndev);
if (netif_running(ndev)) {
netdev_err(ndev,
"Please stop netif before applying configuration\n");
return -EFAULT;
}
if (ecoalesce->rx_max_coalesced_frames)
lp->coalesce_count_rx = ecoalesce->rx_max_coalesced_frames;
if (ecoalesce->rx_coalesce_usecs)
lp->coalesce_usec_rx = ecoalesce->rx_coalesce_usecs;
if (ecoalesce->tx_max_coalesced_frames)
lp->coalesce_count_tx = ecoalesce->tx_max_coalesced_frames;
if (ecoalesce->tx_coalesce_usecs)
lp->coalesce_usec_tx = ecoalesce->tx_coalesce_usecs;
return 0;
}
static int
axienet_ethtools_get_link_ksettings(struct net_device *ndev,
struct ethtool_link_ksettings *cmd)
{
struct axienet_local *lp = netdev_priv(ndev);
return phylink_ethtool_ksettings_get(lp->phylink, cmd);
}
static int
axienet_ethtools_set_link_ksettings(struct net_device *ndev,
const struct ethtool_link_ksettings *cmd)
{
struct axienet_local *lp = netdev_priv(ndev);
return phylink_ethtool_ksettings_set(lp->phylink, cmd);
}
static int axienet_ethtools_nway_reset(struct net_device *dev)
{
struct axienet_local *lp = netdev_priv(dev);
return phylink_ethtool_nway_reset(lp->phylink);
}
static const struct ethtool_ops axienet_ethtool_ops = {
.supported_coalesce_params = ETHTOOL_COALESCE_MAX_FRAMES |
ETHTOOL_COALESCE_USECS,
.get_drvinfo = axienet_ethtools_get_drvinfo,
.get_regs_len = axienet_ethtools_get_regs_len,
.get_regs = axienet_ethtools_get_regs,
.get_link = ethtool_op_get_link,
.get_ringparam = axienet_ethtools_get_ringparam,
.set_ringparam = axienet_ethtools_set_ringparam,
.get_pauseparam = axienet_ethtools_get_pauseparam,
.set_pauseparam = axienet_ethtools_set_pauseparam,
.get_coalesce = axienet_ethtools_get_coalesce,
.set_coalesce = axienet_ethtools_set_coalesce,
.get_link_ksettings = axienet_ethtools_get_link_ksettings,
.set_link_ksettings = axienet_ethtools_set_link_ksettings,
.nway_reset = axienet_ethtools_nway_reset,
};
static struct axienet_local *pcs_to_axienet_local(struct phylink_pcs *pcs)
{
return container_of(pcs, struct axienet_local, pcs);
}
static void axienet_pcs_get_state(struct phylink_pcs *pcs,
struct phylink_link_state *state)
{
struct mdio_device *pcs_phy = pcs_to_axienet_local(pcs)->pcs_phy;
phylink_mii_c22_pcs_get_state(pcs_phy, state);
}
static void axienet_pcs_an_restart(struct phylink_pcs *pcs)
{
struct mdio_device *pcs_phy = pcs_to_axienet_local(pcs)->pcs_phy;
phylink_mii_c22_pcs_an_restart(pcs_phy);
}
static int axienet_pcs_config(struct phylink_pcs *pcs, unsigned int mode,
phy_interface_t interface,
const unsigned long *advertising,
bool permit_pause_to_mac)
{
struct mdio_device *pcs_phy = pcs_to_axienet_local(pcs)->pcs_phy;
struct net_device *ndev = pcs_to_axienet_local(pcs)->ndev;
struct axienet_local *lp = netdev_priv(ndev);
int ret;
if (lp->switch_x_sgmii) {
ret = mdiodev_write(pcs_phy, XLNX_MII_STD_SELECT_REG,
interface == PHY_INTERFACE_MODE_SGMII ?
XLNX_MII_STD_SELECT_SGMII : 0);
if (ret < 0) {
netdev_warn(ndev,
"Failed to switch PHY interface: %d\n",
ret);
return ret;
}
}
ret = phylink_mii_c22_pcs_config(pcs_phy, mode, interface, advertising);
if (ret < 0)
netdev_warn(ndev, "Failed to configure PCS: %d\n", ret);
return ret;
}
static const struct phylink_pcs_ops axienet_pcs_ops = {
.pcs_get_state = axienet_pcs_get_state,
.pcs_config = axienet_pcs_config,
.pcs_an_restart = axienet_pcs_an_restart,
};
static struct phylink_pcs *axienet_mac_select_pcs(struct phylink_config *config,
phy_interface_t interface)
{
struct net_device *ndev = to_net_dev(config->dev);
struct axienet_local *lp = netdev_priv(ndev);
if (interface == PHY_INTERFACE_MODE_1000BASEX ||
interface == PHY_INTERFACE_MODE_SGMII)
return &lp->pcs;
return NULL;
}
static void axienet_mac_config(struct phylink_config *config, unsigned int mode,
const struct phylink_link_state *state)
{
/* nothing meaningful to do */
}
static void axienet_mac_link_down(struct phylink_config *config,
unsigned int mode,
phy_interface_t interface)
{
/* nothing meaningful to do */
}
static void axienet_mac_link_up(struct phylink_config *config,
struct phy_device *phy,
unsigned int mode, phy_interface_t interface,
int speed, int duplex,
bool tx_pause, bool rx_pause)
{
struct net_device *ndev = to_net_dev(config->dev);
struct axienet_local *lp = netdev_priv(ndev);
u32 emmc_reg, fcc_reg;
emmc_reg = axienet_ior(lp, XAE_EMMC_OFFSET);
emmc_reg &= ~XAE_EMMC_LINKSPEED_MASK;
switch (speed) {
case SPEED_1000:
emmc_reg |= XAE_EMMC_LINKSPD_1000;
break;
case SPEED_100:
emmc_reg |= XAE_EMMC_LINKSPD_100;
break;
case SPEED_10:
emmc_reg |= XAE_EMMC_LINKSPD_10;
break;
default:
dev_err(&ndev->dev,
"Speed other than 10, 100 or 1Gbps is not supported\n");
break;
}
axienet_iow(lp, XAE_EMMC_OFFSET, emmc_reg);
fcc_reg = axienet_ior(lp, XAE_FCC_OFFSET);
if (tx_pause)
fcc_reg |= XAE_FCC_FCTX_MASK;
else
fcc_reg &= ~XAE_FCC_FCTX_MASK;
if (rx_pause)
fcc_reg |= XAE_FCC_FCRX_MASK;
else
fcc_reg &= ~XAE_FCC_FCRX_MASK;
axienet_iow(lp, XAE_FCC_OFFSET, fcc_reg);
}
static const struct phylink_mac_ops axienet_phylink_ops = {
.mac_select_pcs = axienet_mac_select_pcs,
.mac_config = axienet_mac_config,
.mac_link_down = axienet_mac_link_down,
.mac_link_up = axienet_mac_link_up,
};
/**
* axienet_dma_err_handler - Work queue task for Axi DMA Error
* @work: pointer to work_struct
*
* Resets the Axi DMA and Axi Ethernet devices, and reconfigures the
* Tx/Rx BDs.
*/
static void axienet_dma_err_handler(struct work_struct *work)
{
u32 i;
u32 axienet_status;
struct axidma_bd *cur_p;
struct axienet_local *lp = container_of(work, struct axienet_local,
dma_err_task);
struct net_device *ndev = lp->ndev;
napi_disable(&lp->napi_tx);
napi_disable(&lp->napi_rx);
axienet_setoptions(ndev, lp->options &
~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
axienet_dma_stop(lp);
for (i = 0; i < lp->tx_bd_num; i++) {
cur_p = &lp->tx_bd_v[i];
if (cur_p->cntrl) {
dma_addr_t addr = desc_get_phys_addr(lp, cur_p);
dma_unmap_single(lp->dev, addr,
(cur_p->cntrl &
XAXIDMA_BD_CTRL_LENGTH_MASK),
DMA_TO_DEVICE);
}
if (cur_p->skb)
dev_kfree_skb_irq(cur_p->skb);
cur_p->phys = 0;
cur_p->phys_msb = 0;
cur_p->cntrl = 0;
cur_p->status = 0;
cur_p->app0 = 0;
cur_p->app1 = 0;
cur_p->app2 = 0;
cur_p->app3 = 0;
cur_p->app4 = 0;
cur_p->skb = NULL;
}
for (i = 0; i < lp->rx_bd_num; i++) {
cur_p = &lp->rx_bd_v[i];
cur_p->status = 0;
cur_p->app0 = 0;
cur_p->app1 = 0;
cur_p->app2 = 0;
cur_p->app3 = 0;
cur_p->app4 = 0;
}
lp->tx_bd_ci = 0;
lp->tx_bd_tail = 0;
lp->rx_bd_ci = 0;
axienet_dma_start(lp);
axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
axienet_status &= ~XAE_RCW1_RX_MASK;
axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
if (axienet_status & XAE_INT_RXRJECT_MASK)
axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
axienet_iow(lp, XAE_IE_OFFSET, lp->eth_irq > 0 ?
XAE_INT_RECV_ERROR_MASK : 0);
axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
/* Sync default options with HW but leave receiver and
* transmitter disabled.
*/
axienet_setoptions(ndev, lp->options &
~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
axienet_set_mac_address(ndev, NULL);
axienet_set_multicast_list(ndev);
axienet_setoptions(ndev, lp->options);
napi_enable(&lp->napi_rx);
napi_enable(&lp->napi_tx);
}
/**
* axienet_probe - Axi Ethernet probe function.
* @pdev: Pointer to platform device structure.
*
* Return: 0, on success
* Non-zero error value on failure.
*
* This is the probe routine for Axi Ethernet driver. This is called before
* any other driver routines are invoked. It allocates and sets up the Ethernet
* device. Parses through device tree and populates fields of
* axienet_local. It registers the Ethernet device.
*/
static int axienet_probe(struct platform_device *pdev)
{
int ret;
struct device_node *np;
struct axienet_local *lp;
struct net_device *ndev;
struct resource *ethres;
u8 mac_addr[ETH_ALEN];
int addr_width = 32;
u32 value;
ndev = alloc_etherdev(sizeof(*lp));
if (!ndev)
return -ENOMEM;
platform_set_drvdata(pdev, ndev);
SET_NETDEV_DEV(ndev, &pdev->dev);
ndev->flags &= ~IFF_MULTICAST; /* clear multicast */
ndev->features = NETIF_F_SG;
ndev->netdev_ops = &axienet_netdev_ops;
ndev->ethtool_ops = &axienet_ethtool_ops;
/* MTU range: 64 - 9000 */
ndev->min_mtu = 64;
ndev->max_mtu = XAE_JUMBO_MTU;
lp = netdev_priv(ndev);
lp->ndev = ndev;
lp->dev = &pdev->dev;
lp->options = XAE_OPTION_DEFAULTS;
lp->rx_bd_num = RX_BD_NUM_DEFAULT;
lp->tx_bd_num = TX_BD_NUM_DEFAULT;
u64_stats_init(&lp->rx_stat_sync);
u64_stats_init(&lp->tx_stat_sync);
netif_napi_add(ndev, &lp->napi_rx, axienet_rx_poll);
netif_napi_add(ndev, &lp->napi_tx, axienet_tx_poll);
lp->axi_clk = devm_clk_get_optional(&pdev->dev, "s_axi_lite_clk");
if (!lp->axi_clk) {
/* For backward compatibility, if named AXI clock is not present,
* treat the first clock specified as the AXI clock.
*/
lp->axi_clk = devm_clk_get_optional(&pdev->dev, NULL);
}
if (IS_ERR(lp->axi_clk)) {
ret = PTR_ERR(lp->axi_clk);
goto free_netdev;
}
ret = clk_prepare_enable(lp->axi_clk);
if (ret) {
dev_err(&pdev->dev, "Unable to enable AXI clock: %d\n", ret);
goto free_netdev;
}
lp->misc_clks[0].id = "axis_clk";
lp->misc_clks[1].id = "ref_clk";
lp->misc_clks[2].id = "mgt_clk";
ret = devm_clk_bulk_get_optional(&pdev->dev, XAE_NUM_MISC_CLOCKS, lp->misc_clks);
if (ret)
goto cleanup_clk;
ret = clk_bulk_prepare_enable(XAE_NUM_MISC_CLOCKS, lp->misc_clks);
if (ret)
goto cleanup_clk;
/* Map device registers */
lp->regs = devm_platform_get_and_ioremap_resource(pdev, 0, &ethres);
if (IS_ERR(lp->regs)) {
ret = PTR_ERR(lp->regs);
goto cleanup_clk;
}
lp->regs_start = ethres->start;
/* Setup checksum offload, but default to off if not specified */
lp->features = 0;
ret = of_property_read_u32(pdev->dev.of_node, "xlnx,txcsum", &value);
if (!ret) {
switch (value) {
case 1:
lp->csum_offload_on_tx_path =
XAE_FEATURE_PARTIAL_TX_CSUM;
lp->features |= XAE_FEATURE_PARTIAL_TX_CSUM;
/* Can checksum TCP/UDP over IPv4. */
ndev->features |= NETIF_F_IP_CSUM;
break;
case 2:
lp->csum_offload_on_tx_path =
XAE_FEATURE_FULL_TX_CSUM;
lp->features |= XAE_FEATURE_FULL_TX_CSUM;
/* Can checksum TCP/UDP over IPv4. */
ndev->features |= NETIF_F_IP_CSUM;
break;
default:
lp->csum_offload_on_tx_path = XAE_NO_CSUM_OFFLOAD;
}
}
ret = of_property_read_u32(pdev->dev.of_node, "xlnx,rxcsum", &value);
if (!ret) {
switch (value) {
case 1:
lp->csum_offload_on_rx_path =
XAE_FEATURE_PARTIAL_RX_CSUM;
lp->features |= XAE_FEATURE_PARTIAL_RX_CSUM;
break;
case 2:
lp->csum_offload_on_rx_path =
XAE_FEATURE_FULL_RX_CSUM;
lp->features |= XAE_FEATURE_FULL_RX_CSUM;
break;
default:
lp->csum_offload_on_rx_path = XAE_NO_CSUM_OFFLOAD;
}
}
/* For supporting jumbo frames, the Axi Ethernet hardware must have
* a larger Rx/Tx Memory. Typically, the size must be large so that
* we can enable jumbo option and start supporting jumbo frames.
* Here we check for memory allocated for Rx/Tx in the hardware from
* the device-tree and accordingly set flags.
*/
of_property_read_u32(pdev->dev.of_node, "xlnx,rxmem", &lp->rxmem);
lp->switch_x_sgmii = of_property_read_bool(pdev->dev.of_node,
"xlnx,switch-x-sgmii");
/* Start with the proprietary, and broken phy_type */
ret = of_property_read_u32(pdev->dev.of_node, "xlnx,phy-type", &value);
if (!ret) {
netdev_warn(ndev, "Please upgrade your device tree binary blob to use phy-mode");
switch (value) {
case XAE_PHY_TYPE_MII:
lp->phy_mode = PHY_INTERFACE_MODE_MII;
break;
case XAE_PHY_TYPE_GMII:
lp->phy_mode = PHY_INTERFACE_MODE_GMII;
break;
case XAE_PHY_TYPE_RGMII_2_0:
lp->phy_mode = PHY_INTERFACE_MODE_RGMII_ID;
break;
case XAE_PHY_TYPE_SGMII:
lp->phy_mode = PHY_INTERFACE_MODE_SGMII;
break;
case XAE_PHY_TYPE_1000BASE_X:
lp->phy_mode = PHY_INTERFACE_MODE_1000BASEX;
break;
default:
ret = -EINVAL;
goto cleanup_clk;
}
} else {
ret = of_get_phy_mode(pdev->dev.of_node, &lp->phy_mode);
if (ret)
goto cleanup_clk;
}
if (lp->switch_x_sgmii && lp->phy_mode != PHY_INTERFACE_MODE_SGMII &&
lp->phy_mode != PHY_INTERFACE_MODE_1000BASEX) {
dev_err(&pdev->dev, "xlnx,switch-x-sgmii only supported with SGMII or 1000BaseX\n");
ret = -EINVAL;
goto cleanup_clk;
}
/* Find the DMA node, map the DMA registers, and decode the DMA IRQs */
np = of_parse_phandle(pdev->dev.of_node, "axistream-connected", 0);
if (np) {
struct resource dmares;
ret = of_address_to_resource(np, 0, &dmares);
if (ret) {
dev_err(&pdev->dev,
"unable to get DMA resource\n");
of_node_put(np);
goto cleanup_clk;
}
lp->dma_regs = devm_ioremap_resource(&pdev->dev,
&dmares);
lp->rx_irq = irq_of_parse_and_map(np, 1);
lp->tx_irq = irq_of_parse_and_map(np, 0);
of_node_put(np);
lp->eth_irq = platform_get_irq_optional(pdev, 0);
} else {
/* Check for these resources directly on the Ethernet node. */
lp->dma_regs = devm_platform_get_and_ioremap_resource(pdev, 1, NULL);
lp->rx_irq = platform_get_irq(pdev, 1);
lp->tx_irq = platform_get_irq(pdev, 0);
lp->eth_irq = platform_get_irq_optional(pdev, 2);
}
if (IS_ERR(lp->dma_regs)) {
dev_err(&pdev->dev, "could not map DMA regs\n");
ret = PTR_ERR(lp->dma_regs);
goto cleanup_clk;
}
if ((lp->rx_irq <= 0) || (lp->tx_irq <= 0)) {
dev_err(&pdev->dev, "could not determine irqs\n");
ret = -ENOMEM;
goto cleanup_clk;
}
/* Autodetect the need for 64-bit DMA pointers.
* When the IP is configured for a bus width bigger than 32 bits,
* writing the MSB registers is mandatory, even if they are all 0.
* We can detect this case by writing all 1's to one such register
* and see if that sticks: when the IP is configured for 32 bits
* only, those registers are RES0.
* Those MSB registers were introduced in IP v7.1, which we check first.
*/
if ((axienet_ior(lp, XAE_ID_OFFSET) >> 24) >= 0x9) {
void __iomem *desc = lp->dma_regs + XAXIDMA_TX_CDESC_OFFSET + 4;
iowrite32(0x0, desc);
if (ioread32(desc) == 0) { /* sanity check */
iowrite32(0xffffffff, desc);
if (ioread32(desc) > 0) {
lp->features |= XAE_FEATURE_DMA_64BIT;
addr_width = 64;
dev_info(&pdev->dev,
"autodetected 64-bit DMA range\n");
}
iowrite32(0x0, desc);
}
}
if (!IS_ENABLED(CONFIG_64BIT) && lp->features & XAE_FEATURE_DMA_64BIT) {
dev_err(&pdev->dev, "64-bit addressable DMA is not compatible with 32-bit archecture\n");
ret = -EINVAL;
goto cleanup_clk;
}
ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(addr_width));
if (ret) {
dev_err(&pdev->dev, "No suitable DMA available\n");
goto cleanup_clk;
}
/* Check for Ethernet core IRQ (optional) */
if (lp->eth_irq <= 0)
dev_info(&pdev->dev, "Ethernet core IRQ not defined\n");
/* Retrieve the MAC address */
ret = of_get_mac_address(pdev->dev.of_node, mac_addr);
if (!ret) {
axienet_set_mac_address(ndev, mac_addr);
} else {
dev_warn(&pdev->dev, "could not find MAC address property: %d\n",
ret);
axienet_set_mac_address(ndev, NULL);
}
lp->coalesce_count_rx = XAXIDMA_DFT_RX_THRESHOLD;
lp->coalesce_usec_rx = XAXIDMA_DFT_RX_USEC;
lp->coalesce_count_tx = XAXIDMA_DFT_TX_THRESHOLD;
lp->coalesce_usec_tx = XAXIDMA_DFT_TX_USEC;
/* Reset core now that clocks are enabled, prior to accessing MDIO */
ret = __axienet_device_reset(lp);
if (ret)
goto cleanup_clk;
ret = axienet_mdio_setup(lp);
if (ret)
dev_warn(&pdev->dev,
"error registering MDIO bus: %d\n", ret);
if (lp->phy_mode == PHY_INTERFACE_MODE_SGMII ||
lp->phy_mode == PHY_INTERFACE_MODE_1000BASEX) {
np = of_parse_phandle(pdev->dev.of_node, "pcs-handle", 0);
if (!np) {
/* Deprecated: Always use "pcs-handle" for pcs_phy.
* Falling back to "phy-handle" here is only for
* backward compatibility with old device trees.
*/
np = of_parse_phandle(pdev->dev.of_node, "phy-handle", 0);
}
if (!np) {
dev_err(&pdev->dev, "pcs-handle (preferred) or phy-handle required for 1000BaseX/SGMII\n");
ret = -EINVAL;
goto cleanup_mdio;
}
lp->pcs_phy = of_mdio_find_device(np);
if (!lp->pcs_phy) {
ret = -EPROBE_DEFER;
of_node_put(np);
goto cleanup_mdio;
}
of_node_put(np);
lp->pcs.ops = &axienet_pcs_ops;
lp->pcs.poll = true;
}
lp->phylink_config.dev = &ndev->dev;
lp->phylink_config.type = PHYLINK_NETDEV;
lp->phylink_config.mac_capabilities = MAC_SYM_PAUSE | MAC_ASYM_PAUSE |
MAC_10FD | MAC_100FD | MAC_1000FD;
__set_bit(lp->phy_mode, lp->phylink_config.supported_interfaces);
if (lp->switch_x_sgmii) {
__set_bit(PHY_INTERFACE_MODE_1000BASEX,
lp->phylink_config.supported_interfaces);
__set_bit(PHY_INTERFACE_MODE_SGMII,
lp->phylink_config.supported_interfaces);
}
lp->phylink = phylink_create(&lp->phylink_config, pdev->dev.fwnode,
lp->phy_mode,
&axienet_phylink_ops);
if (IS_ERR(lp->phylink)) {
ret = PTR_ERR(lp->phylink);
dev_err(&pdev->dev, "phylink_create error (%i)\n", ret);
goto cleanup_mdio;
}
ret = register_netdev(lp->ndev);
if (ret) {
dev_err(lp->dev, "register_netdev() error (%i)\n", ret);
goto cleanup_phylink;
}
return 0;
cleanup_phylink:
phylink_destroy(lp->phylink);
cleanup_mdio:
if (lp->pcs_phy)
put_device(&lp->pcs_phy->dev);
if (lp->mii_bus)
axienet_mdio_teardown(lp);
cleanup_clk:
clk_bulk_disable_unprepare(XAE_NUM_MISC_CLOCKS, lp->misc_clks);
clk_disable_unprepare(lp->axi_clk);
free_netdev:
free_netdev(ndev);
return ret;
}
static int axienet_remove(struct platform_device *pdev)
{
struct net_device *ndev = platform_get_drvdata(pdev);
struct axienet_local *lp = netdev_priv(ndev);
unregister_netdev(ndev);
if (lp->phylink)
phylink_destroy(lp->phylink);
if (lp->pcs_phy)
put_device(&lp->pcs_phy->dev);
axienet_mdio_teardown(lp);
clk_bulk_disable_unprepare(XAE_NUM_MISC_CLOCKS, lp->misc_clks);
clk_disable_unprepare(lp->axi_clk);
free_netdev(ndev);
return 0;
}
static void axienet_shutdown(struct platform_device *pdev)
{
struct net_device *ndev = platform_get_drvdata(pdev);
rtnl_lock();
netif_device_detach(ndev);
if (netif_running(ndev))
dev_close(ndev);
rtnl_unlock();
}
static int axienet_suspend(struct device *dev)
{
struct net_device *ndev = dev_get_drvdata(dev);
if (!netif_running(ndev))
return 0;
netif_device_detach(ndev);
rtnl_lock();
axienet_stop(ndev);
rtnl_unlock();
return 0;
}
static int axienet_resume(struct device *dev)
{
struct net_device *ndev = dev_get_drvdata(dev);
if (!netif_running(ndev))
return 0;
rtnl_lock();
axienet_open(ndev);
rtnl_unlock();
netif_device_attach(ndev);
return 0;
}
static DEFINE_SIMPLE_DEV_PM_OPS(axienet_pm_ops,
axienet_suspend, axienet_resume);
static struct platform_driver axienet_driver = {
.probe = axienet_probe,
.remove = axienet_remove,
.shutdown = axienet_shutdown,
.driver = {
.name = "xilinx_axienet",
.pm = &axienet_pm_ops,
.of_match_table = axienet_of_match,
},
};
module_platform_driver(axienet_driver);
MODULE_DESCRIPTION("Xilinx Axi Ethernet driver");
MODULE_AUTHOR("Xilinx");
MODULE_LICENSE("GPL");