linux-zen-server/drivers/net/wireless/broadcom/brcm80211/brcmfmac/firmware.c

860 lines
21 KiB
C

// SPDX-License-Identifier: ISC
/*
* Copyright (c) 2013 Broadcom Corporation
*/
#include <linux/efi.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/device.h>
#include <linux/firmware.h>
#include <linux/module.h>
#include <linux/bcm47xx_nvram.h>
#include "debug.h"
#include "firmware.h"
#include "core.h"
#include "common.h"
#include "chip.h"
#define BRCMF_FW_MAX_NVRAM_SIZE 64000
#define BRCMF_FW_NVRAM_DEVPATH_LEN 19 /* devpath0=pcie/1/4/ */
#define BRCMF_FW_NVRAM_PCIEDEV_LEN 10 /* pcie/1/4/ + \0 */
#define BRCMF_FW_DEFAULT_BOARDREV "boardrev=0xff"
#define BRCMF_FW_MACADDR_FMT "macaddr=%pM"
#define BRCMF_FW_MACADDR_LEN (7 + ETH_ALEN * 3)
enum nvram_parser_state {
IDLE,
KEY,
VALUE,
COMMENT,
END
};
/**
* struct nvram_parser - internal info for parser.
*
* @state: current parser state.
* @data: input buffer being parsed.
* @nvram: output buffer with parse result.
* @nvram_len: length of parse result.
* @line: current line.
* @column: current column in line.
* @pos: byte offset in input buffer.
* @entry: start position of key,value entry.
* @multi_dev_v1: detect pcie multi device v1 (compressed).
* @multi_dev_v2: detect pcie multi device v2.
* @boardrev_found: nvram contains boardrev information.
* @strip_mac: strip the MAC address.
*/
struct nvram_parser {
enum nvram_parser_state state;
const u8 *data;
u8 *nvram;
u32 nvram_len;
u32 line;
u32 column;
u32 pos;
u32 entry;
bool multi_dev_v1;
bool multi_dev_v2;
bool boardrev_found;
bool strip_mac;
};
/*
* is_nvram_char() - check if char is a valid one for NVRAM entry
*
* It accepts all printable ASCII chars except for '#' which opens a comment.
* Please note that ' ' (space) while accepted is not a valid key name char.
*/
static bool is_nvram_char(char c)
{
/* comment marker excluded */
if (c == '#')
return false;
/* key and value may have any other readable character */
return (c >= 0x20 && c < 0x7f);
}
static bool is_whitespace(char c)
{
return (c == ' ' || c == '\r' || c == '\n' || c == '\t');
}
static enum nvram_parser_state brcmf_nvram_handle_idle(struct nvram_parser *nvp)
{
char c;
c = nvp->data[nvp->pos];
if (c == '\n')
return COMMENT;
if (is_whitespace(c) || c == '\0')
goto proceed;
if (c == '#')
return COMMENT;
if (is_nvram_char(c)) {
nvp->entry = nvp->pos;
return KEY;
}
brcmf_dbg(INFO, "warning: ln=%d:col=%d: ignoring invalid character\n",
nvp->line, nvp->column);
proceed:
nvp->column++;
nvp->pos++;
return IDLE;
}
static enum nvram_parser_state brcmf_nvram_handle_key(struct nvram_parser *nvp)
{
enum nvram_parser_state st = nvp->state;
char c;
c = nvp->data[nvp->pos];
if (c == '=') {
/* ignore RAW1 by treating as comment */
if (strncmp(&nvp->data[nvp->entry], "RAW1", 4) == 0)
st = COMMENT;
else
st = VALUE;
if (strncmp(&nvp->data[nvp->entry], "devpath", 7) == 0)
nvp->multi_dev_v1 = true;
if (strncmp(&nvp->data[nvp->entry], "pcie/", 5) == 0)
nvp->multi_dev_v2 = true;
if (strncmp(&nvp->data[nvp->entry], "boardrev", 8) == 0)
nvp->boardrev_found = true;
/* strip macaddr if platform MAC overrides */
if (nvp->strip_mac &&
strncmp(&nvp->data[nvp->entry], "macaddr", 7) == 0)
st = COMMENT;
} else if (!is_nvram_char(c) || c == ' ') {
brcmf_dbg(INFO, "warning: ln=%d:col=%d: '=' expected, skip invalid key entry\n",
nvp->line, nvp->column);
return COMMENT;
}
nvp->column++;
nvp->pos++;
return st;
}
static enum nvram_parser_state
brcmf_nvram_handle_value(struct nvram_parser *nvp)
{
char c;
char *skv;
char *ekv;
u32 cplen;
c = nvp->data[nvp->pos];
if (!is_nvram_char(c)) {
/* key,value pair complete */
ekv = (u8 *)&nvp->data[nvp->pos];
skv = (u8 *)&nvp->data[nvp->entry];
cplen = ekv - skv;
if (nvp->nvram_len + cplen + 1 >= BRCMF_FW_MAX_NVRAM_SIZE)
return END;
/* copy to output buffer */
memcpy(&nvp->nvram[nvp->nvram_len], skv, cplen);
nvp->nvram_len += cplen;
nvp->nvram[nvp->nvram_len] = '\0';
nvp->nvram_len++;
return IDLE;
}
nvp->pos++;
nvp->column++;
return VALUE;
}
static enum nvram_parser_state
brcmf_nvram_handle_comment(struct nvram_parser *nvp)
{
char *eoc, *sol;
sol = (char *)&nvp->data[nvp->pos];
eoc = strchr(sol, '\n');
if (!eoc) {
eoc = strchr(sol, '\0');
if (!eoc)
return END;
}
/* eat all moving to next line */
nvp->line++;
nvp->column = 1;
nvp->pos += (eoc - sol) + 1;
return IDLE;
}
static enum nvram_parser_state brcmf_nvram_handle_end(struct nvram_parser *nvp)
{
/* final state */
return END;
}
static enum nvram_parser_state
(*nv_parser_states[])(struct nvram_parser *nvp) = {
brcmf_nvram_handle_idle,
brcmf_nvram_handle_key,
brcmf_nvram_handle_value,
brcmf_nvram_handle_comment,
brcmf_nvram_handle_end
};
static int brcmf_init_nvram_parser(struct nvram_parser *nvp,
const u8 *data, size_t data_len)
{
size_t size;
memset(nvp, 0, sizeof(*nvp));
nvp->data = data;
/* Limit size to MAX_NVRAM_SIZE, some files contain lot of comment */
if (data_len > BRCMF_FW_MAX_NVRAM_SIZE)
size = BRCMF_FW_MAX_NVRAM_SIZE;
else
size = data_len;
/* Add space for properties we may add */
size += strlen(BRCMF_FW_DEFAULT_BOARDREV) + 1;
size += BRCMF_FW_MACADDR_LEN + 1;
/* Alloc for extra 0 byte + roundup by 4 + length field */
size += 1 + 3 + sizeof(u32);
nvp->nvram = kzalloc(size, GFP_KERNEL);
if (!nvp->nvram)
return -ENOMEM;
nvp->line = 1;
nvp->column = 1;
return 0;
}
/* brcmf_fw_strip_multi_v1 :Some nvram files contain settings for multiple
* devices. Strip it down for one device, use domain_nr/bus_nr to determine
* which data is to be returned. v1 is the version where nvram is stored
* compressed and "devpath" maps to index for valid entries.
*/
static void brcmf_fw_strip_multi_v1(struct nvram_parser *nvp, u16 domain_nr,
u16 bus_nr)
{
/* Device path with a leading '=' key-value separator */
char pci_path[] = "=pci/?/?";
size_t pci_len;
char pcie_path[] = "=pcie/?/?";
size_t pcie_len;
u32 i, j;
bool found;
u8 *nvram;
u8 id;
nvram = kzalloc(nvp->nvram_len + 1 + 3 + sizeof(u32), GFP_KERNEL);
if (!nvram)
goto fail;
/* min length: devpath0=pcie/1/4/ + 0:x=y */
if (nvp->nvram_len < BRCMF_FW_NVRAM_DEVPATH_LEN + 6)
goto fail;
/* First search for the devpathX and see if it is the configuration
* for domain_nr/bus_nr. Search complete nvp
*/
snprintf(pci_path, sizeof(pci_path), "=pci/%d/%d", domain_nr,
bus_nr);
pci_len = strlen(pci_path);
snprintf(pcie_path, sizeof(pcie_path), "=pcie/%d/%d", domain_nr,
bus_nr);
pcie_len = strlen(pcie_path);
found = false;
i = 0;
while (i < nvp->nvram_len - BRCMF_FW_NVRAM_DEVPATH_LEN) {
/* Format: devpathX=pcie/Y/Z/
* Y = domain_nr, Z = bus_nr, X = virtual ID
*/
if (strncmp(&nvp->nvram[i], "devpath", 7) == 0 &&
(!strncmp(&nvp->nvram[i + 8], pci_path, pci_len) ||
!strncmp(&nvp->nvram[i + 8], pcie_path, pcie_len))) {
id = nvp->nvram[i + 7] - '0';
found = true;
break;
}
while (nvp->nvram[i] != 0)
i++;
i++;
}
if (!found)
goto fail;
/* Now copy all valid entries, release old nvram and assign new one */
i = 0;
j = 0;
while (i < nvp->nvram_len) {
if ((nvp->nvram[i] - '0' == id) && (nvp->nvram[i + 1] == ':')) {
i += 2;
if (strncmp(&nvp->nvram[i], "boardrev", 8) == 0)
nvp->boardrev_found = true;
while (nvp->nvram[i] != 0) {
nvram[j] = nvp->nvram[i];
i++;
j++;
}
nvram[j] = 0;
j++;
}
while (nvp->nvram[i] != 0)
i++;
i++;
}
kfree(nvp->nvram);
nvp->nvram = nvram;
nvp->nvram_len = j;
return;
fail:
kfree(nvram);
nvp->nvram_len = 0;
}
/* brcmf_fw_strip_multi_v2 :Some nvram files contain settings for multiple
* devices. Strip it down for one device, use domain_nr/bus_nr to determine
* which data is to be returned. v2 is the version where nvram is stored
* uncompressed, all relevant valid entries are identified by
* pcie/domain_nr/bus_nr:
*/
static void brcmf_fw_strip_multi_v2(struct nvram_parser *nvp, u16 domain_nr,
u16 bus_nr)
{
char prefix[BRCMF_FW_NVRAM_PCIEDEV_LEN];
size_t len;
u32 i, j;
u8 *nvram;
nvram = kzalloc(nvp->nvram_len + 1 + 3 + sizeof(u32), GFP_KERNEL);
if (!nvram) {
nvp->nvram_len = 0;
return;
}
/* Copy all valid entries, release old nvram and assign new one.
* Valid entries are of type pcie/X/Y/ where X = domain_nr and
* Y = bus_nr.
*/
snprintf(prefix, sizeof(prefix), "pcie/%d/%d/", domain_nr, bus_nr);
len = strlen(prefix);
i = 0;
j = 0;
while (i < nvp->nvram_len - len) {
if (strncmp(&nvp->nvram[i], prefix, len) == 0) {
i += len;
if (strncmp(&nvp->nvram[i], "boardrev", 8) == 0)
nvp->boardrev_found = true;
while (nvp->nvram[i] != 0) {
nvram[j] = nvp->nvram[i];
i++;
j++;
}
nvram[j] = 0;
j++;
}
while (nvp->nvram[i] != 0)
i++;
i++;
}
kfree(nvp->nvram);
nvp->nvram = nvram;
nvp->nvram_len = j;
}
static void brcmf_fw_add_defaults(struct nvram_parser *nvp)
{
if (nvp->boardrev_found)
return;
memcpy(&nvp->nvram[nvp->nvram_len], &BRCMF_FW_DEFAULT_BOARDREV,
strlen(BRCMF_FW_DEFAULT_BOARDREV));
nvp->nvram_len += strlen(BRCMF_FW_DEFAULT_BOARDREV);
nvp->nvram[nvp->nvram_len] = '\0';
nvp->nvram_len++;
}
static void brcmf_fw_add_macaddr(struct nvram_parser *nvp, u8 *mac)
{
int len;
len = scnprintf(&nvp->nvram[nvp->nvram_len], BRCMF_FW_MACADDR_LEN + 1,
BRCMF_FW_MACADDR_FMT, mac);
WARN_ON(len != BRCMF_FW_MACADDR_LEN);
nvp->nvram_len += len + 1;
}
/* brcmf_nvram_strip :Takes a buffer of "<var>=<value>\n" lines read from a fil
* and ending in a NUL. Removes carriage returns, empty lines, comment lines,
* and converts newlines to NULs. Shortens buffer as needed and pads with NULs.
* End of buffer is completed with token identifying length of buffer.
*/
static void *brcmf_fw_nvram_strip(const u8 *data, size_t data_len,
u32 *new_length, u16 domain_nr, u16 bus_nr,
struct device *dev)
{
struct nvram_parser nvp;
u32 pad;
u32 token;
__le32 token_le;
u8 mac[ETH_ALEN];
if (brcmf_init_nvram_parser(&nvp, data, data_len) < 0)
return NULL;
if (eth_platform_get_mac_address(dev, mac) == 0)
nvp.strip_mac = true;
while (nvp.pos < data_len) {
nvp.state = nv_parser_states[nvp.state](&nvp);
if (nvp.state == END)
break;
}
if (nvp.multi_dev_v1) {
nvp.boardrev_found = false;
brcmf_fw_strip_multi_v1(&nvp, domain_nr, bus_nr);
} else if (nvp.multi_dev_v2) {
nvp.boardrev_found = false;
brcmf_fw_strip_multi_v2(&nvp, domain_nr, bus_nr);
}
if (nvp.nvram_len == 0) {
kfree(nvp.nvram);
return NULL;
}
brcmf_fw_add_defaults(&nvp);
if (nvp.strip_mac)
brcmf_fw_add_macaddr(&nvp, mac);
pad = nvp.nvram_len;
*new_length = roundup(nvp.nvram_len + 1, 4);
while (pad != *new_length) {
nvp.nvram[pad] = 0;
pad++;
}
token = *new_length / 4;
token = (~token << 16) | (token & 0x0000FFFF);
token_le = cpu_to_le32(token);
memcpy(&nvp.nvram[*new_length], &token_le, sizeof(token_le));
*new_length += sizeof(token_le);
return nvp.nvram;
}
void brcmf_fw_nvram_free(void *nvram)
{
kfree(nvram);
}
struct brcmf_fw {
struct device *dev;
struct brcmf_fw_request *req;
u32 curpos;
unsigned int board_index;
void (*done)(struct device *dev, int err, struct brcmf_fw_request *req);
};
#ifdef CONFIG_EFI
/* In some cases the EFI-var stored nvram contains "ccode=ALL" or "ccode=XV"
* to specify "worldwide" compatible settings, but these 2 ccode-s do not work
* properly. "ccode=ALL" causes channels 12 and 13 to not be available,
* "ccode=XV" causes all 5GHz channels to not be available. So we replace both
* with "ccode=X2" which allows channels 12+13 and 5Ghz channels in
* no-Initiate-Radiation mode. This means that we will never send on these
* channels without first having received valid wifi traffic on the channel.
*/
static void brcmf_fw_fix_efi_nvram_ccode(char *data, unsigned long data_len)
{
char *ccode;
ccode = strnstr((char *)data, "ccode=ALL", data_len);
if (!ccode)
ccode = strnstr((char *)data, "ccode=XV\r", data_len);
if (!ccode)
return;
ccode[6] = 'X';
ccode[7] = '2';
ccode[8] = '\r';
}
static u8 *brcmf_fw_nvram_from_efi(size_t *data_len_ret)
{
efi_guid_t guid = EFI_GUID(0x74b00bd9, 0x805a, 0x4d61, 0xb5, 0x1f,
0x43, 0x26, 0x81, 0x23, 0xd1, 0x13);
unsigned long data_len = 0;
efi_status_t status;
u8 *data = NULL;
if (!efi_rt_services_supported(EFI_RT_SUPPORTED_GET_VARIABLE))
return NULL;
status = efi.get_variable(L"nvram", &guid, NULL, &data_len, NULL);
if (status != EFI_BUFFER_TOO_SMALL)
goto fail;
data = kmalloc(data_len, GFP_KERNEL);
if (!data)
goto fail;
status = efi.get_variable(L"nvram", &guid, NULL, &data_len, data);
if (status != EFI_SUCCESS)
goto fail;
brcmf_fw_fix_efi_nvram_ccode(data, data_len);
brcmf_info("Using nvram EFI variable\n");
*data_len_ret = data_len;
return data;
fail:
kfree(data);
return NULL;
}
#else
static inline u8 *brcmf_fw_nvram_from_efi(size_t *data_len) { return NULL; }
#endif
static void brcmf_fw_free_request(struct brcmf_fw_request *req)
{
struct brcmf_fw_item *item;
int i;
for (i = 0, item = &req->items[0]; i < req->n_items; i++, item++) {
if (item->type == BRCMF_FW_TYPE_BINARY)
release_firmware(item->binary);
else if (item->type == BRCMF_FW_TYPE_NVRAM)
brcmf_fw_nvram_free(item->nv_data.data);
}
kfree(req);
}
static int brcmf_fw_request_nvram_done(const struct firmware *fw, void *ctx)
{
struct brcmf_fw *fwctx = ctx;
struct brcmf_fw_item *cur;
bool free_bcm47xx_nvram = false;
bool kfree_nvram = false;
u32 nvram_length = 0;
void *nvram = NULL;
u8 *data = NULL;
size_t data_len;
brcmf_dbg(TRACE, "enter: dev=%s\n", dev_name(fwctx->dev));
cur = &fwctx->req->items[fwctx->curpos];
if (fw && fw->data) {
data = (u8 *)fw->data;
data_len = fw->size;
} else {
if ((data = bcm47xx_nvram_get_contents(&data_len)))
free_bcm47xx_nvram = true;
else if ((data = brcmf_fw_nvram_from_efi(&data_len)))
kfree_nvram = true;
else if (!(cur->flags & BRCMF_FW_REQF_OPTIONAL))
goto fail;
}
if (data)
nvram = brcmf_fw_nvram_strip(data, data_len, &nvram_length,
fwctx->req->domain_nr,
fwctx->req->bus_nr,
fwctx->dev);
if (free_bcm47xx_nvram)
bcm47xx_nvram_release_contents(data);
if (kfree_nvram)
kfree(data);
release_firmware(fw);
if (!nvram && !(cur->flags & BRCMF_FW_REQF_OPTIONAL))
goto fail;
brcmf_dbg(TRACE, "nvram %p len %d\n", nvram, nvram_length);
cur->nv_data.data = nvram;
cur->nv_data.len = nvram_length;
return 0;
fail:
return -ENOENT;
}
static int brcmf_fw_complete_request(const struct firmware *fw,
struct brcmf_fw *fwctx)
{
struct brcmf_fw_item *cur = &fwctx->req->items[fwctx->curpos];
int ret = 0;
brcmf_dbg(TRACE, "firmware %s %sfound\n", cur->path, fw ? "" : "not ");
switch (cur->type) {
case BRCMF_FW_TYPE_NVRAM:
ret = brcmf_fw_request_nvram_done(fw, fwctx);
break;
case BRCMF_FW_TYPE_BINARY:
if (fw)
cur->binary = fw;
else
ret = -ENOENT;
break;
default:
/* something fishy here so bail out early */
brcmf_err("unknown fw type: %d\n", cur->type);
release_firmware(fw);
ret = -EINVAL;
}
return (cur->flags & BRCMF_FW_REQF_OPTIONAL) ? 0 : ret;
}
static char *brcm_alt_fw_path(const char *path, const char *board_type)
{
char base[BRCMF_FW_NAME_LEN];
const char *suffix;
char *ret;
if (!board_type)
return NULL;
suffix = strrchr(path, '.');
if (!suffix || suffix == path)
return NULL;
/* strip extension at the end */
strscpy(base, path, BRCMF_FW_NAME_LEN);
base[suffix - path] = 0;
ret = kasprintf(GFP_KERNEL, "%s.%s%s", base, board_type, suffix);
if (!ret)
brcmf_err("out of memory allocating firmware path for '%s'\n",
path);
brcmf_dbg(TRACE, "FW alt path: %s\n", ret);
return ret;
}
static int brcmf_fw_request_firmware(const struct firmware **fw,
struct brcmf_fw *fwctx)
{
struct brcmf_fw_item *cur = &fwctx->req->items[fwctx->curpos];
unsigned int i;
int ret;
/* Files can be board-specific, first try board-specific paths */
for (i = 0; i < ARRAY_SIZE(fwctx->req->board_types); i++) {
char *alt_path;
if (!fwctx->req->board_types[i])
goto fallback;
alt_path = brcm_alt_fw_path(cur->path,
fwctx->req->board_types[i]);
if (!alt_path)
goto fallback;
ret = firmware_request_nowarn(fw, alt_path, fwctx->dev);
kfree(alt_path);
if (ret == 0)
return ret;
}
fallback:
return request_firmware(fw, cur->path, fwctx->dev);
}
static void brcmf_fw_request_done(const struct firmware *fw, void *ctx)
{
struct brcmf_fw *fwctx = ctx;
int ret;
ret = brcmf_fw_complete_request(fw, fwctx);
while (ret == 0 && ++fwctx->curpos < fwctx->req->n_items) {
brcmf_fw_request_firmware(&fw, fwctx);
ret = brcmf_fw_complete_request(fw, ctx);
}
if (ret) {
brcmf_fw_free_request(fwctx->req);
fwctx->req = NULL;
}
fwctx->done(fwctx->dev, ret, fwctx->req);
kfree(fwctx);
}
static void brcmf_fw_request_done_alt_path(const struct firmware *fw, void *ctx)
{
struct brcmf_fw *fwctx = ctx;
struct brcmf_fw_item *first = &fwctx->req->items[0];
const char *board_type, *alt_path;
int ret = 0;
if (fw) {
brcmf_fw_request_done(fw, ctx);
return;
}
/* Try next board firmware */
if (fwctx->board_index < ARRAY_SIZE(fwctx->req->board_types)) {
board_type = fwctx->req->board_types[fwctx->board_index++];
if (!board_type)
goto fallback;
alt_path = brcm_alt_fw_path(first->path, board_type);
if (!alt_path)
goto fallback;
ret = request_firmware_nowait(THIS_MODULE, true, alt_path,
fwctx->dev, GFP_KERNEL, fwctx,
brcmf_fw_request_done_alt_path);
kfree(alt_path);
if (ret < 0)
brcmf_fw_request_done(fw, ctx);
return;
}
fallback:
/* Fall back to canonical path if board firmware not found */
ret = request_firmware_nowait(THIS_MODULE, true, first->path,
fwctx->dev, GFP_KERNEL, fwctx,
brcmf_fw_request_done);
if (ret < 0)
brcmf_fw_request_done(fw, ctx);
}
static bool brcmf_fw_request_is_valid(struct brcmf_fw_request *req)
{
struct brcmf_fw_item *item;
int i;
if (!req->n_items)
return false;
for (i = 0, item = &req->items[0]; i < req->n_items; i++, item++) {
if (!item->path)
return false;
}
return true;
}
int brcmf_fw_get_firmwares(struct device *dev, struct brcmf_fw_request *req,
void (*fw_cb)(struct device *dev, int err,
struct brcmf_fw_request *req))
{
struct brcmf_fw_item *first = &req->items[0];
struct brcmf_fw *fwctx;
char *alt_path = NULL;
int ret;
brcmf_dbg(TRACE, "enter: dev=%s\n", dev_name(dev));
if (!fw_cb)
return -EINVAL;
if (!brcmf_fw_request_is_valid(req))
return -EINVAL;
fwctx = kzalloc(sizeof(*fwctx), GFP_KERNEL);
if (!fwctx)
return -ENOMEM;
fwctx->dev = dev;
fwctx->req = req;
fwctx->done = fw_cb;
/* First try alternative board-specific path if any */
if (fwctx->req->board_types[0])
alt_path = brcm_alt_fw_path(first->path,
fwctx->req->board_types[0]);
if (alt_path) {
fwctx->board_index++;
ret = request_firmware_nowait(THIS_MODULE, true, alt_path,
fwctx->dev, GFP_KERNEL, fwctx,
brcmf_fw_request_done_alt_path);
kfree(alt_path);
} else {
ret = request_firmware_nowait(THIS_MODULE, true, first->path,
fwctx->dev, GFP_KERNEL, fwctx,
brcmf_fw_request_done);
}
if (ret < 0)
brcmf_fw_request_done(NULL, fwctx);
return 0;
}
struct brcmf_fw_request *
brcmf_fw_alloc_request(u32 chip, u32 chiprev,
const struct brcmf_firmware_mapping mapping_table[],
u32 table_size, struct brcmf_fw_name *fwnames,
u32 n_fwnames)
{
struct brcmf_fw_request *fwreq;
char chipname[12];
const char *mp_path;
size_t mp_path_len;
u32 i, j;
char end = '\0';
if (chiprev >= BITS_PER_TYPE(u32)) {
brcmf_err("Invalid chip revision %u\n", chiprev);
return NULL;
}
for (i = 0; i < table_size; i++) {
if (mapping_table[i].chipid == chip &&
mapping_table[i].revmask & BIT(chiprev))
break;
}
brcmf_chip_name(chip, chiprev, chipname, sizeof(chipname));
if (i == table_size) {
brcmf_err("Unknown chip %s\n", chipname);
return NULL;
}
fwreq = kzalloc(struct_size(fwreq, items, n_fwnames), GFP_KERNEL);
if (!fwreq)
return NULL;
brcmf_info("using %s for chip %s\n",
mapping_table[i].fw_base, chipname);
mp_path = brcmf_mp_global.firmware_path;
mp_path_len = strnlen(mp_path, BRCMF_FW_ALTPATH_LEN);
if (mp_path_len)
end = mp_path[mp_path_len - 1];
fwreq->n_items = n_fwnames;
for (j = 0; j < n_fwnames; j++) {
fwreq->items[j].path = fwnames[j].path;
fwnames[j].path[0] = '\0';
/* check if firmware path is provided by module parameter */
if (brcmf_mp_global.firmware_path[0] != '\0') {
strscpy(fwnames[j].path, mp_path,
BRCMF_FW_NAME_LEN);
if (end != '/') {
strlcat(fwnames[j].path, "/",
BRCMF_FW_NAME_LEN);
}
}
strlcat(fwnames[j].path, mapping_table[i].fw_base,
BRCMF_FW_NAME_LEN);
strlcat(fwnames[j].path, fwnames[j].extension,
BRCMF_FW_NAME_LEN);
fwreq->items[j].path = fwnames[j].path;
}
return fwreq;
}