linux-zen-server/drivers/net/wireless/realtek/rtlwifi/rtl8192ce/phy.c

518 lines
15 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* Copyright(c) 2009-2012 Realtek Corporation.*/
#include "../wifi.h"
#include "../pci.h"
#include "../ps.h"
#include "../core.h"
#include "reg.h"
#include "def.h"
#include "hw.h"
#include "phy.h"
#include "../rtl8192c/phy_common.h"
#include "rf.h"
#include "dm.h"
#include "../rtl8192c/dm_common.h"
#include "../rtl8192c/fw_common.h"
#include "table.h"
static bool _rtl92c_phy_config_mac_with_headerfile(struct ieee80211_hw *hw);
u32 rtl92c_phy_query_rf_reg(struct ieee80211_hw *hw,
enum radio_path rfpath, u32 regaddr, u32 bitmask)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u32 original_value, readback_value, bitshift;
struct rtl_phy *rtlphy = &(rtlpriv->phy);
rtl_dbg(rtlpriv, COMP_RF, DBG_TRACE,
"regaddr(%#x), rfpath(%#x), bitmask(%#x)\n",
regaddr, rfpath, bitmask);
spin_lock(&rtlpriv->locks.rf_lock);
if (rtlphy->rf_mode != RF_OP_BY_FW) {
original_value = _rtl92c_phy_rf_serial_read(hw,
rfpath, regaddr);
} else {
original_value = _rtl92c_phy_fw_rf_serial_read(hw,
rfpath, regaddr);
}
bitshift = _rtl92c_phy_calculate_bit_shift(bitmask);
readback_value = (original_value & bitmask) >> bitshift;
spin_unlock(&rtlpriv->locks.rf_lock);
rtl_dbg(rtlpriv, COMP_RF, DBG_TRACE,
"regaddr(%#x), rfpath(%#x), bitmask(%#x), original_value(%#x)\n",
regaddr, rfpath, bitmask, original_value);
return readback_value;
}
bool rtl92c_phy_mac_config(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
bool is92c = IS_92C_SERIAL(rtlhal->version);
bool rtstatus = _rtl92c_phy_config_mac_with_headerfile(hw);
if (is92c)
rtl_write_byte(rtlpriv, 0x14, 0x71);
else
rtl_write_byte(rtlpriv, 0x04CA, 0x0A);
return rtstatus;
}
bool rtl92c_phy_bb_config(struct ieee80211_hw *hw)
{
bool rtstatus = true;
struct rtl_priv *rtlpriv = rtl_priv(hw);
u16 regval;
u32 regvaldw;
u8 reg_hwparafile = 1;
_rtl92c_phy_init_bb_rf_register_definition(hw);
regval = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
rtl_write_word(rtlpriv, REG_SYS_FUNC_EN,
regval | BIT(13) | BIT(0) | BIT(1));
rtl_write_byte(rtlpriv, REG_AFE_PLL_CTRL, 0x83);
rtl_write_byte(rtlpriv, REG_AFE_PLL_CTRL + 1, 0xdb);
rtl_write_byte(rtlpriv, REG_RF_CTRL, RF_EN | RF_RSTB | RF_SDMRSTB);
rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN,
FEN_PPLL | FEN_PCIEA | FEN_DIO_PCIE |
FEN_BB_GLB_RSTN | FEN_BBRSTB);
rtl_write_byte(rtlpriv, REG_AFE_XTAL_CTRL + 1, 0x80);
regvaldw = rtl_read_dword(rtlpriv, REG_LEDCFG0);
rtl_write_dword(rtlpriv, REG_LEDCFG0, regvaldw | BIT(23));
if (reg_hwparafile == 1)
rtstatus = _rtl92c_phy_bb8192c_config_parafile(hw);
return rtstatus;
}
void rtl92ce_phy_set_rf_reg(struct ieee80211_hw *hw,
enum radio_path rfpath,
u32 regaddr, u32 bitmask, u32 data)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &(rtlpriv->phy);
u32 original_value, bitshift;
rtl_dbg(rtlpriv, COMP_RF, DBG_TRACE,
"regaddr(%#x), bitmask(%#x), data(%#x), rfpath(%#x)\n",
regaddr, bitmask, data, rfpath);
spin_lock(&rtlpriv->locks.rf_lock);
if (rtlphy->rf_mode != RF_OP_BY_FW) {
if (bitmask != RFREG_OFFSET_MASK) {
original_value = _rtl92c_phy_rf_serial_read(hw,
rfpath,
regaddr);
bitshift = _rtl92c_phy_calculate_bit_shift(bitmask);
data =
((original_value & (~bitmask)) |
(data << bitshift));
}
_rtl92c_phy_rf_serial_write(hw, rfpath, regaddr, data);
} else {
if (bitmask != RFREG_OFFSET_MASK) {
original_value = _rtl92c_phy_fw_rf_serial_read(hw,
rfpath,
regaddr);
bitshift = _rtl92c_phy_calculate_bit_shift(bitmask);
data =
((original_value & (~bitmask)) |
(data << bitshift));
}
_rtl92c_phy_fw_rf_serial_write(hw, rfpath, regaddr, data);
}
spin_unlock(&rtlpriv->locks.rf_lock);
rtl_dbg(rtlpriv, COMP_RF, DBG_TRACE,
"regaddr(%#x), bitmask(%#x), data(%#x), rfpath(%#x)\n",
regaddr, bitmask, data, rfpath);
}
static bool _rtl92c_phy_config_mac_with_headerfile(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u32 i;
u32 arraylength;
u32 *ptrarray;
rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE, "Read Rtl819XMACPHY_Array\n");
arraylength = MAC_2T_ARRAYLENGTH;
ptrarray = RTL8192CEMAC_2T_ARRAY;
rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE, "Img:RTL8192CEMAC_2T_ARRAY\n");
for (i = 0; i < arraylength; i = i + 2)
rtl_write_byte(rtlpriv, ptrarray[i], (u8) ptrarray[i + 1]);
return true;
}
bool _rtl92ce_phy_config_bb_with_headerfile(struct ieee80211_hw *hw,
u8 configtype)
{
int i;
u32 *phy_regarray_table;
u32 *agctab_array_table;
u16 phy_reg_arraylen, agctab_arraylen;
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
if (IS_92C_SERIAL(rtlhal->version)) {
agctab_arraylen = AGCTAB_2TARRAYLENGTH;
agctab_array_table = RTL8192CEAGCTAB_2TARRAY;
phy_reg_arraylen = PHY_REG_2TARRAY_LENGTH;
phy_regarray_table = RTL8192CEPHY_REG_2TARRAY;
} else {
agctab_arraylen = AGCTAB_1TARRAYLENGTH;
agctab_array_table = RTL8192CEAGCTAB_1TARRAY;
phy_reg_arraylen = PHY_REG_1TARRAY_LENGTH;
phy_regarray_table = RTL8192CEPHY_REG_1TARRAY;
}
if (configtype == BASEBAND_CONFIG_PHY_REG) {
for (i = 0; i < phy_reg_arraylen; i = i + 2) {
rtl_addr_delay(phy_regarray_table[i]);
rtl_set_bbreg(hw, phy_regarray_table[i], MASKDWORD,
phy_regarray_table[i + 1]);
udelay(1);
rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
"The phy_regarray_table[0] is %x Rtl819XPHY_REGArray[1] is %x\n",
phy_regarray_table[i],
phy_regarray_table[i + 1]);
}
} else if (configtype == BASEBAND_CONFIG_AGC_TAB) {
for (i = 0; i < agctab_arraylen; i = i + 2) {
rtl_set_bbreg(hw, agctab_array_table[i], MASKDWORD,
agctab_array_table[i + 1]);
udelay(1);
rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
"The agctab_array_table[0] is %x Rtl819XPHY_REGArray[1] is %x\n",
agctab_array_table[i],
agctab_array_table[i + 1]);
}
}
return true;
}
bool _rtl92ce_phy_config_bb_with_pgheaderfile(struct ieee80211_hw *hw,
u8 configtype)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
int i;
u32 *phy_regarray_table_pg;
u16 phy_regarray_pg_len;
phy_regarray_pg_len = PHY_REG_ARRAY_PGLENGTH;
phy_regarray_table_pg = RTL8192CEPHY_REG_ARRAY_PG;
if (configtype == BASEBAND_CONFIG_PHY_REG) {
for (i = 0; i < phy_regarray_pg_len; i = i + 3) {
rtl_addr_delay(phy_regarray_table_pg[i]);
_rtl92c_store_pwrindex_diffrate_offset(hw,
phy_regarray_table_pg[i],
phy_regarray_table_pg[i + 1],
phy_regarray_table_pg[i + 2]);
}
} else {
rtl_dbg(rtlpriv, COMP_SEND, DBG_TRACE,
"configtype != BaseBand_Config_PHY_REG\n");
}
return true;
}
bool rtl92c_phy_config_rf_with_headerfile(struct ieee80211_hw *hw,
enum radio_path rfpath)
{
int i;
u32 *radioa_array_table;
u32 *radiob_array_table;
u16 radioa_arraylen, radiob_arraylen;
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
if (IS_92C_SERIAL(rtlhal->version)) {
radioa_arraylen = RADIOA_2TARRAYLENGTH;
radioa_array_table = RTL8192CERADIOA_2TARRAY;
radiob_arraylen = RADIOB_2TARRAYLENGTH;
radiob_array_table = RTL8192CE_RADIOB_2TARRAY;
rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
"Radio_A:RTL8192CERADIOA_2TARRAY\n");
rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
"Radio_B:RTL8192CE_RADIOB_2TARRAY\n");
} else {
radioa_arraylen = RADIOA_1TARRAYLENGTH;
radioa_array_table = RTL8192CE_RADIOA_1TARRAY;
radiob_arraylen = RADIOB_1TARRAYLENGTH;
radiob_array_table = RTL8192CE_RADIOB_1TARRAY;
rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
"Radio_A:RTL8192CE_RADIOA_1TARRAY\n");
rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
"Radio_B:RTL8192CE_RADIOB_1TARRAY\n");
}
rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE, "Radio No %x\n", rfpath);
switch (rfpath) {
case RF90_PATH_A:
for (i = 0; i < radioa_arraylen; i = i + 2) {
rtl_rfreg_delay(hw, rfpath, radioa_array_table[i],
RFREG_OFFSET_MASK,
radioa_array_table[i + 1]);
}
break;
case RF90_PATH_B:
for (i = 0; i < radiob_arraylen; i = i + 2) {
rtl_rfreg_delay(hw, rfpath, radiob_array_table[i],
RFREG_OFFSET_MASK,
radiob_array_table[i + 1]);
}
break;
case RF90_PATH_C:
case RF90_PATH_D:
pr_info("Incorrect rfpath %#x\n", rfpath);
break;
default:
pr_info("switch case %#x not processed\n", rfpath);
break;
}
return true;
}
void rtl92ce_phy_set_bw_mode_callback(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
struct rtl_phy *rtlphy = &(rtlpriv->phy);
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
u8 reg_bw_opmode;
u8 reg_prsr_rsc;
rtl_dbg(rtlpriv, COMP_SCAN, DBG_TRACE, "Switch to %s bandwidth\n",
rtlphy->current_chan_bw == HT_CHANNEL_WIDTH_20 ?
"20MHz" : "40MHz");
if (is_hal_stop(rtlhal)) {
rtlphy->set_bwmode_inprogress = false;
return;
}
reg_bw_opmode = rtl_read_byte(rtlpriv, REG_BWOPMODE);
reg_prsr_rsc = rtl_read_byte(rtlpriv, REG_RRSR + 2);
switch (rtlphy->current_chan_bw) {
case HT_CHANNEL_WIDTH_20:
reg_bw_opmode |= BW_OPMODE_20MHZ;
rtl_write_byte(rtlpriv, REG_BWOPMODE, reg_bw_opmode);
break;
case HT_CHANNEL_WIDTH_20_40:
reg_bw_opmode &= ~BW_OPMODE_20MHZ;
rtl_write_byte(rtlpriv, REG_BWOPMODE, reg_bw_opmode);
reg_prsr_rsc =
(reg_prsr_rsc & 0x90) | (mac->cur_40_prime_sc << 5);
rtl_write_byte(rtlpriv, REG_RRSR + 2, reg_prsr_rsc);
break;
default:
pr_info("unknown bandwidth: %#X\n", rtlphy->current_chan_bw);
break;
}
switch (rtlphy->current_chan_bw) {
case HT_CHANNEL_WIDTH_20:
rtl_set_bbreg(hw, RFPGA0_RFMOD, BRFMOD, 0x0);
rtl_set_bbreg(hw, RFPGA1_RFMOD, BRFMOD, 0x0);
rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER2, BIT(10), 1);
break;
case HT_CHANNEL_WIDTH_20_40:
rtl_set_bbreg(hw, RFPGA0_RFMOD, BRFMOD, 0x1);
rtl_set_bbreg(hw, RFPGA1_RFMOD, BRFMOD, 0x1);
rtl_set_bbreg(hw, RCCK0_SYSTEM, BCCK_SIDEBAND,
(mac->cur_40_prime_sc >> 1));
rtl_set_bbreg(hw, ROFDM1_LSTF, 0xC00, mac->cur_40_prime_sc);
rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER2, BIT(10), 0);
rtl_set_bbreg(hw, 0x818, (BIT(26) | BIT(27)),
(mac->cur_40_prime_sc ==
HAL_PRIME_CHNL_OFFSET_LOWER) ? 2 : 1);
break;
default:
pr_err("unknown bandwidth: %#X\n",
rtlphy->current_chan_bw);
break;
}
rtl92ce_phy_rf6052_set_bandwidth(hw, rtlphy->current_chan_bw);
rtlphy->set_bwmode_inprogress = false;
rtl_dbg(rtlpriv, COMP_SCAN, DBG_TRACE, "<==\n");
}
void _rtl92ce_phy_lc_calibrate(struct ieee80211_hw *hw, bool is2t)
{
u8 tmpreg;
u32 rf_a_mode = 0, rf_b_mode = 0, lc_cal;
struct rtl_priv *rtlpriv = rtl_priv(hw);
tmpreg = rtl_read_byte(rtlpriv, 0xd03);
if ((tmpreg & 0x70) != 0)
rtl_write_byte(rtlpriv, 0xd03, tmpreg & 0x8F);
else
rtl_write_byte(rtlpriv, REG_TXPAUSE, 0xFF);
if ((tmpreg & 0x70) != 0) {
rf_a_mode = rtl_get_rfreg(hw, RF90_PATH_A, 0x00, MASK12BITS);
if (is2t)
rf_b_mode = rtl_get_rfreg(hw, RF90_PATH_B, 0x00,
MASK12BITS);
rtl_set_rfreg(hw, RF90_PATH_A, 0x00, MASK12BITS,
(rf_a_mode & 0x8FFFF) | 0x10000);
if (is2t)
rtl_set_rfreg(hw, RF90_PATH_B, 0x00, MASK12BITS,
(rf_b_mode & 0x8FFFF) | 0x10000);
}
lc_cal = rtl_get_rfreg(hw, RF90_PATH_A, 0x18, MASK12BITS);
rtl_set_rfreg(hw, RF90_PATH_A, 0x18, MASK12BITS, lc_cal | 0x08000);
mdelay(100);
if ((tmpreg & 0x70) != 0) {
rtl_write_byte(rtlpriv, 0xd03, tmpreg);
rtl_set_rfreg(hw, RF90_PATH_A, 0x00, MASK12BITS, rf_a_mode);
if (is2t)
rtl_set_rfreg(hw, RF90_PATH_B, 0x00, MASK12BITS,
rf_b_mode);
} else {
rtl_write_byte(rtlpriv, REG_TXPAUSE, 0x00);
}
}
static bool _rtl92ce_phy_set_rf_power_state(struct ieee80211_hw *hw,
enum rf_pwrstate rfpwr_state)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
bool bresult = true;
u8 i, queue_id;
struct rtl8192_tx_ring *ring = NULL;
switch (rfpwr_state) {
case ERFON:{
if ((ppsc->rfpwr_state == ERFOFF) &&
RT_IN_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC)) {
bool rtstatus;
u32 initializecount = 0;
do {
initializecount++;
rtl_dbg(rtlpriv, COMP_RF, DBG_DMESG,
"IPS Set eRf nic enable\n");
rtstatus = rtl_ps_enable_nic(hw);
} while (!rtstatus && (initializecount < 10));
RT_CLEAR_PS_LEVEL(ppsc,
RT_RF_OFF_LEVL_HALT_NIC);
} else {
rtl_dbg(rtlpriv, COMP_RF, DBG_DMESG,
"Set ERFON slept:%d ms\n",
jiffies_to_msecs(jiffies -
ppsc->last_sleep_jiffies));
ppsc->last_awake_jiffies = jiffies;
rtl92ce_phy_set_rf_on(hw);
}
if (mac->link_state == MAC80211_LINKED) {
rtlpriv->cfg->ops->led_control(hw,
LED_CTL_LINK);
} else {
rtlpriv->cfg->ops->led_control(hw,
LED_CTL_NO_LINK);
}
break;
}
case ERFOFF:{
if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_HALT_NIC) {
rtl_dbg(rtlpriv, COMP_RF, DBG_DMESG,
"IPS Set eRf nic disable\n");
rtl_ps_disable_nic(hw);
RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
} else {
if (ppsc->rfoff_reason == RF_CHANGE_BY_IPS) {
rtlpriv->cfg->ops->led_control(hw,
LED_CTL_NO_LINK);
} else {
rtlpriv->cfg->ops->led_control(hw,
LED_CTL_POWER_OFF);
}
}
break;
}
case ERFSLEEP:{
if (ppsc->rfpwr_state == ERFOFF)
break;
for (queue_id = 0, i = 0;
queue_id < RTL_PCI_MAX_TX_QUEUE_COUNT;) {
ring = &pcipriv->dev.tx_ring[queue_id];
if (queue_id == BEACON_QUEUE ||
skb_queue_len(&ring->queue) == 0) {
queue_id++;
continue;
} else {
rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING,
"eRf Off/Sleep: %d times TcbBusyQueue[%d] =%d before doze!\n",
i + 1, queue_id,
skb_queue_len(&ring->queue));
udelay(10);
i++;
}
if (i >= MAX_DOZE_WAITING_TIMES_9x) {
rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING,
"ERFSLEEP: %d times TcbBusyQueue[%d] = %d !\n",
MAX_DOZE_WAITING_TIMES_9x,
queue_id,
skb_queue_len(&ring->queue));
break;
}
}
rtl_dbg(rtlpriv, COMP_RF, DBG_DMESG,
"Set ERFSLEEP awaked:%d ms\n",
jiffies_to_msecs(jiffies -
ppsc->last_awake_jiffies));
ppsc->last_sleep_jiffies = jiffies;
_rtl92c_phy_set_rf_sleep(hw);
break;
}
default:
pr_err("switch case %#x not processed\n",
rfpwr_state);
bresult = false;
break;
}
if (bresult)
ppsc->rfpwr_state = rfpwr_state;
return bresult;
}
bool rtl92c_phy_set_rf_power_state(struct ieee80211_hw *hw,
enum rf_pwrstate rfpwr_state)
{
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
bool bresult = false;
if (rfpwr_state == ppsc->rfpwr_state)
return bresult;
bresult = _rtl92ce_phy_set_rf_power_state(hw, rfpwr_state);
return bresult;
}