linux-zen-server/drivers/net/wireless/ti/wlcore/tx.c

1316 lines
34 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* This file is part of wl1271
*
* Copyright (C) 2009 Nokia Corporation
*
* Contact: Luciano Coelho <luciano.coelho@nokia.com>
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/etherdevice.h>
#include <linux/pm_runtime.h>
#include <linux/spinlock.h>
#include "wlcore.h"
#include "debug.h"
#include "io.h"
#include "ps.h"
#include "tx.h"
#include "event.h"
#include "hw_ops.h"
/*
* TODO: this is here just for now, it must be removed when the data
* operations are in place.
*/
#include "../wl12xx/reg.h"
static int wl1271_set_default_wep_key(struct wl1271 *wl,
struct wl12xx_vif *wlvif, u8 id)
{
int ret;
bool is_ap = (wlvif->bss_type == BSS_TYPE_AP_BSS);
if (is_ap)
ret = wl12xx_cmd_set_default_wep_key(wl, id,
wlvif->ap.bcast_hlid);
else
ret = wl12xx_cmd_set_default_wep_key(wl, id, wlvif->sta.hlid);
if (ret < 0)
return ret;
wl1271_debug(DEBUG_CRYPT, "default wep key idx: %d", (int)id);
return 0;
}
static int wl1271_alloc_tx_id(struct wl1271 *wl, struct sk_buff *skb)
{
int id;
id = find_first_zero_bit(wl->tx_frames_map, wl->num_tx_desc);
if (id >= wl->num_tx_desc)
return -EBUSY;
__set_bit(id, wl->tx_frames_map);
wl->tx_frames[id] = skb;
wl->tx_frames_cnt++;
return id;
}
void wl1271_free_tx_id(struct wl1271 *wl, int id)
{
if (__test_and_clear_bit(id, wl->tx_frames_map)) {
if (unlikely(wl->tx_frames_cnt == wl->num_tx_desc))
clear_bit(WL1271_FLAG_FW_TX_BUSY, &wl->flags);
wl->tx_frames[id] = NULL;
wl->tx_frames_cnt--;
}
}
EXPORT_SYMBOL(wl1271_free_tx_id);
static void wl1271_tx_ap_update_inconnection_sta(struct wl1271 *wl,
struct wl12xx_vif *wlvif,
struct sk_buff *skb)
{
struct ieee80211_hdr *hdr;
hdr = (struct ieee80211_hdr *)(skb->data +
sizeof(struct wl1271_tx_hw_descr));
if (!ieee80211_is_auth(hdr->frame_control))
return;
/*
* add the station to the known list before transmitting the
* authentication response. this way it won't get de-authed by FW
* when transmitting too soon.
*/
wl1271_acx_set_inconnection_sta(wl, wlvif, hdr->addr1);
/*
* ROC for 1 second on the AP channel for completing the connection.
* Note the ROC will be continued by the update_sta_state callbacks
* once the station reaches the associated state.
*/
wlcore_update_inconn_sta(wl, wlvif, NULL, true);
wlvif->pending_auth_reply_time = jiffies;
cancel_delayed_work(&wlvif->pending_auth_complete_work);
ieee80211_queue_delayed_work(wl->hw,
&wlvif->pending_auth_complete_work,
msecs_to_jiffies(WLCORE_PEND_AUTH_ROC_TIMEOUT));
}
static void wl1271_tx_regulate_link(struct wl1271 *wl,
struct wl12xx_vif *wlvif,
u8 hlid)
{
bool fw_ps;
u8 tx_pkts;
if (WARN_ON(!test_bit(hlid, wlvif->links_map)))
return;
fw_ps = test_bit(hlid, &wl->ap_fw_ps_map);
tx_pkts = wl->links[hlid].allocated_pkts;
/*
* if in FW PS and there is enough data in FW we can put the link
* into high-level PS and clean out its TX queues.
* Make an exception if this is the only connected link. In this
* case FW-memory congestion is less of a problem.
* Note that a single connected STA means 2*ap_count + 1 active links,
* since we must account for the global and broadcast AP links
* for each AP. The "fw_ps" check assures us the other link is a STA
* connected to the AP. Otherwise the FW would not set the PSM bit.
*/
if (wl->active_link_count > (wl->ap_count*2 + 1) && fw_ps &&
tx_pkts >= WL1271_PS_STA_MAX_PACKETS)
wl12xx_ps_link_start(wl, wlvif, hlid, true);
}
bool wl12xx_is_dummy_packet(struct wl1271 *wl, struct sk_buff *skb)
{
return wl->dummy_packet == skb;
}
EXPORT_SYMBOL(wl12xx_is_dummy_packet);
static u8 wl12xx_tx_get_hlid_ap(struct wl1271 *wl, struct wl12xx_vif *wlvif,
struct sk_buff *skb, struct ieee80211_sta *sta)
{
if (sta) {
struct wl1271_station *wl_sta;
wl_sta = (struct wl1271_station *)sta->drv_priv;
return wl_sta->hlid;
} else {
struct ieee80211_hdr *hdr;
if (!test_bit(WLVIF_FLAG_AP_STARTED, &wlvif->flags))
return wl->system_hlid;
hdr = (struct ieee80211_hdr *)skb->data;
if (is_multicast_ether_addr(ieee80211_get_DA(hdr)))
return wlvif->ap.bcast_hlid;
else
return wlvif->ap.global_hlid;
}
}
u8 wl12xx_tx_get_hlid(struct wl1271 *wl, struct wl12xx_vif *wlvif,
struct sk_buff *skb, struct ieee80211_sta *sta)
{
struct ieee80211_tx_info *control;
if (wlvif->bss_type == BSS_TYPE_AP_BSS)
return wl12xx_tx_get_hlid_ap(wl, wlvif, skb, sta);
control = IEEE80211_SKB_CB(skb);
if (control->flags & IEEE80211_TX_CTL_TX_OFFCHAN) {
wl1271_debug(DEBUG_TX, "tx offchannel");
return wlvif->dev_hlid;
}
return wlvif->sta.hlid;
}
unsigned int wlcore_calc_packet_alignment(struct wl1271 *wl,
unsigned int packet_length)
{
if ((wl->quirks & WLCORE_QUIRK_TX_PAD_LAST_FRAME) ||
!(wl->quirks & WLCORE_QUIRK_TX_BLOCKSIZE_ALIGN))
return ALIGN(packet_length, WL1271_TX_ALIGN_TO);
else
return ALIGN(packet_length, WL12XX_BUS_BLOCK_SIZE);
}
EXPORT_SYMBOL(wlcore_calc_packet_alignment);
static int wl1271_tx_allocate(struct wl1271 *wl, struct wl12xx_vif *wlvif,
struct sk_buff *skb, u32 extra, u32 buf_offset,
u8 hlid, bool is_gem)
{
struct wl1271_tx_hw_descr *desc;
u32 total_len = skb->len + sizeof(struct wl1271_tx_hw_descr) + extra;
u32 total_blocks;
int id, ret = -EBUSY, ac;
u32 spare_blocks;
if (buf_offset + total_len > wl->aggr_buf_size)
return -EAGAIN;
spare_blocks = wlcore_hw_get_spare_blocks(wl, is_gem);
/* allocate free identifier for the packet */
id = wl1271_alloc_tx_id(wl, skb);
if (id < 0)
return id;
total_blocks = wlcore_hw_calc_tx_blocks(wl, total_len, spare_blocks);
if (total_blocks <= wl->tx_blocks_available) {
desc = skb_push(skb, total_len - skb->len);
wlcore_hw_set_tx_desc_blocks(wl, desc, total_blocks,
spare_blocks);
desc->id = id;
wl->tx_blocks_available -= total_blocks;
wl->tx_allocated_blocks += total_blocks;
/*
* If the FW was empty before, arm the Tx watchdog. Also do
* this on the first Tx after resume, as we always cancel the
* watchdog on suspend.
*/
if (wl->tx_allocated_blocks == total_blocks ||
test_and_clear_bit(WL1271_FLAG_REINIT_TX_WDOG, &wl->flags))
wl12xx_rearm_tx_watchdog_locked(wl);
ac = wl1271_tx_get_queue(skb_get_queue_mapping(skb));
wl->tx_allocated_pkts[ac]++;
if (test_bit(hlid, wl->links_map))
wl->links[hlid].allocated_pkts++;
ret = 0;
wl1271_debug(DEBUG_TX,
"tx_allocate: size: %d, blocks: %d, id: %d",
total_len, total_blocks, id);
} else {
wl1271_free_tx_id(wl, id);
}
return ret;
}
static void wl1271_tx_fill_hdr(struct wl1271 *wl, struct wl12xx_vif *wlvif,
struct sk_buff *skb, u32 extra,
struct ieee80211_tx_info *control, u8 hlid)
{
struct wl1271_tx_hw_descr *desc;
int ac, rate_idx;
s64 hosttime;
u16 tx_attr = 0;
__le16 frame_control;
struct ieee80211_hdr *hdr;
u8 *frame_start;
bool is_dummy;
desc = (struct wl1271_tx_hw_descr *) skb->data;
frame_start = (u8 *)(desc + 1);
hdr = (struct ieee80211_hdr *)(frame_start + extra);
frame_control = hdr->frame_control;
/* relocate space for security header */
if (extra) {
int hdrlen = ieee80211_hdrlen(frame_control);
memmove(frame_start, hdr, hdrlen);
skb_set_network_header(skb, skb_network_offset(skb) + extra);
}
/* configure packet life time */
hosttime = (ktime_get_boottime_ns() >> 10);
desc->start_time = cpu_to_le32(hosttime - wl->time_offset);
is_dummy = wl12xx_is_dummy_packet(wl, skb);
if (is_dummy || !wlvif || wlvif->bss_type != BSS_TYPE_AP_BSS)
desc->life_time = cpu_to_le16(TX_HW_MGMT_PKT_LIFETIME_TU);
else
desc->life_time = cpu_to_le16(TX_HW_AP_MODE_PKT_LIFETIME_TU);
/* queue */
ac = wl1271_tx_get_queue(skb_get_queue_mapping(skb));
desc->tid = skb->priority;
if (is_dummy) {
/*
* FW expects the dummy packet to have an invalid session id -
* any session id that is different than the one set in the join
*/
tx_attr = (SESSION_COUNTER_INVALID <<
TX_HW_ATTR_OFST_SESSION_COUNTER) &
TX_HW_ATTR_SESSION_COUNTER;
tx_attr |= TX_HW_ATTR_TX_DUMMY_REQ;
} else if (wlvif) {
u8 session_id = wl->session_ids[hlid];
if ((wl->quirks & WLCORE_QUIRK_AP_ZERO_SESSION_ID) &&
(wlvif->bss_type == BSS_TYPE_AP_BSS))
session_id = 0;
/* configure the tx attributes */
tx_attr = session_id << TX_HW_ATTR_OFST_SESSION_COUNTER;
}
desc->hlid = hlid;
if (is_dummy || !wlvif)
rate_idx = 0;
else if (wlvif->bss_type != BSS_TYPE_AP_BSS) {
/*
* if the packets are data packets
* send them with AP rate policies (EAPOLs are an exception),
* otherwise use default basic rates
*/
if (skb->protocol == cpu_to_be16(ETH_P_PAE))
rate_idx = wlvif->sta.basic_rate_idx;
else if (control->flags & IEEE80211_TX_CTL_NO_CCK_RATE)
rate_idx = wlvif->sta.p2p_rate_idx;
else if (ieee80211_is_data(frame_control))
rate_idx = wlvif->sta.ap_rate_idx;
else
rate_idx = wlvif->sta.basic_rate_idx;
} else {
if (hlid == wlvif->ap.global_hlid)
rate_idx = wlvif->ap.mgmt_rate_idx;
else if (hlid == wlvif->ap.bcast_hlid ||
skb->protocol == cpu_to_be16(ETH_P_PAE) ||
!ieee80211_is_data(frame_control))
/*
* send non-data, bcast and EAPOLs using the
* min basic rate
*/
rate_idx = wlvif->ap.bcast_rate_idx;
else
rate_idx = wlvif->ap.ucast_rate_idx[ac];
}
tx_attr |= rate_idx << TX_HW_ATTR_OFST_RATE_POLICY;
/* for WEP shared auth - no fw encryption is needed */
if (ieee80211_is_auth(frame_control) &&
ieee80211_has_protected(frame_control))
tx_attr |= TX_HW_ATTR_HOST_ENCRYPT;
/* send EAPOL frames as voice */
if (control->control.flags & IEEE80211_TX_CTRL_PORT_CTRL_PROTO)
tx_attr |= TX_HW_ATTR_EAPOL_FRAME;
desc->tx_attr = cpu_to_le16(tx_attr);
wlcore_hw_set_tx_desc_csum(wl, desc, skb);
wlcore_hw_set_tx_desc_data_len(wl, desc, skb);
}
/* caller must hold wl->mutex */
static int wl1271_prepare_tx_frame(struct wl1271 *wl, struct wl12xx_vif *wlvif,
struct sk_buff *skb, u32 buf_offset, u8 hlid)
{
struct ieee80211_tx_info *info;
u32 extra = 0;
int ret = 0;
u32 total_len;
bool is_dummy;
bool is_gem = false;
if (!skb) {
wl1271_error("discarding null skb");
return -EINVAL;
}
if (hlid == WL12XX_INVALID_LINK_ID) {
wl1271_error("invalid hlid. dropping skb 0x%p", skb);
return -EINVAL;
}
info = IEEE80211_SKB_CB(skb);
is_dummy = wl12xx_is_dummy_packet(wl, skb);
if ((wl->quirks & WLCORE_QUIRK_TKIP_HEADER_SPACE) &&
info->control.hw_key &&
info->control.hw_key->cipher == WLAN_CIPHER_SUITE_TKIP)
extra = WL1271_EXTRA_SPACE_TKIP;
if (info->control.hw_key) {
bool is_wep;
u8 idx = info->control.hw_key->hw_key_idx;
u32 cipher = info->control.hw_key->cipher;
is_wep = (cipher == WLAN_CIPHER_SUITE_WEP40) ||
(cipher == WLAN_CIPHER_SUITE_WEP104);
if (WARN_ON(is_wep && wlvif && wlvif->default_key != idx)) {
ret = wl1271_set_default_wep_key(wl, wlvif, idx);
if (ret < 0)
return ret;
wlvif->default_key = idx;
}
is_gem = (cipher == WL1271_CIPHER_SUITE_GEM);
}
ret = wl1271_tx_allocate(wl, wlvif, skb, extra, buf_offset, hlid,
is_gem);
if (ret < 0)
return ret;
wl1271_tx_fill_hdr(wl, wlvif, skb, extra, info, hlid);
if (!is_dummy && wlvif && wlvif->bss_type == BSS_TYPE_AP_BSS) {
wl1271_tx_ap_update_inconnection_sta(wl, wlvif, skb);
wl1271_tx_regulate_link(wl, wlvif, hlid);
}
/*
* The length of each packet is stored in terms of
* words. Thus, we must pad the skb data to make sure its
* length is aligned. The number of padding bytes is computed
* and set in wl1271_tx_fill_hdr.
* In special cases, we want to align to a specific block size
* (eg. for wl128x with SDIO we align to 256).
*/
total_len = wlcore_calc_packet_alignment(wl, skb->len);
memcpy(wl->aggr_buf + buf_offset, skb->data, skb->len);
memset(wl->aggr_buf + buf_offset + skb->len, 0, total_len - skb->len);
/* Revert side effects in the dummy packet skb, so it can be reused */
if (is_dummy)
skb_pull(skb, sizeof(struct wl1271_tx_hw_descr));
return total_len;
}
u32 wl1271_tx_enabled_rates_get(struct wl1271 *wl, u32 rate_set,
enum nl80211_band rate_band)
{
struct ieee80211_supported_band *band;
u32 enabled_rates = 0;
int bit;
band = wl->hw->wiphy->bands[rate_band];
for (bit = 0; bit < band->n_bitrates; bit++) {
if (rate_set & 0x1)
enabled_rates |= band->bitrates[bit].hw_value;
rate_set >>= 1;
}
/* MCS rates indication are on bits 16 - 31 */
rate_set >>= HW_HT_RATES_OFFSET - band->n_bitrates;
for (bit = 0; bit < 16; bit++) {
if (rate_set & 0x1)
enabled_rates |= (CONF_HW_BIT_RATE_MCS_0 << bit);
rate_set >>= 1;
}
return enabled_rates;
}
void wl1271_handle_tx_low_watermark(struct wl1271 *wl)
{
int i;
struct wl12xx_vif *wlvif;
wl12xx_for_each_wlvif(wl, wlvif) {
for (i = 0; i < NUM_TX_QUEUES; i++) {
if (wlcore_is_queue_stopped_by_reason(wl, wlvif, i,
WLCORE_QUEUE_STOP_REASON_WATERMARK) &&
wlvif->tx_queue_count[i] <=
WL1271_TX_QUEUE_LOW_WATERMARK)
/* firmware buffer has space, restart queues */
wlcore_wake_queue(wl, wlvif, i,
WLCORE_QUEUE_STOP_REASON_WATERMARK);
}
}
}
static int wlcore_select_ac(struct wl1271 *wl)
{
int i, q = -1, ac;
u32 min_pkts = 0xffffffff;
/*
* Find a non-empty ac where:
* 1. There are packets to transmit
* 2. The FW has the least allocated blocks
*
* We prioritize the ACs according to VO>VI>BE>BK
*/
for (i = 0; i < NUM_TX_QUEUES; i++) {
ac = wl1271_tx_get_queue(i);
if (wl->tx_queue_count[ac] &&
wl->tx_allocated_pkts[ac] < min_pkts) {
q = ac;
min_pkts = wl->tx_allocated_pkts[q];
}
}
return q;
}
static struct sk_buff *wlcore_lnk_dequeue(struct wl1271 *wl,
struct wl1271_link *lnk, u8 q)
{
struct sk_buff *skb;
unsigned long flags;
skb = skb_dequeue(&lnk->tx_queue[q]);
if (skb) {
spin_lock_irqsave(&wl->wl_lock, flags);
WARN_ON_ONCE(wl->tx_queue_count[q] <= 0);
wl->tx_queue_count[q]--;
if (lnk->wlvif) {
WARN_ON_ONCE(lnk->wlvif->tx_queue_count[q] <= 0);
lnk->wlvif->tx_queue_count[q]--;
}
spin_unlock_irqrestore(&wl->wl_lock, flags);
}
return skb;
}
static struct sk_buff *wlcore_lnk_dequeue_high_prio(struct wl1271 *wl,
u8 hlid, u8 ac,
u8 *low_prio_hlid)
{
struct wl1271_link *lnk = &wl->links[hlid];
if (!wlcore_hw_lnk_high_prio(wl, hlid, lnk)) {
if (*low_prio_hlid == WL12XX_INVALID_LINK_ID &&
!skb_queue_empty(&lnk->tx_queue[ac]) &&
wlcore_hw_lnk_low_prio(wl, hlid, lnk))
/* we found the first non-empty low priority queue */
*low_prio_hlid = hlid;
return NULL;
}
return wlcore_lnk_dequeue(wl, lnk, ac);
}
static struct sk_buff *wlcore_vif_dequeue_high_prio(struct wl1271 *wl,
struct wl12xx_vif *wlvif,
u8 ac, u8 *hlid,
u8 *low_prio_hlid)
{
struct sk_buff *skb = NULL;
int i, h, start_hlid;
/* start from the link after the last one */
start_hlid = (wlvif->last_tx_hlid + 1) % wl->num_links;
/* dequeue according to AC, round robin on each link */
for (i = 0; i < wl->num_links; i++) {
h = (start_hlid + i) % wl->num_links;
/* only consider connected stations */
if (!test_bit(h, wlvif->links_map))
continue;
skb = wlcore_lnk_dequeue_high_prio(wl, h, ac,
low_prio_hlid);
if (!skb)
continue;
wlvif->last_tx_hlid = h;
break;
}
if (!skb)
wlvif->last_tx_hlid = 0;
*hlid = wlvif->last_tx_hlid;
return skb;
}
static struct sk_buff *wl1271_skb_dequeue(struct wl1271 *wl, u8 *hlid)
{
unsigned long flags;
struct wl12xx_vif *wlvif = wl->last_wlvif;
struct sk_buff *skb = NULL;
int ac;
u8 low_prio_hlid = WL12XX_INVALID_LINK_ID;
ac = wlcore_select_ac(wl);
if (ac < 0)
goto out;
/* continue from last wlvif (round robin) */
if (wlvif) {
wl12xx_for_each_wlvif_continue(wl, wlvif) {
if (!wlvif->tx_queue_count[ac])
continue;
skb = wlcore_vif_dequeue_high_prio(wl, wlvif, ac, hlid,
&low_prio_hlid);
if (!skb)
continue;
wl->last_wlvif = wlvif;
break;
}
}
/* dequeue from the system HLID before the restarting wlvif list */
if (!skb) {
skb = wlcore_lnk_dequeue_high_prio(wl, wl->system_hlid,
ac, &low_prio_hlid);
if (skb) {
*hlid = wl->system_hlid;
wl->last_wlvif = NULL;
}
}
/* Do a new pass over the wlvif list. But no need to continue
* after last_wlvif. The previous pass should have found it. */
if (!skb) {
wl12xx_for_each_wlvif(wl, wlvif) {
if (!wlvif->tx_queue_count[ac])
goto next;
skb = wlcore_vif_dequeue_high_prio(wl, wlvif, ac, hlid,
&low_prio_hlid);
if (skb) {
wl->last_wlvif = wlvif;
break;
}
next:
if (wlvif == wl->last_wlvif)
break;
}
}
/* no high priority skbs found - but maybe a low priority one? */
if (!skb && low_prio_hlid != WL12XX_INVALID_LINK_ID) {
struct wl1271_link *lnk = &wl->links[low_prio_hlid];
skb = wlcore_lnk_dequeue(wl, lnk, ac);
WARN_ON(!skb); /* we checked this before */
*hlid = low_prio_hlid;
/* ensure proper round robin in the vif/link levels */
wl->last_wlvif = lnk->wlvif;
if (lnk->wlvif)
lnk->wlvif->last_tx_hlid = low_prio_hlid;
}
out:
if (!skb &&
test_and_clear_bit(WL1271_FLAG_DUMMY_PACKET_PENDING, &wl->flags)) {
int q;
skb = wl->dummy_packet;
*hlid = wl->system_hlid;
q = wl1271_tx_get_queue(skb_get_queue_mapping(skb));
spin_lock_irqsave(&wl->wl_lock, flags);
WARN_ON_ONCE(wl->tx_queue_count[q] <= 0);
wl->tx_queue_count[q]--;
spin_unlock_irqrestore(&wl->wl_lock, flags);
}
return skb;
}
static void wl1271_skb_queue_head(struct wl1271 *wl, struct wl12xx_vif *wlvif,
struct sk_buff *skb, u8 hlid)
{
unsigned long flags;
int q = wl1271_tx_get_queue(skb_get_queue_mapping(skb));
if (wl12xx_is_dummy_packet(wl, skb)) {
set_bit(WL1271_FLAG_DUMMY_PACKET_PENDING, &wl->flags);
} else {
skb_queue_head(&wl->links[hlid].tx_queue[q], skb);
/* make sure we dequeue the same packet next time */
wlvif->last_tx_hlid = (hlid + wl->num_links - 1) %
wl->num_links;
}
spin_lock_irqsave(&wl->wl_lock, flags);
wl->tx_queue_count[q]++;
if (wlvif)
wlvif->tx_queue_count[q]++;
spin_unlock_irqrestore(&wl->wl_lock, flags);
}
static bool wl1271_tx_is_data_present(struct sk_buff *skb)
{
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)(skb->data);
return ieee80211_is_data_present(hdr->frame_control);
}
void wl12xx_rearm_rx_streaming(struct wl1271 *wl, unsigned long *active_hlids)
{
struct wl12xx_vif *wlvif;
u32 timeout;
u8 hlid;
if (!wl->conf.rx_streaming.interval)
return;
if (!wl->conf.rx_streaming.always &&
!test_bit(WL1271_FLAG_SOFT_GEMINI, &wl->flags))
return;
timeout = wl->conf.rx_streaming.duration;
wl12xx_for_each_wlvif_sta(wl, wlvif) {
bool found = false;
for_each_set_bit(hlid, active_hlids, wl->num_links) {
if (test_bit(hlid, wlvif->links_map)) {
found = true;
break;
}
}
if (!found)
continue;
/* enable rx streaming */
if (!test_bit(WLVIF_FLAG_RX_STREAMING_STARTED, &wlvif->flags))
ieee80211_queue_work(wl->hw,
&wlvif->rx_streaming_enable_work);
mod_timer(&wlvif->rx_streaming_timer,
jiffies + msecs_to_jiffies(timeout));
}
}
/*
* Returns failure values only in case of failed bus ops within this function.
* wl1271_prepare_tx_frame retvals won't be returned in order to avoid
* triggering recovery by higher layers when not necessary.
* In case a FW command fails within wl1271_prepare_tx_frame fails a recovery
* will be queued in wl1271_cmd_send. -EAGAIN/-EBUSY from prepare_tx_frame
* can occur and are legitimate so don't propagate. -EINVAL will emit a WARNING
* within prepare_tx_frame code but there's nothing we should do about those
* as well.
*/
int wlcore_tx_work_locked(struct wl1271 *wl)
{
struct wl12xx_vif *wlvif;
struct sk_buff *skb;
struct wl1271_tx_hw_descr *desc;
u32 buf_offset = 0, last_len = 0;
bool sent_packets = false;
unsigned long active_hlids[BITS_TO_LONGS(WLCORE_MAX_LINKS)] = {0};
int ret = 0;
int bus_ret = 0;
u8 hlid;
if (unlikely(wl->state != WLCORE_STATE_ON))
return 0;
while ((skb = wl1271_skb_dequeue(wl, &hlid))) {
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
bool has_data = false;
wlvif = NULL;
if (!wl12xx_is_dummy_packet(wl, skb))
wlvif = wl12xx_vif_to_data(info->control.vif);
else
hlid = wl->system_hlid;
has_data = wlvif && wl1271_tx_is_data_present(skb);
ret = wl1271_prepare_tx_frame(wl, wlvif, skb, buf_offset,
hlid);
if (ret == -EAGAIN) {
/*
* Aggregation buffer is full.
* Flush buffer and try again.
*/
wl1271_skb_queue_head(wl, wlvif, skb, hlid);
buf_offset = wlcore_hw_pre_pkt_send(wl, buf_offset,
last_len);
bus_ret = wlcore_write_data(wl, REG_SLV_MEM_DATA,
wl->aggr_buf, buf_offset, true);
if (bus_ret < 0)
goto out;
sent_packets = true;
buf_offset = 0;
continue;
} else if (ret == -EBUSY) {
/*
* Firmware buffer is full.
* Queue back last skb, and stop aggregating.
*/
wl1271_skb_queue_head(wl, wlvif, skb, hlid);
/* No work left, avoid scheduling redundant tx work */
set_bit(WL1271_FLAG_FW_TX_BUSY, &wl->flags);
goto out_ack;
} else if (ret < 0) {
if (wl12xx_is_dummy_packet(wl, skb))
/*
* fw still expects dummy packet,
* so re-enqueue it
*/
wl1271_skb_queue_head(wl, wlvif, skb, hlid);
else
ieee80211_free_txskb(wl->hw, skb);
goto out_ack;
}
last_len = ret;
buf_offset += last_len;
wl->tx_packets_count++;
if (has_data) {
desc = (struct wl1271_tx_hw_descr *) skb->data;
__set_bit(desc->hlid, active_hlids);
}
}
out_ack:
if (buf_offset) {
buf_offset = wlcore_hw_pre_pkt_send(wl, buf_offset, last_len);
bus_ret = wlcore_write_data(wl, REG_SLV_MEM_DATA, wl->aggr_buf,
buf_offset, true);
if (bus_ret < 0)
goto out;
sent_packets = true;
}
if (sent_packets) {
/*
* Interrupt the firmware with the new packets. This is only
* required for older hardware revisions
*/
if (wl->quirks & WLCORE_QUIRK_END_OF_TRANSACTION) {
bus_ret = wlcore_write32(wl, WL12XX_HOST_WR_ACCESS,
wl->tx_packets_count);
if (bus_ret < 0)
goto out;
}
wl1271_handle_tx_low_watermark(wl);
}
wl12xx_rearm_rx_streaming(wl, active_hlids);
out:
return bus_ret;
}
void wl1271_tx_work(struct work_struct *work)
{
struct wl1271 *wl = container_of(work, struct wl1271, tx_work);
int ret;
mutex_lock(&wl->mutex);
ret = pm_runtime_resume_and_get(wl->dev);
if (ret < 0)
goto out;
ret = wlcore_tx_work_locked(wl);
if (ret < 0) {
pm_runtime_put_noidle(wl->dev);
wl12xx_queue_recovery_work(wl);
goto out;
}
pm_runtime_mark_last_busy(wl->dev);
pm_runtime_put_autosuspend(wl->dev);
out:
mutex_unlock(&wl->mutex);
}
static u8 wl1271_tx_get_rate_flags(u8 rate_class_index)
{
u8 flags = 0;
/*
* TODO: use wl12xx constants when this code is moved to wl12xx, as
* only it uses Tx-completion.
*/
if (rate_class_index <= 8)
flags |= IEEE80211_TX_RC_MCS;
/*
* TODO: use wl12xx constants when this code is moved to wl12xx, as
* only it uses Tx-completion.
*/
if (rate_class_index == 0)
flags |= IEEE80211_TX_RC_SHORT_GI;
return flags;
}
static void wl1271_tx_complete_packet(struct wl1271 *wl,
struct wl1271_tx_hw_res_descr *result)
{
struct ieee80211_tx_info *info;
struct ieee80211_vif *vif;
struct wl12xx_vif *wlvif;
struct sk_buff *skb;
int id = result->id;
int rate = -1;
u8 rate_flags = 0;
u8 retries = 0;
/* check for id legality */
if (unlikely(id >= wl->num_tx_desc || wl->tx_frames[id] == NULL)) {
wl1271_warning("TX result illegal id: %d", id);
return;
}
skb = wl->tx_frames[id];
info = IEEE80211_SKB_CB(skb);
if (wl12xx_is_dummy_packet(wl, skb)) {
wl1271_free_tx_id(wl, id);
return;
}
/* info->control is valid as long as we don't update info->status */
vif = info->control.vif;
wlvif = wl12xx_vif_to_data(vif);
/* update the TX status info */
if (result->status == TX_SUCCESS) {
if (!(info->flags & IEEE80211_TX_CTL_NO_ACK))
info->flags |= IEEE80211_TX_STAT_ACK;
rate = wlcore_rate_to_idx(wl, result->rate_class_index,
wlvif->band);
rate_flags = wl1271_tx_get_rate_flags(result->rate_class_index);
retries = result->ack_failures;
} else if (result->status == TX_RETRY_EXCEEDED) {
wl->stats.excessive_retries++;
retries = result->ack_failures;
}
info->status.rates[0].idx = rate;
info->status.rates[0].count = retries;
info->status.rates[0].flags = rate_flags;
info->status.ack_signal = -1;
wl->stats.retry_count += result->ack_failures;
/* remove private header from packet */
skb_pull(skb, sizeof(struct wl1271_tx_hw_descr));
/* remove TKIP header space if present */
if ((wl->quirks & WLCORE_QUIRK_TKIP_HEADER_SPACE) &&
info->control.hw_key &&
info->control.hw_key->cipher == WLAN_CIPHER_SUITE_TKIP) {
int hdrlen = ieee80211_get_hdrlen_from_skb(skb);
memmove(skb->data + WL1271_EXTRA_SPACE_TKIP, skb->data,
hdrlen);
skb_pull(skb, WL1271_EXTRA_SPACE_TKIP);
}
wl1271_debug(DEBUG_TX, "tx status id %u skb 0x%p failures %u rate 0x%x"
" status 0x%x",
result->id, skb, result->ack_failures,
result->rate_class_index, result->status);
/* return the packet to the stack */
skb_queue_tail(&wl->deferred_tx_queue, skb);
queue_work(wl->freezable_wq, &wl->netstack_work);
wl1271_free_tx_id(wl, result->id);
}
/* Called upon reception of a TX complete interrupt */
int wlcore_tx_complete(struct wl1271 *wl)
{
struct wl1271_acx_mem_map *memmap = wl->target_mem_map;
u32 count, fw_counter;
u32 i;
int ret;
/* read the tx results from the chipset */
ret = wlcore_read(wl, le32_to_cpu(memmap->tx_result),
wl->tx_res_if, sizeof(*wl->tx_res_if), false);
if (ret < 0)
goto out;
fw_counter = le32_to_cpu(wl->tx_res_if->tx_result_fw_counter);
/* write host counter to chipset (to ack) */
ret = wlcore_write32(wl, le32_to_cpu(memmap->tx_result) +
offsetof(struct wl1271_tx_hw_res_if,
tx_result_host_counter), fw_counter);
if (ret < 0)
goto out;
count = fw_counter - wl->tx_results_count;
wl1271_debug(DEBUG_TX, "tx_complete received, packets: %d", count);
/* verify that the result buffer is not getting overrun */
if (unlikely(count > TX_HW_RESULT_QUEUE_LEN))
wl1271_warning("TX result overflow from chipset: %d", count);
/* process the results */
for (i = 0; i < count; i++) {
struct wl1271_tx_hw_res_descr *result;
u8 offset = wl->tx_results_count & TX_HW_RESULT_QUEUE_LEN_MASK;
/* process the packet */
result = &(wl->tx_res_if->tx_results_queue[offset]);
wl1271_tx_complete_packet(wl, result);
wl->tx_results_count++;
}
out:
return ret;
}
EXPORT_SYMBOL(wlcore_tx_complete);
void wl1271_tx_reset_link_queues(struct wl1271 *wl, u8 hlid)
{
struct sk_buff *skb;
int i;
unsigned long flags;
struct ieee80211_tx_info *info;
int total[NUM_TX_QUEUES];
struct wl1271_link *lnk = &wl->links[hlid];
for (i = 0; i < NUM_TX_QUEUES; i++) {
total[i] = 0;
while ((skb = skb_dequeue(&lnk->tx_queue[i]))) {
wl1271_debug(DEBUG_TX, "link freeing skb 0x%p", skb);
if (!wl12xx_is_dummy_packet(wl, skb)) {
info = IEEE80211_SKB_CB(skb);
info->status.rates[0].idx = -1;
info->status.rates[0].count = 0;
ieee80211_tx_status_ni(wl->hw, skb);
}
total[i]++;
}
}
spin_lock_irqsave(&wl->wl_lock, flags);
for (i = 0; i < NUM_TX_QUEUES; i++) {
wl->tx_queue_count[i] -= total[i];
if (lnk->wlvif)
lnk->wlvif->tx_queue_count[i] -= total[i];
}
spin_unlock_irqrestore(&wl->wl_lock, flags);
wl1271_handle_tx_low_watermark(wl);
}
/* caller must hold wl->mutex and TX must be stopped */
void wl12xx_tx_reset_wlvif(struct wl1271 *wl, struct wl12xx_vif *wlvif)
{
int i;
/* TX failure */
for_each_set_bit(i, wlvif->links_map, wl->num_links) {
if (wlvif->bss_type == BSS_TYPE_AP_BSS &&
i != wlvif->ap.bcast_hlid && i != wlvif->ap.global_hlid) {
/* this calls wl12xx_free_link */
wl1271_free_sta(wl, wlvif, i);
} else {
u8 hlid = i;
wl12xx_free_link(wl, wlvif, &hlid);
}
}
wlvif->last_tx_hlid = 0;
for (i = 0; i < NUM_TX_QUEUES; i++)
wlvif->tx_queue_count[i] = 0;
}
/* caller must hold wl->mutex and TX must be stopped */
void wl12xx_tx_reset(struct wl1271 *wl)
{
int i;
struct sk_buff *skb;
struct ieee80211_tx_info *info;
/* only reset the queues if something bad happened */
if (wl1271_tx_total_queue_count(wl) != 0) {
for (i = 0; i < wl->num_links; i++)
wl1271_tx_reset_link_queues(wl, i);
for (i = 0; i < NUM_TX_QUEUES; i++)
wl->tx_queue_count[i] = 0;
}
/*
* Make sure the driver is at a consistent state, in case this
* function is called from a context other than interface removal.
* This call will always wake the TX queues.
*/
wl1271_handle_tx_low_watermark(wl);
for (i = 0; i < wl->num_tx_desc; i++) {
if (wl->tx_frames[i] == NULL)
continue;
skb = wl->tx_frames[i];
wl1271_free_tx_id(wl, i);
wl1271_debug(DEBUG_TX, "freeing skb 0x%p", skb);
if (!wl12xx_is_dummy_packet(wl, skb)) {
/*
* Remove private headers before passing the skb to
* mac80211
*/
info = IEEE80211_SKB_CB(skb);
skb_pull(skb, sizeof(struct wl1271_tx_hw_descr));
if ((wl->quirks & WLCORE_QUIRK_TKIP_HEADER_SPACE) &&
info->control.hw_key &&
info->control.hw_key->cipher ==
WLAN_CIPHER_SUITE_TKIP) {
int hdrlen = ieee80211_get_hdrlen_from_skb(skb);
memmove(skb->data + WL1271_EXTRA_SPACE_TKIP,
skb->data, hdrlen);
skb_pull(skb, WL1271_EXTRA_SPACE_TKIP);
}
info->status.rates[0].idx = -1;
info->status.rates[0].count = 0;
ieee80211_tx_status_ni(wl->hw, skb);
}
}
}
#define WL1271_TX_FLUSH_TIMEOUT 500000
/* caller must *NOT* hold wl->mutex */
void wl1271_tx_flush(struct wl1271 *wl)
{
unsigned long timeout, start_time;
int i;
start_time = jiffies;
timeout = start_time + usecs_to_jiffies(WL1271_TX_FLUSH_TIMEOUT);
/* only one flush should be in progress, for consistent queue state */
mutex_lock(&wl->flush_mutex);
mutex_lock(&wl->mutex);
if (wl->tx_frames_cnt == 0 && wl1271_tx_total_queue_count(wl) == 0) {
mutex_unlock(&wl->mutex);
goto out;
}
wlcore_stop_queues(wl, WLCORE_QUEUE_STOP_REASON_FLUSH);
while (!time_after(jiffies, timeout)) {
wl1271_debug(DEBUG_MAC80211, "flushing tx buffer: %d %d",
wl->tx_frames_cnt,
wl1271_tx_total_queue_count(wl));
/* force Tx and give the driver some time to flush data */
mutex_unlock(&wl->mutex);
if (wl1271_tx_total_queue_count(wl))
wl1271_tx_work(&wl->tx_work);
msleep(20);
mutex_lock(&wl->mutex);
if ((wl->tx_frames_cnt == 0) &&
(wl1271_tx_total_queue_count(wl) == 0)) {
wl1271_debug(DEBUG_MAC80211, "tx flush took %d ms",
jiffies_to_msecs(jiffies - start_time));
goto out_wake;
}
}
wl1271_warning("Unable to flush all TX buffers, "
"timed out (timeout %d ms",
WL1271_TX_FLUSH_TIMEOUT / 1000);
/* forcibly flush all Tx buffers on our queues */
for (i = 0; i < wl->num_links; i++)
wl1271_tx_reset_link_queues(wl, i);
out_wake:
wlcore_wake_queues(wl, WLCORE_QUEUE_STOP_REASON_FLUSH);
mutex_unlock(&wl->mutex);
out:
mutex_unlock(&wl->flush_mutex);
}
EXPORT_SYMBOL_GPL(wl1271_tx_flush);
u32 wl1271_tx_min_rate_get(struct wl1271 *wl, u32 rate_set)
{
if (WARN_ON(!rate_set))
return 0;
return BIT(__ffs(rate_set));
}
EXPORT_SYMBOL_GPL(wl1271_tx_min_rate_get);
void wlcore_stop_queue_locked(struct wl1271 *wl, struct wl12xx_vif *wlvif,
u8 queue, enum wlcore_queue_stop_reason reason)
{
int hwq = wlcore_tx_get_mac80211_queue(wlvif, queue);
bool stopped = !!wl->queue_stop_reasons[hwq];
/* queue should not be stopped for this reason */
WARN_ON_ONCE(test_and_set_bit(reason, &wl->queue_stop_reasons[hwq]));
if (stopped)
return;
ieee80211_stop_queue(wl->hw, hwq);
}
void wlcore_stop_queue(struct wl1271 *wl, struct wl12xx_vif *wlvif, u8 queue,
enum wlcore_queue_stop_reason reason)
{
unsigned long flags;
spin_lock_irqsave(&wl->wl_lock, flags);
wlcore_stop_queue_locked(wl, wlvif, queue, reason);
spin_unlock_irqrestore(&wl->wl_lock, flags);
}
void wlcore_wake_queue(struct wl1271 *wl, struct wl12xx_vif *wlvif, u8 queue,
enum wlcore_queue_stop_reason reason)
{
unsigned long flags;
int hwq = wlcore_tx_get_mac80211_queue(wlvif, queue);
spin_lock_irqsave(&wl->wl_lock, flags);
/* queue should not be clear for this reason */
WARN_ON_ONCE(!test_and_clear_bit(reason, &wl->queue_stop_reasons[hwq]));
if (wl->queue_stop_reasons[hwq])
goto out;
ieee80211_wake_queue(wl->hw, hwq);
out:
spin_unlock_irqrestore(&wl->wl_lock, flags);
}
void wlcore_stop_queues(struct wl1271 *wl,
enum wlcore_queue_stop_reason reason)
{
int i;
unsigned long flags;
spin_lock_irqsave(&wl->wl_lock, flags);
/* mark all possible queues as stopped */
for (i = 0; i < WLCORE_NUM_MAC_ADDRESSES * NUM_TX_QUEUES; i++)
WARN_ON_ONCE(test_and_set_bit(reason,
&wl->queue_stop_reasons[i]));
/* use the global version to make sure all vifs in mac80211 we don't
* know are stopped.
*/
ieee80211_stop_queues(wl->hw);
spin_unlock_irqrestore(&wl->wl_lock, flags);
}
void wlcore_wake_queues(struct wl1271 *wl,
enum wlcore_queue_stop_reason reason)
{
int i;
unsigned long flags;
spin_lock_irqsave(&wl->wl_lock, flags);
/* mark all possible queues as awake */
for (i = 0; i < WLCORE_NUM_MAC_ADDRESSES * NUM_TX_QUEUES; i++)
WARN_ON_ONCE(!test_and_clear_bit(reason,
&wl->queue_stop_reasons[i]));
/* use the global version to make sure all vifs in mac80211 we don't
* know are woken up.
*/
ieee80211_wake_queues(wl->hw);
spin_unlock_irqrestore(&wl->wl_lock, flags);
}
bool wlcore_is_queue_stopped_by_reason(struct wl1271 *wl,
struct wl12xx_vif *wlvif, u8 queue,
enum wlcore_queue_stop_reason reason)
{
unsigned long flags;
bool stopped;
spin_lock_irqsave(&wl->wl_lock, flags);
stopped = wlcore_is_queue_stopped_by_reason_locked(wl, wlvif, queue,
reason);
spin_unlock_irqrestore(&wl->wl_lock, flags);
return stopped;
}
bool wlcore_is_queue_stopped_by_reason_locked(struct wl1271 *wl,
struct wl12xx_vif *wlvif, u8 queue,
enum wlcore_queue_stop_reason reason)
{
int hwq = wlcore_tx_get_mac80211_queue(wlvif, queue);
assert_spin_locked(&wl->wl_lock);
return test_bit(reason, &wl->queue_stop_reasons[hwq]);
}
bool wlcore_is_queue_stopped_locked(struct wl1271 *wl, struct wl12xx_vif *wlvif,
u8 queue)
{
int hwq = wlcore_tx_get_mac80211_queue(wlvif, queue);
assert_spin_locked(&wl->wl_lock);
return !!wl->queue_stop_reasons[hwq];
}