4024 lines
112 KiB
C
4024 lines
112 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (c) Microsoft Corporation.
|
|
*
|
|
* Author:
|
|
* Jake Oshins <jakeo@microsoft.com>
|
|
*
|
|
* This driver acts as a paravirtual front-end for PCI Express root buses.
|
|
* When a PCI Express function (either an entire device or an SR-IOV
|
|
* Virtual Function) is being passed through to the VM, this driver exposes
|
|
* a new bus to the guest VM. This is modeled as a root PCI bus because
|
|
* no bridges are being exposed to the VM. In fact, with a "Generation 2"
|
|
* VM within Hyper-V, there may seem to be no PCI bus at all in the VM
|
|
* until a device as been exposed using this driver.
|
|
*
|
|
* Each root PCI bus has its own PCI domain, which is called "Segment" in
|
|
* the PCI Firmware Specifications. Thus while each device passed through
|
|
* to the VM using this front-end will appear at "device 0", the domain will
|
|
* be unique. Typically, each bus will have one PCI function on it, though
|
|
* this driver does support more than one.
|
|
*
|
|
* In order to map the interrupts from the device through to the guest VM,
|
|
* this driver also implements an IRQ Domain, which handles interrupts (either
|
|
* MSI or MSI-X) associated with the functions on the bus. As interrupts are
|
|
* set up, torn down, or reaffined, this driver communicates with the
|
|
* underlying hypervisor to adjust the mappings in the I/O MMU so that each
|
|
* interrupt will be delivered to the correct virtual processor at the right
|
|
* vector. This driver does not support level-triggered (line-based)
|
|
* interrupts, and will report that the Interrupt Line register in the
|
|
* function's configuration space is zero.
|
|
*
|
|
* The rest of this driver mostly maps PCI concepts onto underlying Hyper-V
|
|
* facilities. For instance, the configuration space of a function exposed
|
|
* by Hyper-V is mapped into a single page of memory space, and the
|
|
* read and write handlers for config space must be aware of this mechanism.
|
|
* Similarly, device setup and teardown involves messages sent to and from
|
|
* the PCI back-end driver in Hyper-V.
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/pci-ecam.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/semaphore.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/msi.h>
|
|
#include <linux/hyperv.h>
|
|
#include <linux/refcount.h>
|
|
#include <linux/irqdomain.h>
|
|
#include <linux/acpi.h>
|
|
#include <asm/mshyperv.h>
|
|
|
|
/*
|
|
* Protocol versions. The low word is the minor version, the high word the
|
|
* major version.
|
|
*/
|
|
|
|
#define PCI_MAKE_VERSION(major, minor) ((u32)(((major) << 16) | (minor)))
|
|
#define PCI_MAJOR_VERSION(version) ((u32)(version) >> 16)
|
|
#define PCI_MINOR_VERSION(version) ((u32)(version) & 0xff)
|
|
|
|
enum pci_protocol_version_t {
|
|
PCI_PROTOCOL_VERSION_1_1 = PCI_MAKE_VERSION(1, 1), /* Win10 */
|
|
PCI_PROTOCOL_VERSION_1_2 = PCI_MAKE_VERSION(1, 2), /* RS1 */
|
|
PCI_PROTOCOL_VERSION_1_3 = PCI_MAKE_VERSION(1, 3), /* Vibranium */
|
|
PCI_PROTOCOL_VERSION_1_4 = PCI_MAKE_VERSION(1, 4), /* WS2022 */
|
|
};
|
|
|
|
#define CPU_AFFINITY_ALL -1ULL
|
|
|
|
/*
|
|
* Supported protocol versions in the order of probing - highest go
|
|
* first.
|
|
*/
|
|
static enum pci_protocol_version_t pci_protocol_versions[] = {
|
|
PCI_PROTOCOL_VERSION_1_4,
|
|
PCI_PROTOCOL_VERSION_1_3,
|
|
PCI_PROTOCOL_VERSION_1_2,
|
|
PCI_PROTOCOL_VERSION_1_1,
|
|
};
|
|
|
|
#define PCI_CONFIG_MMIO_LENGTH 0x2000
|
|
#define CFG_PAGE_OFFSET 0x1000
|
|
#define CFG_PAGE_SIZE (PCI_CONFIG_MMIO_LENGTH - CFG_PAGE_OFFSET)
|
|
|
|
#define MAX_SUPPORTED_MSI_MESSAGES 0x400
|
|
|
|
#define STATUS_REVISION_MISMATCH 0xC0000059
|
|
|
|
/* space for 32bit serial number as string */
|
|
#define SLOT_NAME_SIZE 11
|
|
|
|
/*
|
|
* Size of requestor for VMbus; the value is based on the observation
|
|
* that having more than one request outstanding is 'rare', and so 64
|
|
* should be generous in ensuring that we don't ever run out.
|
|
*/
|
|
#define HV_PCI_RQSTOR_SIZE 64
|
|
|
|
/*
|
|
* Message Types
|
|
*/
|
|
|
|
enum pci_message_type {
|
|
/*
|
|
* Version 1.1
|
|
*/
|
|
PCI_MESSAGE_BASE = 0x42490000,
|
|
PCI_BUS_RELATIONS = PCI_MESSAGE_BASE + 0,
|
|
PCI_QUERY_BUS_RELATIONS = PCI_MESSAGE_BASE + 1,
|
|
PCI_POWER_STATE_CHANGE = PCI_MESSAGE_BASE + 4,
|
|
PCI_QUERY_RESOURCE_REQUIREMENTS = PCI_MESSAGE_BASE + 5,
|
|
PCI_QUERY_RESOURCE_RESOURCES = PCI_MESSAGE_BASE + 6,
|
|
PCI_BUS_D0ENTRY = PCI_MESSAGE_BASE + 7,
|
|
PCI_BUS_D0EXIT = PCI_MESSAGE_BASE + 8,
|
|
PCI_READ_BLOCK = PCI_MESSAGE_BASE + 9,
|
|
PCI_WRITE_BLOCK = PCI_MESSAGE_BASE + 0xA,
|
|
PCI_EJECT = PCI_MESSAGE_BASE + 0xB,
|
|
PCI_QUERY_STOP = PCI_MESSAGE_BASE + 0xC,
|
|
PCI_REENABLE = PCI_MESSAGE_BASE + 0xD,
|
|
PCI_QUERY_STOP_FAILED = PCI_MESSAGE_BASE + 0xE,
|
|
PCI_EJECTION_COMPLETE = PCI_MESSAGE_BASE + 0xF,
|
|
PCI_RESOURCES_ASSIGNED = PCI_MESSAGE_BASE + 0x10,
|
|
PCI_RESOURCES_RELEASED = PCI_MESSAGE_BASE + 0x11,
|
|
PCI_INVALIDATE_BLOCK = PCI_MESSAGE_BASE + 0x12,
|
|
PCI_QUERY_PROTOCOL_VERSION = PCI_MESSAGE_BASE + 0x13,
|
|
PCI_CREATE_INTERRUPT_MESSAGE = PCI_MESSAGE_BASE + 0x14,
|
|
PCI_DELETE_INTERRUPT_MESSAGE = PCI_MESSAGE_BASE + 0x15,
|
|
PCI_RESOURCES_ASSIGNED2 = PCI_MESSAGE_BASE + 0x16,
|
|
PCI_CREATE_INTERRUPT_MESSAGE2 = PCI_MESSAGE_BASE + 0x17,
|
|
PCI_DELETE_INTERRUPT_MESSAGE2 = PCI_MESSAGE_BASE + 0x18, /* unused */
|
|
PCI_BUS_RELATIONS2 = PCI_MESSAGE_BASE + 0x19,
|
|
PCI_RESOURCES_ASSIGNED3 = PCI_MESSAGE_BASE + 0x1A,
|
|
PCI_CREATE_INTERRUPT_MESSAGE3 = PCI_MESSAGE_BASE + 0x1B,
|
|
PCI_MESSAGE_MAXIMUM
|
|
};
|
|
|
|
/*
|
|
* Structures defining the virtual PCI Express protocol.
|
|
*/
|
|
|
|
union pci_version {
|
|
struct {
|
|
u16 minor_version;
|
|
u16 major_version;
|
|
} parts;
|
|
u32 version;
|
|
} __packed;
|
|
|
|
/*
|
|
* Function numbers are 8-bits wide on Express, as interpreted through ARI,
|
|
* which is all this driver does. This representation is the one used in
|
|
* Windows, which is what is expected when sending this back and forth with
|
|
* the Hyper-V parent partition.
|
|
*/
|
|
union win_slot_encoding {
|
|
struct {
|
|
u32 dev:5;
|
|
u32 func:3;
|
|
u32 reserved:24;
|
|
} bits;
|
|
u32 slot;
|
|
} __packed;
|
|
|
|
/*
|
|
* Pretty much as defined in the PCI Specifications.
|
|
*/
|
|
struct pci_function_description {
|
|
u16 v_id; /* vendor ID */
|
|
u16 d_id; /* device ID */
|
|
u8 rev;
|
|
u8 prog_intf;
|
|
u8 subclass;
|
|
u8 base_class;
|
|
u32 subsystem_id;
|
|
union win_slot_encoding win_slot;
|
|
u32 ser; /* serial number */
|
|
} __packed;
|
|
|
|
enum pci_device_description_flags {
|
|
HV_PCI_DEVICE_FLAG_NONE = 0x0,
|
|
HV_PCI_DEVICE_FLAG_NUMA_AFFINITY = 0x1,
|
|
};
|
|
|
|
struct pci_function_description2 {
|
|
u16 v_id; /* vendor ID */
|
|
u16 d_id; /* device ID */
|
|
u8 rev;
|
|
u8 prog_intf;
|
|
u8 subclass;
|
|
u8 base_class;
|
|
u32 subsystem_id;
|
|
union win_slot_encoding win_slot;
|
|
u32 ser; /* serial number */
|
|
u32 flags;
|
|
u16 virtual_numa_node;
|
|
u16 reserved;
|
|
} __packed;
|
|
|
|
/**
|
|
* struct hv_msi_desc
|
|
* @vector: IDT entry
|
|
* @delivery_mode: As defined in Intel's Programmer's
|
|
* Reference Manual, Volume 3, Chapter 8.
|
|
* @vector_count: Number of contiguous entries in the
|
|
* Interrupt Descriptor Table that are
|
|
* occupied by this Message-Signaled
|
|
* Interrupt. For "MSI", as first defined
|
|
* in PCI 2.2, this can be between 1 and
|
|
* 32. For "MSI-X," as first defined in PCI
|
|
* 3.0, this must be 1, as each MSI-X table
|
|
* entry would have its own descriptor.
|
|
* @reserved: Empty space
|
|
* @cpu_mask: All the target virtual processors.
|
|
*/
|
|
struct hv_msi_desc {
|
|
u8 vector;
|
|
u8 delivery_mode;
|
|
u16 vector_count;
|
|
u32 reserved;
|
|
u64 cpu_mask;
|
|
} __packed;
|
|
|
|
/**
|
|
* struct hv_msi_desc2 - 1.2 version of hv_msi_desc
|
|
* @vector: IDT entry
|
|
* @delivery_mode: As defined in Intel's Programmer's
|
|
* Reference Manual, Volume 3, Chapter 8.
|
|
* @vector_count: Number of contiguous entries in the
|
|
* Interrupt Descriptor Table that are
|
|
* occupied by this Message-Signaled
|
|
* Interrupt. For "MSI", as first defined
|
|
* in PCI 2.2, this can be between 1 and
|
|
* 32. For "MSI-X," as first defined in PCI
|
|
* 3.0, this must be 1, as each MSI-X table
|
|
* entry would have its own descriptor.
|
|
* @processor_count: number of bits enabled in array.
|
|
* @processor_array: All the target virtual processors.
|
|
*/
|
|
struct hv_msi_desc2 {
|
|
u8 vector;
|
|
u8 delivery_mode;
|
|
u16 vector_count;
|
|
u16 processor_count;
|
|
u16 processor_array[32];
|
|
} __packed;
|
|
|
|
/*
|
|
* struct hv_msi_desc3 - 1.3 version of hv_msi_desc
|
|
* Everything is the same as in 'hv_msi_desc2' except that the size of the
|
|
* 'vector' field is larger to support bigger vector values. For ex: LPI
|
|
* vectors on ARM.
|
|
*/
|
|
struct hv_msi_desc3 {
|
|
u32 vector;
|
|
u8 delivery_mode;
|
|
u8 reserved;
|
|
u16 vector_count;
|
|
u16 processor_count;
|
|
u16 processor_array[32];
|
|
} __packed;
|
|
|
|
/**
|
|
* struct tran_int_desc
|
|
* @reserved: unused, padding
|
|
* @vector_count: same as in hv_msi_desc
|
|
* @data: This is the "data payload" value that is
|
|
* written by the device when it generates
|
|
* a message-signaled interrupt, either MSI
|
|
* or MSI-X.
|
|
* @address: This is the address to which the data
|
|
* payload is written on interrupt
|
|
* generation.
|
|
*/
|
|
struct tran_int_desc {
|
|
u16 reserved;
|
|
u16 vector_count;
|
|
u32 data;
|
|
u64 address;
|
|
} __packed;
|
|
|
|
/*
|
|
* A generic message format for virtual PCI.
|
|
* Specific message formats are defined later in the file.
|
|
*/
|
|
|
|
struct pci_message {
|
|
u32 type;
|
|
} __packed;
|
|
|
|
struct pci_child_message {
|
|
struct pci_message message_type;
|
|
union win_slot_encoding wslot;
|
|
} __packed;
|
|
|
|
struct pci_incoming_message {
|
|
struct vmpacket_descriptor hdr;
|
|
struct pci_message message_type;
|
|
} __packed;
|
|
|
|
struct pci_response {
|
|
struct vmpacket_descriptor hdr;
|
|
s32 status; /* negative values are failures */
|
|
} __packed;
|
|
|
|
struct pci_packet {
|
|
void (*completion_func)(void *context, struct pci_response *resp,
|
|
int resp_packet_size);
|
|
void *compl_ctxt;
|
|
|
|
struct pci_message message[];
|
|
};
|
|
|
|
/*
|
|
* Specific message types supporting the PCI protocol.
|
|
*/
|
|
|
|
/*
|
|
* Version negotiation message. Sent from the guest to the host.
|
|
* The guest is free to try different versions until the host
|
|
* accepts the version.
|
|
*
|
|
* pci_version: The protocol version requested.
|
|
* is_last_attempt: If TRUE, this is the last version guest will request.
|
|
* reservedz: Reserved field, set to zero.
|
|
*/
|
|
|
|
struct pci_version_request {
|
|
struct pci_message message_type;
|
|
u32 protocol_version;
|
|
} __packed;
|
|
|
|
/*
|
|
* Bus D0 Entry. This is sent from the guest to the host when the virtual
|
|
* bus (PCI Express port) is ready for action.
|
|
*/
|
|
|
|
struct pci_bus_d0_entry {
|
|
struct pci_message message_type;
|
|
u32 reserved;
|
|
u64 mmio_base;
|
|
} __packed;
|
|
|
|
struct pci_bus_relations {
|
|
struct pci_incoming_message incoming;
|
|
u32 device_count;
|
|
struct pci_function_description func[];
|
|
} __packed;
|
|
|
|
struct pci_bus_relations2 {
|
|
struct pci_incoming_message incoming;
|
|
u32 device_count;
|
|
struct pci_function_description2 func[];
|
|
} __packed;
|
|
|
|
struct pci_q_res_req_response {
|
|
struct vmpacket_descriptor hdr;
|
|
s32 status; /* negative values are failures */
|
|
u32 probed_bar[PCI_STD_NUM_BARS];
|
|
} __packed;
|
|
|
|
struct pci_set_power {
|
|
struct pci_message message_type;
|
|
union win_slot_encoding wslot;
|
|
u32 power_state; /* In Windows terms */
|
|
u32 reserved;
|
|
} __packed;
|
|
|
|
struct pci_set_power_response {
|
|
struct vmpacket_descriptor hdr;
|
|
s32 status; /* negative values are failures */
|
|
union win_slot_encoding wslot;
|
|
u32 resultant_state; /* In Windows terms */
|
|
u32 reserved;
|
|
} __packed;
|
|
|
|
struct pci_resources_assigned {
|
|
struct pci_message message_type;
|
|
union win_slot_encoding wslot;
|
|
u8 memory_range[0x14][6]; /* not used here */
|
|
u32 msi_descriptors;
|
|
u32 reserved[4];
|
|
} __packed;
|
|
|
|
struct pci_resources_assigned2 {
|
|
struct pci_message message_type;
|
|
union win_slot_encoding wslot;
|
|
u8 memory_range[0x14][6]; /* not used here */
|
|
u32 msi_descriptor_count;
|
|
u8 reserved[70];
|
|
} __packed;
|
|
|
|
struct pci_create_interrupt {
|
|
struct pci_message message_type;
|
|
union win_slot_encoding wslot;
|
|
struct hv_msi_desc int_desc;
|
|
} __packed;
|
|
|
|
struct pci_create_int_response {
|
|
struct pci_response response;
|
|
u32 reserved;
|
|
struct tran_int_desc int_desc;
|
|
} __packed;
|
|
|
|
struct pci_create_interrupt2 {
|
|
struct pci_message message_type;
|
|
union win_slot_encoding wslot;
|
|
struct hv_msi_desc2 int_desc;
|
|
} __packed;
|
|
|
|
struct pci_create_interrupt3 {
|
|
struct pci_message message_type;
|
|
union win_slot_encoding wslot;
|
|
struct hv_msi_desc3 int_desc;
|
|
} __packed;
|
|
|
|
struct pci_delete_interrupt {
|
|
struct pci_message message_type;
|
|
union win_slot_encoding wslot;
|
|
struct tran_int_desc int_desc;
|
|
} __packed;
|
|
|
|
/*
|
|
* Note: the VM must pass a valid block id, wslot and bytes_requested.
|
|
*/
|
|
struct pci_read_block {
|
|
struct pci_message message_type;
|
|
u32 block_id;
|
|
union win_slot_encoding wslot;
|
|
u32 bytes_requested;
|
|
} __packed;
|
|
|
|
struct pci_read_block_response {
|
|
struct vmpacket_descriptor hdr;
|
|
u32 status;
|
|
u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX];
|
|
} __packed;
|
|
|
|
/*
|
|
* Note: the VM must pass a valid block id, wslot and byte_count.
|
|
*/
|
|
struct pci_write_block {
|
|
struct pci_message message_type;
|
|
u32 block_id;
|
|
union win_slot_encoding wslot;
|
|
u32 byte_count;
|
|
u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX];
|
|
} __packed;
|
|
|
|
struct pci_dev_inval_block {
|
|
struct pci_incoming_message incoming;
|
|
union win_slot_encoding wslot;
|
|
u64 block_mask;
|
|
} __packed;
|
|
|
|
struct pci_dev_incoming {
|
|
struct pci_incoming_message incoming;
|
|
union win_slot_encoding wslot;
|
|
} __packed;
|
|
|
|
struct pci_eject_response {
|
|
struct pci_message message_type;
|
|
union win_slot_encoding wslot;
|
|
u32 status;
|
|
} __packed;
|
|
|
|
static int pci_ring_size = (4 * PAGE_SIZE);
|
|
|
|
/*
|
|
* Driver specific state.
|
|
*/
|
|
|
|
enum hv_pcibus_state {
|
|
hv_pcibus_init = 0,
|
|
hv_pcibus_probed,
|
|
hv_pcibus_installed,
|
|
hv_pcibus_removing,
|
|
hv_pcibus_maximum
|
|
};
|
|
|
|
struct hv_pcibus_device {
|
|
#ifdef CONFIG_X86
|
|
struct pci_sysdata sysdata;
|
|
#elif defined(CONFIG_ARM64)
|
|
struct pci_config_window sysdata;
|
|
#endif
|
|
struct pci_host_bridge *bridge;
|
|
struct fwnode_handle *fwnode;
|
|
/* Protocol version negotiated with the host */
|
|
enum pci_protocol_version_t protocol_version;
|
|
enum hv_pcibus_state state;
|
|
struct hv_device *hdev;
|
|
resource_size_t low_mmio_space;
|
|
resource_size_t high_mmio_space;
|
|
struct resource *mem_config;
|
|
struct resource *low_mmio_res;
|
|
struct resource *high_mmio_res;
|
|
struct completion *survey_event;
|
|
struct pci_bus *pci_bus;
|
|
spinlock_t config_lock; /* Avoid two threads writing index page */
|
|
spinlock_t device_list_lock; /* Protect lists below */
|
|
void __iomem *cfg_addr;
|
|
|
|
struct list_head children;
|
|
struct list_head dr_list;
|
|
|
|
struct msi_domain_info msi_info;
|
|
struct irq_domain *irq_domain;
|
|
|
|
spinlock_t retarget_msi_interrupt_lock;
|
|
|
|
struct workqueue_struct *wq;
|
|
|
|
/* Highest slot of child device with resources allocated */
|
|
int wslot_res_allocated;
|
|
|
|
/* hypercall arg, must not cross page boundary */
|
|
struct hv_retarget_device_interrupt retarget_msi_interrupt_params;
|
|
|
|
/*
|
|
* Don't put anything here: retarget_msi_interrupt_params must be last
|
|
*/
|
|
};
|
|
|
|
/*
|
|
* Tracks "Device Relations" messages from the host, which must be both
|
|
* processed in order and deferred so that they don't run in the context
|
|
* of the incoming packet callback.
|
|
*/
|
|
struct hv_dr_work {
|
|
struct work_struct wrk;
|
|
struct hv_pcibus_device *bus;
|
|
};
|
|
|
|
struct hv_pcidev_description {
|
|
u16 v_id; /* vendor ID */
|
|
u16 d_id; /* device ID */
|
|
u8 rev;
|
|
u8 prog_intf;
|
|
u8 subclass;
|
|
u8 base_class;
|
|
u32 subsystem_id;
|
|
union win_slot_encoding win_slot;
|
|
u32 ser; /* serial number */
|
|
u32 flags;
|
|
u16 virtual_numa_node;
|
|
};
|
|
|
|
struct hv_dr_state {
|
|
struct list_head list_entry;
|
|
u32 device_count;
|
|
struct hv_pcidev_description func[];
|
|
};
|
|
|
|
enum hv_pcichild_state {
|
|
hv_pcichild_init = 0,
|
|
hv_pcichild_requirements,
|
|
hv_pcichild_resourced,
|
|
hv_pcichild_ejecting,
|
|
hv_pcichild_maximum
|
|
};
|
|
|
|
struct hv_pci_dev {
|
|
/* List protected by pci_rescan_remove_lock */
|
|
struct list_head list_entry;
|
|
refcount_t refs;
|
|
enum hv_pcichild_state state;
|
|
struct pci_slot *pci_slot;
|
|
struct hv_pcidev_description desc;
|
|
bool reported_missing;
|
|
struct hv_pcibus_device *hbus;
|
|
struct work_struct wrk;
|
|
|
|
void (*block_invalidate)(void *context, u64 block_mask);
|
|
void *invalidate_context;
|
|
|
|
/*
|
|
* What would be observed if one wrote 0xFFFFFFFF to a BAR and then
|
|
* read it back, for each of the BAR offsets within config space.
|
|
*/
|
|
u32 probed_bar[PCI_STD_NUM_BARS];
|
|
};
|
|
|
|
struct hv_pci_compl {
|
|
struct completion host_event;
|
|
s32 completion_status;
|
|
};
|
|
|
|
static void hv_pci_onchannelcallback(void *context);
|
|
|
|
#ifdef CONFIG_X86
|
|
#define DELIVERY_MODE APIC_DELIVERY_MODE_FIXED
|
|
#define FLOW_HANDLER handle_edge_irq
|
|
#define FLOW_NAME "edge"
|
|
|
|
static int hv_pci_irqchip_init(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static struct irq_domain *hv_pci_get_root_domain(void)
|
|
{
|
|
return x86_vector_domain;
|
|
}
|
|
|
|
static unsigned int hv_msi_get_int_vector(struct irq_data *data)
|
|
{
|
|
struct irq_cfg *cfg = irqd_cfg(data);
|
|
|
|
return cfg->vector;
|
|
}
|
|
|
|
#define hv_msi_prepare pci_msi_prepare
|
|
|
|
/**
|
|
* hv_arch_irq_unmask() - "Unmask" the IRQ by setting its current
|
|
* affinity.
|
|
* @data: Describes the IRQ
|
|
*
|
|
* Build new a destination for the MSI and make a hypercall to
|
|
* update the Interrupt Redirection Table. "Device Logical ID"
|
|
* is built out of this PCI bus's instance GUID and the function
|
|
* number of the device.
|
|
*/
|
|
static void hv_arch_irq_unmask(struct irq_data *data)
|
|
{
|
|
struct msi_desc *msi_desc = irq_data_get_msi_desc(data);
|
|
struct hv_retarget_device_interrupt *params;
|
|
struct tran_int_desc *int_desc;
|
|
struct hv_pcibus_device *hbus;
|
|
const struct cpumask *dest;
|
|
cpumask_var_t tmp;
|
|
struct pci_bus *pbus;
|
|
struct pci_dev *pdev;
|
|
unsigned long flags;
|
|
u32 var_size = 0;
|
|
int cpu, nr_bank;
|
|
u64 res;
|
|
|
|
dest = irq_data_get_effective_affinity_mask(data);
|
|
pdev = msi_desc_to_pci_dev(msi_desc);
|
|
pbus = pdev->bus;
|
|
hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
|
|
int_desc = data->chip_data;
|
|
|
|
spin_lock_irqsave(&hbus->retarget_msi_interrupt_lock, flags);
|
|
|
|
params = &hbus->retarget_msi_interrupt_params;
|
|
memset(params, 0, sizeof(*params));
|
|
params->partition_id = HV_PARTITION_ID_SELF;
|
|
params->int_entry.source = HV_INTERRUPT_SOURCE_MSI;
|
|
params->int_entry.msi_entry.address.as_uint32 = int_desc->address & 0xffffffff;
|
|
params->int_entry.msi_entry.data.as_uint32 = int_desc->data;
|
|
params->device_id = (hbus->hdev->dev_instance.b[5] << 24) |
|
|
(hbus->hdev->dev_instance.b[4] << 16) |
|
|
(hbus->hdev->dev_instance.b[7] << 8) |
|
|
(hbus->hdev->dev_instance.b[6] & 0xf8) |
|
|
PCI_FUNC(pdev->devfn);
|
|
params->int_target.vector = hv_msi_get_int_vector(data);
|
|
|
|
/*
|
|
* Honoring apic->delivery_mode set to APIC_DELIVERY_MODE_FIXED by
|
|
* setting the HV_DEVICE_INTERRUPT_TARGET_MULTICAST flag results in a
|
|
* spurious interrupt storm. Not doing so does not seem to have a
|
|
* negative effect (yet?).
|
|
*/
|
|
|
|
if (hbus->protocol_version >= PCI_PROTOCOL_VERSION_1_2) {
|
|
/*
|
|
* PCI_PROTOCOL_VERSION_1_2 supports the VP_SET version of the
|
|
* HVCALL_RETARGET_INTERRUPT hypercall, which also coincides
|
|
* with >64 VP support.
|
|
* ms_hyperv.hints & HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED
|
|
* is not sufficient for this hypercall.
|
|
*/
|
|
params->int_target.flags |=
|
|
HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET;
|
|
|
|
if (!alloc_cpumask_var(&tmp, GFP_ATOMIC)) {
|
|
res = 1;
|
|
goto exit_unlock;
|
|
}
|
|
|
|
cpumask_and(tmp, dest, cpu_online_mask);
|
|
nr_bank = cpumask_to_vpset(¶ms->int_target.vp_set, tmp);
|
|
free_cpumask_var(tmp);
|
|
|
|
if (nr_bank <= 0) {
|
|
res = 1;
|
|
goto exit_unlock;
|
|
}
|
|
|
|
/*
|
|
* var-sized hypercall, var-size starts after vp_mask (thus
|
|
* vp_set.format does not count, but vp_set.valid_bank_mask
|
|
* does).
|
|
*/
|
|
var_size = 1 + nr_bank;
|
|
} else {
|
|
for_each_cpu_and(cpu, dest, cpu_online_mask) {
|
|
params->int_target.vp_mask |=
|
|
(1ULL << hv_cpu_number_to_vp_number(cpu));
|
|
}
|
|
}
|
|
|
|
res = hv_do_hypercall(HVCALL_RETARGET_INTERRUPT | (var_size << 17),
|
|
params, NULL);
|
|
|
|
exit_unlock:
|
|
spin_unlock_irqrestore(&hbus->retarget_msi_interrupt_lock, flags);
|
|
|
|
/*
|
|
* During hibernation, when a CPU is offlined, the kernel tries
|
|
* to move the interrupt to the remaining CPUs that haven't
|
|
* been offlined yet. In this case, the below hv_do_hypercall()
|
|
* always fails since the vmbus channel has been closed:
|
|
* refer to cpu_disable_common() -> fixup_irqs() ->
|
|
* irq_migrate_all_off_this_cpu() -> migrate_one_irq().
|
|
*
|
|
* Suppress the error message for hibernation because the failure
|
|
* during hibernation does not matter (at this time all the devices
|
|
* have been frozen). Note: the correct affinity info is still updated
|
|
* into the irqdata data structure in migrate_one_irq() ->
|
|
* irq_do_set_affinity(), so later when the VM resumes,
|
|
* hv_pci_restore_msi_state() is able to correctly restore the
|
|
* interrupt with the correct affinity.
|
|
*/
|
|
if (!hv_result_success(res) && hbus->state != hv_pcibus_removing)
|
|
dev_err(&hbus->hdev->device,
|
|
"%s() failed: %#llx", __func__, res);
|
|
}
|
|
#elif defined(CONFIG_ARM64)
|
|
/*
|
|
* SPI vectors to use for vPCI; arch SPIs range is [32, 1019], but leaving a bit
|
|
* of room at the start to allow for SPIs to be specified through ACPI and
|
|
* starting with a power of two to satisfy power of 2 multi-MSI requirement.
|
|
*/
|
|
#define HV_PCI_MSI_SPI_START 64
|
|
#define HV_PCI_MSI_SPI_NR (1020 - HV_PCI_MSI_SPI_START)
|
|
#define DELIVERY_MODE 0
|
|
#define FLOW_HANDLER NULL
|
|
#define FLOW_NAME NULL
|
|
#define hv_msi_prepare NULL
|
|
|
|
struct hv_pci_chip_data {
|
|
DECLARE_BITMAP(spi_map, HV_PCI_MSI_SPI_NR);
|
|
struct mutex map_lock;
|
|
};
|
|
|
|
/* Hyper-V vPCI MSI GIC IRQ domain */
|
|
static struct irq_domain *hv_msi_gic_irq_domain;
|
|
|
|
/* Hyper-V PCI MSI IRQ chip */
|
|
static struct irq_chip hv_arm64_msi_irq_chip = {
|
|
.name = "MSI",
|
|
.irq_set_affinity = irq_chip_set_affinity_parent,
|
|
.irq_eoi = irq_chip_eoi_parent,
|
|
.irq_mask = irq_chip_mask_parent,
|
|
.irq_unmask = irq_chip_unmask_parent
|
|
};
|
|
|
|
static unsigned int hv_msi_get_int_vector(struct irq_data *irqd)
|
|
{
|
|
return irqd->parent_data->hwirq;
|
|
}
|
|
|
|
/*
|
|
* @nr_bm_irqs: Indicates the number of IRQs that were allocated from
|
|
* the bitmap.
|
|
* @nr_dom_irqs: Indicates the number of IRQs that were allocated from
|
|
* the parent domain.
|
|
*/
|
|
static void hv_pci_vec_irq_free(struct irq_domain *domain,
|
|
unsigned int virq,
|
|
unsigned int nr_bm_irqs,
|
|
unsigned int nr_dom_irqs)
|
|
{
|
|
struct hv_pci_chip_data *chip_data = domain->host_data;
|
|
struct irq_data *d = irq_domain_get_irq_data(domain, virq);
|
|
int first = d->hwirq - HV_PCI_MSI_SPI_START;
|
|
int i;
|
|
|
|
mutex_lock(&chip_data->map_lock);
|
|
bitmap_release_region(chip_data->spi_map,
|
|
first,
|
|
get_count_order(nr_bm_irqs));
|
|
mutex_unlock(&chip_data->map_lock);
|
|
for (i = 0; i < nr_dom_irqs; i++) {
|
|
if (i)
|
|
d = irq_domain_get_irq_data(domain, virq + i);
|
|
irq_domain_reset_irq_data(d);
|
|
}
|
|
|
|
irq_domain_free_irqs_parent(domain, virq, nr_dom_irqs);
|
|
}
|
|
|
|
static void hv_pci_vec_irq_domain_free(struct irq_domain *domain,
|
|
unsigned int virq,
|
|
unsigned int nr_irqs)
|
|
{
|
|
hv_pci_vec_irq_free(domain, virq, nr_irqs, nr_irqs);
|
|
}
|
|
|
|
static int hv_pci_vec_alloc_device_irq(struct irq_domain *domain,
|
|
unsigned int nr_irqs,
|
|
irq_hw_number_t *hwirq)
|
|
{
|
|
struct hv_pci_chip_data *chip_data = domain->host_data;
|
|
int index;
|
|
|
|
/* Find and allocate region from the SPI bitmap */
|
|
mutex_lock(&chip_data->map_lock);
|
|
index = bitmap_find_free_region(chip_data->spi_map,
|
|
HV_PCI_MSI_SPI_NR,
|
|
get_count_order(nr_irqs));
|
|
mutex_unlock(&chip_data->map_lock);
|
|
if (index < 0)
|
|
return -ENOSPC;
|
|
|
|
*hwirq = index + HV_PCI_MSI_SPI_START;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int hv_pci_vec_irq_gic_domain_alloc(struct irq_domain *domain,
|
|
unsigned int virq,
|
|
irq_hw_number_t hwirq)
|
|
{
|
|
struct irq_fwspec fwspec;
|
|
struct irq_data *d;
|
|
int ret;
|
|
|
|
fwspec.fwnode = domain->parent->fwnode;
|
|
fwspec.param_count = 2;
|
|
fwspec.param[0] = hwirq;
|
|
fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
|
|
|
|
ret = irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* Since the interrupt specifier is not coming from ACPI or DT, the
|
|
* trigger type will need to be set explicitly. Otherwise, it will be
|
|
* set to whatever is in the GIC configuration.
|
|
*/
|
|
d = irq_domain_get_irq_data(domain->parent, virq);
|
|
|
|
return d->chip->irq_set_type(d, IRQ_TYPE_EDGE_RISING);
|
|
}
|
|
|
|
static int hv_pci_vec_irq_domain_alloc(struct irq_domain *domain,
|
|
unsigned int virq, unsigned int nr_irqs,
|
|
void *args)
|
|
{
|
|
irq_hw_number_t hwirq;
|
|
unsigned int i;
|
|
int ret;
|
|
|
|
ret = hv_pci_vec_alloc_device_irq(domain, nr_irqs, &hwirq);
|
|
if (ret)
|
|
return ret;
|
|
|
|
for (i = 0; i < nr_irqs; i++) {
|
|
ret = hv_pci_vec_irq_gic_domain_alloc(domain, virq + i,
|
|
hwirq + i);
|
|
if (ret) {
|
|
hv_pci_vec_irq_free(domain, virq, nr_irqs, i);
|
|
return ret;
|
|
}
|
|
|
|
irq_domain_set_hwirq_and_chip(domain, virq + i,
|
|
hwirq + i,
|
|
&hv_arm64_msi_irq_chip,
|
|
domain->host_data);
|
|
pr_debug("pID:%d vID:%u\n", (int)(hwirq + i), virq + i);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Pick the first cpu as the irq affinity that can be temporarily used for
|
|
* composing MSI from the hypervisor. GIC will eventually set the right
|
|
* affinity for the irq and the 'unmask' will retarget the interrupt to that
|
|
* cpu.
|
|
*/
|
|
static int hv_pci_vec_irq_domain_activate(struct irq_domain *domain,
|
|
struct irq_data *irqd, bool reserve)
|
|
{
|
|
int cpu = cpumask_first(cpu_present_mask);
|
|
|
|
irq_data_update_effective_affinity(irqd, cpumask_of(cpu));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct irq_domain_ops hv_pci_domain_ops = {
|
|
.alloc = hv_pci_vec_irq_domain_alloc,
|
|
.free = hv_pci_vec_irq_domain_free,
|
|
.activate = hv_pci_vec_irq_domain_activate,
|
|
};
|
|
|
|
static int hv_pci_irqchip_init(void)
|
|
{
|
|
static struct hv_pci_chip_data *chip_data;
|
|
struct fwnode_handle *fn = NULL;
|
|
int ret = -ENOMEM;
|
|
|
|
chip_data = kzalloc(sizeof(*chip_data), GFP_KERNEL);
|
|
if (!chip_data)
|
|
return ret;
|
|
|
|
mutex_init(&chip_data->map_lock);
|
|
fn = irq_domain_alloc_named_fwnode("hv_vpci_arm64");
|
|
if (!fn)
|
|
goto free_chip;
|
|
|
|
/*
|
|
* IRQ domain once enabled, should not be removed since there is no
|
|
* way to ensure that all the corresponding devices are also gone and
|
|
* no interrupts will be generated.
|
|
*/
|
|
hv_msi_gic_irq_domain = acpi_irq_create_hierarchy(0, HV_PCI_MSI_SPI_NR,
|
|
fn, &hv_pci_domain_ops,
|
|
chip_data);
|
|
|
|
if (!hv_msi_gic_irq_domain) {
|
|
pr_err("Failed to create Hyper-V arm64 vPCI MSI IRQ domain\n");
|
|
goto free_chip;
|
|
}
|
|
|
|
return 0;
|
|
|
|
free_chip:
|
|
kfree(chip_data);
|
|
if (fn)
|
|
irq_domain_free_fwnode(fn);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static struct irq_domain *hv_pci_get_root_domain(void)
|
|
{
|
|
return hv_msi_gic_irq_domain;
|
|
}
|
|
|
|
/*
|
|
* SPIs are used for interrupts of PCI devices and SPIs is managed via GICD
|
|
* registers which Hyper-V already supports, so no hypercall needed.
|
|
*/
|
|
static void hv_arch_irq_unmask(struct irq_data *data) { }
|
|
#endif /* CONFIG_ARM64 */
|
|
|
|
/**
|
|
* hv_pci_generic_compl() - Invoked for a completion packet
|
|
* @context: Set up by the sender of the packet.
|
|
* @resp: The response packet
|
|
* @resp_packet_size: Size in bytes of the packet
|
|
*
|
|
* This function is used to trigger an event and report status
|
|
* for any message for which the completion packet contains a
|
|
* status and nothing else.
|
|
*/
|
|
static void hv_pci_generic_compl(void *context, struct pci_response *resp,
|
|
int resp_packet_size)
|
|
{
|
|
struct hv_pci_compl *comp_pkt = context;
|
|
|
|
comp_pkt->completion_status = resp->status;
|
|
complete(&comp_pkt->host_event);
|
|
}
|
|
|
|
static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
|
|
u32 wslot);
|
|
|
|
static void get_pcichild(struct hv_pci_dev *hpdev)
|
|
{
|
|
refcount_inc(&hpdev->refs);
|
|
}
|
|
|
|
static void put_pcichild(struct hv_pci_dev *hpdev)
|
|
{
|
|
if (refcount_dec_and_test(&hpdev->refs))
|
|
kfree(hpdev);
|
|
}
|
|
|
|
/*
|
|
* There is no good way to get notified from vmbus_onoffer_rescind(),
|
|
* so let's use polling here, since this is not a hot path.
|
|
*/
|
|
static int wait_for_response(struct hv_device *hdev,
|
|
struct completion *comp)
|
|
{
|
|
while (true) {
|
|
if (hdev->channel->rescind) {
|
|
dev_warn_once(&hdev->device, "The device is gone.\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
if (wait_for_completion_timeout(comp, HZ / 10))
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* devfn_to_wslot() - Convert from Linux PCI slot to Windows
|
|
* @devfn: The Linux representation of PCI slot
|
|
*
|
|
* Windows uses a slightly different representation of PCI slot.
|
|
*
|
|
* Return: The Windows representation
|
|
*/
|
|
static u32 devfn_to_wslot(int devfn)
|
|
{
|
|
union win_slot_encoding wslot;
|
|
|
|
wslot.slot = 0;
|
|
wslot.bits.dev = PCI_SLOT(devfn);
|
|
wslot.bits.func = PCI_FUNC(devfn);
|
|
|
|
return wslot.slot;
|
|
}
|
|
|
|
/**
|
|
* wslot_to_devfn() - Convert from Windows PCI slot to Linux
|
|
* @wslot: The Windows representation of PCI slot
|
|
*
|
|
* Windows uses a slightly different representation of PCI slot.
|
|
*
|
|
* Return: The Linux representation
|
|
*/
|
|
static int wslot_to_devfn(u32 wslot)
|
|
{
|
|
union win_slot_encoding slot_no;
|
|
|
|
slot_no.slot = wslot;
|
|
return PCI_DEVFN(slot_no.bits.dev, slot_no.bits.func);
|
|
}
|
|
|
|
/*
|
|
* PCI Configuration Space for these root PCI buses is implemented as a pair
|
|
* of pages in memory-mapped I/O space. Writing to the first page chooses
|
|
* the PCI function being written or read. Once the first page has been
|
|
* written to, the following page maps in the entire configuration space of
|
|
* the function.
|
|
*/
|
|
|
|
/**
|
|
* _hv_pcifront_read_config() - Internal PCI config read
|
|
* @hpdev: The PCI driver's representation of the device
|
|
* @where: Offset within config space
|
|
* @size: Size of the transfer
|
|
* @val: Pointer to the buffer receiving the data
|
|
*/
|
|
static void _hv_pcifront_read_config(struct hv_pci_dev *hpdev, int where,
|
|
int size, u32 *val)
|
|
{
|
|
unsigned long flags;
|
|
void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where;
|
|
|
|
/*
|
|
* If the attempt is to read the IDs or the ROM BAR, simulate that.
|
|
*/
|
|
if (where + size <= PCI_COMMAND) {
|
|
memcpy(val, ((u8 *)&hpdev->desc.v_id) + where, size);
|
|
} else if (where >= PCI_CLASS_REVISION && where + size <=
|
|
PCI_CACHE_LINE_SIZE) {
|
|
memcpy(val, ((u8 *)&hpdev->desc.rev) + where -
|
|
PCI_CLASS_REVISION, size);
|
|
} else if (where >= PCI_SUBSYSTEM_VENDOR_ID && where + size <=
|
|
PCI_ROM_ADDRESS) {
|
|
memcpy(val, (u8 *)&hpdev->desc.subsystem_id + where -
|
|
PCI_SUBSYSTEM_VENDOR_ID, size);
|
|
} else if (where >= PCI_ROM_ADDRESS && where + size <=
|
|
PCI_CAPABILITY_LIST) {
|
|
/* ROM BARs are unimplemented */
|
|
*val = 0;
|
|
} else if (where >= PCI_INTERRUPT_LINE && where + size <=
|
|
PCI_INTERRUPT_PIN) {
|
|
/*
|
|
* Interrupt Line and Interrupt PIN are hard-wired to zero
|
|
* because this front-end only supports message-signaled
|
|
* interrupts.
|
|
*/
|
|
*val = 0;
|
|
} else if (where + size <= CFG_PAGE_SIZE) {
|
|
spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
|
|
/* Choose the function to be read. (See comment above) */
|
|
writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
|
|
/* Make sure the function was chosen before we start reading. */
|
|
mb();
|
|
/* Read from that function's config space. */
|
|
switch (size) {
|
|
case 1:
|
|
*val = readb(addr);
|
|
break;
|
|
case 2:
|
|
*val = readw(addr);
|
|
break;
|
|
default:
|
|
*val = readl(addr);
|
|
break;
|
|
}
|
|
/*
|
|
* Make sure the read was done before we release the spinlock
|
|
* allowing consecutive reads/writes.
|
|
*/
|
|
mb();
|
|
spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
|
|
} else {
|
|
dev_err(&hpdev->hbus->hdev->device,
|
|
"Attempt to read beyond a function's config space.\n");
|
|
}
|
|
}
|
|
|
|
static u16 hv_pcifront_get_vendor_id(struct hv_pci_dev *hpdev)
|
|
{
|
|
u16 ret;
|
|
unsigned long flags;
|
|
void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET +
|
|
PCI_VENDOR_ID;
|
|
|
|
spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
|
|
|
|
/* Choose the function to be read. (See comment above) */
|
|
writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
|
|
/* Make sure the function was chosen before we start reading. */
|
|
mb();
|
|
/* Read from that function's config space. */
|
|
ret = readw(addr);
|
|
/*
|
|
* mb() is not required here, because the spin_unlock_irqrestore()
|
|
* is a barrier.
|
|
*/
|
|
|
|
spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* _hv_pcifront_write_config() - Internal PCI config write
|
|
* @hpdev: The PCI driver's representation of the device
|
|
* @where: Offset within config space
|
|
* @size: Size of the transfer
|
|
* @val: The data being transferred
|
|
*/
|
|
static void _hv_pcifront_write_config(struct hv_pci_dev *hpdev, int where,
|
|
int size, u32 val)
|
|
{
|
|
unsigned long flags;
|
|
void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where;
|
|
|
|
if (where >= PCI_SUBSYSTEM_VENDOR_ID &&
|
|
where + size <= PCI_CAPABILITY_LIST) {
|
|
/* SSIDs and ROM BARs are read-only */
|
|
} else if (where >= PCI_COMMAND && where + size <= CFG_PAGE_SIZE) {
|
|
spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
|
|
/* Choose the function to be written. (See comment above) */
|
|
writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
|
|
/* Make sure the function was chosen before we start writing. */
|
|
wmb();
|
|
/* Write to that function's config space. */
|
|
switch (size) {
|
|
case 1:
|
|
writeb(val, addr);
|
|
break;
|
|
case 2:
|
|
writew(val, addr);
|
|
break;
|
|
default:
|
|
writel(val, addr);
|
|
break;
|
|
}
|
|
/*
|
|
* Make sure the write was done before we release the spinlock
|
|
* allowing consecutive reads/writes.
|
|
*/
|
|
mb();
|
|
spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
|
|
} else {
|
|
dev_err(&hpdev->hbus->hdev->device,
|
|
"Attempt to write beyond a function's config space.\n");
|
|
}
|
|
}
|
|
|
|
/**
|
|
* hv_pcifront_read_config() - Read configuration space
|
|
* @bus: PCI Bus structure
|
|
* @devfn: Device/function
|
|
* @where: Offset from base
|
|
* @size: Byte/word/dword
|
|
* @val: Value to be read
|
|
*
|
|
* Return: PCIBIOS_SUCCESSFUL on success
|
|
* PCIBIOS_DEVICE_NOT_FOUND on failure
|
|
*/
|
|
static int hv_pcifront_read_config(struct pci_bus *bus, unsigned int devfn,
|
|
int where, int size, u32 *val)
|
|
{
|
|
struct hv_pcibus_device *hbus =
|
|
container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
|
|
struct hv_pci_dev *hpdev;
|
|
|
|
hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
|
|
if (!hpdev)
|
|
return PCIBIOS_DEVICE_NOT_FOUND;
|
|
|
|
_hv_pcifront_read_config(hpdev, where, size, val);
|
|
|
|
put_pcichild(hpdev);
|
|
return PCIBIOS_SUCCESSFUL;
|
|
}
|
|
|
|
/**
|
|
* hv_pcifront_write_config() - Write configuration space
|
|
* @bus: PCI Bus structure
|
|
* @devfn: Device/function
|
|
* @where: Offset from base
|
|
* @size: Byte/word/dword
|
|
* @val: Value to be written to device
|
|
*
|
|
* Return: PCIBIOS_SUCCESSFUL on success
|
|
* PCIBIOS_DEVICE_NOT_FOUND on failure
|
|
*/
|
|
static int hv_pcifront_write_config(struct pci_bus *bus, unsigned int devfn,
|
|
int where, int size, u32 val)
|
|
{
|
|
struct hv_pcibus_device *hbus =
|
|
container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
|
|
struct hv_pci_dev *hpdev;
|
|
|
|
hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
|
|
if (!hpdev)
|
|
return PCIBIOS_DEVICE_NOT_FOUND;
|
|
|
|
_hv_pcifront_write_config(hpdev, where, size, val);
|
|
|
|
put_pcichild(hpdev);
|
|
return PCIBIOS_SUCCESSFUL;
|
|
}
|
|
|
|
/* PCIe operations */
|
|
static struct pci_ops hv_pcifront_ops = {
|
|
.read = hv_pcifront_read_config,
|
|
.write = hv_pcifront_write_config,
|
|
};
|
|
|
|
/*
|
|
* Paravirtual backchannel
|
|
*
|
|
* Hyper-V SR-IOV provides a backchannel mechanism in software for
|
|
* communication between a VF driver and a PF driver. These
|
|
* "configuration blocks" are similar in concept to PCI configuration space,
|
|
* but instead of doing reads and writes in 32-bit chunks through a very slow
|
|
* path, packets of up to 128 bytes can be sent or received asynchronously.
|
|
*
|
|
* Nearly every SR-IOV device contains just such a communications channel in
|
|
* hardware, so using this one in software is usually optional. Using the
|
|
* software channel, however, allows driver implementers to leverage software
|
|
* tools that fuzz the communications channel looking for vulnerabilities.
|
|
*
|
|
* The usage model for these packets puts the responsibility for reading or
|
|
* writing on the VF driver. The VF driver sends a read or a write packet,
|
|
* indicating which "block" is being referred to by number.
|
|
*
|
|
* If the PF driver wishes to initiate communication, it can "invalidate" one or
|
|
* more of the first 64 blocks. This invalidation is delivered via a callback
|
|
* supplied by the VF driver by this driver.
|
|
*
|
|
* No protocol is implied, except that supplied by the PF and VF drivers.
|
|
*/
|
|
|
|
struct hv_read_config_compl {
|
|
struct hv_pci_compl comp_pkt;
|
|
void *buf;
|
|
unsigned int len;
|
|
unsigned int bytes_returned;
|
|
};
|
|
|
|
/**
|
|
* hv_pci_read_config_compl() - Invoked when a response packet
|
|
* for a read config block operation arrives.
|
|
* @context: Identifies the read config operation
|
|
* @resp: The response packet itself
|
|
* @resp_packet_size: Size in bytes of the response packet
|
|
*/
|
|
static void hv_pci_read_config_compl(void *context, struct pci_response *resp,
|
|
int resp_packet_size)
|
|
{
|
|
struct hv_read_config_compl *comp = context;
|
|
struct pci_read_block_response *read_resp =
|
|
(struct pci_read_block_response *)resp;
|
|
unsigned int data_len, hdr_len;
|
|
|
|
hdr_len = offsetof(struct pci_read_block_response, bytes);
|
|
if (resp_packet_size < hdr_len) {
|
|
comp->comp_pkt.completion_status = -1;
|
|
goto out;
|
|
}
|
|
|
|
data_len = resp_packet_size - hdr_len;
|
|
if (data_len > 0 && read_resp->status == 0) {
|
|
comp->bytes_returned = min(comp->len, data_len);
|
|
memcpy(comp->buf, read_resp->bytes, comp->bytes_returned);
|
|
} else {
|
|
comp->bytes_returned = 0;
|
|
}
|
|
|
|
comp->comp_pkt.completion_status = read_resp->status;
|
|
out:
|
|
complete(&comp->comp_pkt.host_event);
|
|
}
|
|
|
|
/**
|
|
* hv_read_config_block() - Sends a read config block request to
|
|
* the back-end driver running in the Hyper-V parent partition.
|
|
* @pdev: The PCI driver's representation for this device.
|
|
* @buf: Buffer into which the config block will be copied.
|
|
* @len: Size in bytes of buf.
|
|
* @block_id: Identifies the config block which has been requested.
|
|
* @bytes_returned: Size which came back from the back-end driver.
|
|
*
|
|
* Return: 0 on success, -errno on failure
|
|
*/
|
|
static int hv_read_config_block(struct pci_dev *pdev, void *buf,
|
|
unsigned int len, unsigned int block_id,
|
|
unsigned int *bytes_returned)
|
|
{
|
|
struct hv_pcibus_device *hbus =
|
|
container_of(pdev->bus->sysdata, struct hv_pcibus_device,
|
|
sysdata);
|
|
struct {
|
|
struct pci_packet pkt;
|
|
char buf[sizeof(struct pci_read_block)];
|
|
} pkt;
|
|
struct hv_read_config_compl comp_pkt;
|
|
struct pci_read_block *read_blk;
|
|
int ret;
|
|
|
|
if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX)
|
|
return -EINVAL;
|
|
|
|
init_completion(&comp_pkt.comp_pkt.host_event);
|
|
comp_pkt.buf = buf;
|
|
comp_pkt.len = len;
|
|
|
|
memset(&pkt, 0, sizeof(pkt));
|
|
pkt.pkt.completion_func = hv_pci_read_config_compl;
|
|
pkt.pkt.compl_ctxt = &comp_pkt;
|
|
read_blk = (struct pci_read_block *)&pkt.pkt.message;
|
|
read_blk->message_type.type = PCI_READ_BLOCK;
|
|
read_blk->wslot.slot = devfn_to_wslot(pdev->devfn);
|
|
read_blk->block_id = block_id;
|
|
read_blk->bytes_requested = len;
|
|
|
|
ret = vmbus_sendpacket(hbus->hdev->channel, read_blk,
|
|
sizeof(*read_blk), (unsigned long)&pkt.pkt,
|
|
VM_PKT_DATA_INBAND,
|
|
VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = wait_for_response(hbus->hdev, &comp_pkt.comp_pkt.host_event);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (comp_pkt.comp_pkt.completion_status != 0 ||
|
|
comp_pkt.bytes_returned == 0) {
|
|
dev_err(&hbus->hdev->device,
|
|
"Read Config Block failed: 0x%x, bytes_returned=%d\n",
|
|
comp_pkt.comp_pkt.completion_status,
|
|
comp_pkt.bytes_returned);
|
|
return -EIO;
|
|
}
|
|
|
|
*bytes_returned = comp_pkt.bytes_returned;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* hv_pci_write_config_compl() - Invoked when a response packet for a write
|
|
* config block operation arrives.
|
|
* @context: Identifies the write config operation
|
|
* @resp: The response packet itself
|
|
* @resp_packet_size: Size in bytes of the response packet
|
|
*/
|
|
static void hv_pci_write_config_compl(void *context, struct pci_response *resp,
|
|
int resp_packet_size)
|
|
{
|
|
struct hv_pci_compl *comp_pkt = context;
|
|
|
|
comp_pkt->completion_status = resp->status;
|
|
complete(&comp_pkt->host_event);
|
|
}
|
|
|
|
/**
|
|
* hv_write_config_block() - Sends a write config block request to the
|
|
* back-end driver running in the Hyper-V parent partition.
|
|
* @pdev: The PCI driver's representation for this device.
|
|
* @buf: Buffer from which the config block will be copied.
|
|
* @len: Size in bytes of buf.
|
|
* @block_id: Identifies the config block which is being written.
|
|
*
|
|
* Return: 0 on success, -errno on failure
|
|
*/
|
|
static int hv_write_config_block(struct pci_dev *pdev, void *buf,
|
|
unsigned int len, unsigned int block_id)
|
|
{
|
|
struct hv_pcibus_device *hbus =
|
|
container_of(pdev->bus->sysdata, struct hv_pcibus_device,
|
|
sysdata);
|
|
struct {
|
|
struct pci_packet pkt;
|
|
char buf[sizeof(struct pci_write_block)];
|
|
u32 reserved;
|
|
} pkt;
|
|
struct hv_pci_compl comp_pkt;
|
|
struct pci_write_block *write_blk;
|
|
u32 pkt_size;
|
|
int ret;
|
|
|
|
if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX)
|
|
return -EINVAL;
|
|
|
|
init_completion(&comp_pkt.host_event);
|
|
|
|
memset(&pkt, 0, sizeof(pkt));
|
|
pkt.pkt.completion_func = hv_pci_write_config_compl;
|
|
pkt.pkt.compl_ctxt = &comp_pkt;
|
|
write_blk = (struct pci_write_block *)&pkt.pkt.message;
|
|
write_blk->message_type.type = PCI_WRITE_BLOCK;
|
|
write_blk->wslot.slot = devfn_to_wslot(pdev->devfn);
|
|
write_blk->block_id = block_id;
|
|
write_blk->byte_count = len;
|
|
memcpy(write_blk->bytes, buf, len);
|
|
pkt_size = offsetof(struct pci_write_block, bytes) + len;
|
|
/*
|
|
* This quirk is required on some hosts shipped around 2018, because
|
|
* these hosts don't check the pkt_size correctly (new hosts have been
|
|
* fixed since early 2019). The quirk is also safe on very old hosts
|
|
* and new hosts, because, on them, what really matters is the length
|
|
* specified in write_blk->byte_count.
|
|
*/
|
|
pkt_size += sizeof(pkt.reserved);
|
|
|
|
ret = vmbus_sendpacket(hbus->hdev->channel, write_blk, pkt_size,
|
|
(unsigned long)&pkt.pkt, VM_PKT_DATA_INBAND,
|
|
VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = wait_for_response(hbus->hdev, &comp_pkt.host_event);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (comp_pkt.completion_status != 0) {
|
|
dev_err(&hbus->hdev->device,
|
|
"Write Config Block failed: 0x%x\n",
|
|
comp_pkt.completion_status);
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* hv_register_block_invalidate() - Invoked when a config block invalidation
|
|
* arrives from the back-end driver.
|
|
* @pdev: The PCI driver's representation for this device.
|
|
* @context: Identifies the device.
|
|
* @block_invalidate: Identifies all of the blocks being invalidated.
|
|
*
|
|
* Return: 0 on success, -errno on failure
|
|
*/
|
|
static int hv_register_block_invalidate(struct pci_dev *pdev, void *context,
|
|
void (*block_invalidate)(void *context,
|
|
u64 block_mask))
|
|
{
|
|
struct hv_pcibus_device *hbus =
|
|
container_of(pdev->bus->sysdata, struct hv_pcibus_device,
|
|
sysdata);
|
|
struct hv_pci_dev *hpdev;
|
|
|
|
hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
|
|
if (!hpdev)
|
|
return -ENODEV;
|
|
|
|
hpdev->block_invalidate = block_invalidate;
|
|
hpdev->invalidate_context = context;
|
|
|
|
put_pcichild(hpdev);
|
|
return 0;
|
|
|
|
}
|
|
|
|
/* Interrupt management hooks */
|
|
static void hv_int_desc_free(struct hv_pci_dev *hpdev,
|
|
struct tran_int_desc *int_desc)
|
|
{
|
|
struct pci_delete_interrupt *int_pkt;
|
|
struct {
|
|
struct pci_packet pkt;
|
|
u8 buffer[sizeof(struct pci_delete_interrupt)];
|
|
} ctxt;
|
|
|
|
if (!int_desc->vector_count) {
|
|
kfree(int_desc);
|
|
return;
|
|
}
|
|
memset(&ctxt, 0, sizeof(ctxt));
|
|
int_pkt = (struct pci_delete_interrupt *)&ctxt.pkt.message;
|
|
int_pkt->message_type.type =
|
|
PCI_DELETE_INTERRUPT_MESSAGE;
|
|
int_pkt->wslot.slot = hpdev->desc.win_slot.slot;
|
|
int_pkt->int_desc = *int_desc;
|
|
vmbus_sendpacket(hpdev->hbus->hdev->channel, int_pkt, sizeof(*int_pkt),
|
|
0, VM_PKT_DATA_INBAND, 0);
|
|
kfree(int_desc);
|
|
}
|
|
|
|
/**
|
|
* hv_msi_free() - Free the MSI.
|
|
* @domain: The interrupt domain pointer
|
|
* @info: Extra MSI-related context
|
|
* @irq: Identifies the IRQ.
|
|
*
|
|
* The Hyper-V parent partition and hypervisor are tracking the
|
|
* messages that are in use, keeping the interrupt redirection
|
|
* table up to date. This callback sends a message that frees
|
|
* the IRT entry and related tracking nonsense.
|
|
*/
|
|
static void hv_msi_free(struct irq_domain *domain, struct msi_domain_info *info,
|
|
unsigned int irq)
|
|
{
|
|
struct hv_pcibus_device *hbus;
|
|
struct hv_pci_dev *hpdev;
|
|
struct pci_dev *pdev;
|
|
struct tran_int_desc *int_desc;
|
|
struct irq_data *irq_data = irq_domain_get_irq_data(domain, irq);
|
|
struct msi_desc *msi = irq_data_get_msi_desc(irq_data);
|
|
|
|
pdev = msi_desc_to_pci_dev(msi);
|
|
hbus = info->data;
|
|
int_desc = irq_data_get_irq_chip_data(irq_data);
|
|
if (!int_desc)
|
|
return;
|
|
|
|
irq_data->chip_data = NULL;
|
|
hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
|
|
if (!hpdev) {
|
|
kfree(int_desc);
|
|
return;
|
|
}
|
|
|
|
hv_int_desc_free(hpdev, int_desc);
|
|
put_pcichild(hpdev);
|
|
}
|
|
|
|
static void hv_irq_mask(struct irq_data *data)
|
|
{
|
|
pci_msi_mask_irq(data);
|
|
if (data->parent_data->chip->irq_mask)
|
|
irq_chip_mask_parent(data);
|
|
}
|
|
|
|
static void hv_irq_unmask(struct irq_data *data)
|
|
{
|
|
hv_arch_irq_unmask(data);
|
|
|
|
if (data->parent_data->chip->irq_unmask)
|
|
irq_chip_unmask_parent(data);
|
|
pci_msi_unmask_irq(data);
|
|
}
|
|
|
|
struct compose_comp_ctxt {
|
|
struct hv_pci_compl comp_pkt;
|
|
struct tran_int_desc int_desc;
|
|
};
|
|
|
|
static void hv_pci_compose_compl(void *context, struct pci_response *resp,
|
|
int resp_packet_size)
|
|
{
|
|
struct compose_comp_ctxt *comp_pkt = context;
|
|
struct pci_create_int_response *int_resp =
|
|
(struct pci_create_int_response *)resp;
|
|
|
|
if (resp_packet_size < sizeof(*int_resp)) {
|
|
comp_pkt->comp_pkt.completion_status = -1;
|
|
goto out;
|
|
}
|
|
comp_pkt->comp_pkt.completion_status = resp->status;
|
|
comp_pkt->int_desc = int_resp->int_desc;
|
|
out:
|
|
complete(&comp_pkt->comp_pkt.host_event);
|
|
}
|
|
|
|
static u32 hv_compose_msi_req_v1(
|
|
struct pci_create_interrupt *int_pkt,
|
|
u32 slot, u8 vector, u16 vector_count)
|
|
{
|
|
int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE;
|
|
int_pkt->wslot.slot = slot;
|
|
int_pkt->int_desc.vector = vector;
|
|
int_pkt->int_desc.vector_count = vector_count;
|
|
int_pkt->int_desc.delivery_mode = DELIVERY_MODE;
|
|
|
|
/*
|
|
* Create MSI w/ dummy vCPU set, overwritten by subsequent retarget in
|
|
* hv_irq_unmask().
|
|
*/
|
|
int_pkt->int_desc.cpu_mask = CPU_AFFINITY_ALL;
|
|
|
|
return sizeof(*int_pkt);
|
|
}
|
|
|
|
/*
|
|
* The vCPU selected by hv_compose_multi_msi_req_get_cpu() and
|
|
* hv_compose_msi_req_get_cpu() is a "dummy" vCPU because the final vCPU to be
|
|
* interrupted is specified later in hv_irq_unmask() and communicated to Hyper-V
|
|
* via the HVCALL_RETARGET_INTERRUPT hypercall. But the choice of dummy vCPU is
|
|
* not irrelevant because Hyper-V chooses the physical CPU to handle the
|
|
* interrupts based on the vCPU specified in message sent to the vPCI VSP in
|
|
* hv_compose_msi_msg(). Hyper-V's choice of pCPU is not visible to the guest,
|
|
* but assigning too many vPCI device interrupts to the same pCPU can cause a
|
|
* performance bottleneck. So we spread out the dummy vCPUs to influence Hyper-V
|
|
* to spread out the pCPUs that it selects.
|
|
*
|
|
* For the single-MSI and MSI-X cases, it's OK for hv_compose_msi_req_get_cpu()
|
|
* to always return the same dummy vCPU, because a second call to
|
|
* hv_compose_msi_msg() contains the "real" vCPU, causing Hyper-V to choose a
|
|
* new pCPU for the interrupt. But for the multi-MSI case, the second call to
|
|
* hv_compose_msi_msg() exits without sending a message to the vPCI VSP, so the
|
|
* original dummy vCPU is used. This dummy vCPU must be round-robin'ed so that
|
|
* the pCPUs are spread out. All interrupts for a multi-MSI device end up using
|
|
* the same pCPU, even though the vCPUs will be spread out by later calls
|
|
* to hv_irq_unmask(), but that is the best we can do now.
|
|
*
|
|
* With Hyper-V in Nov 2022, the HVCALL_RETARGET_INTERRUPT hypercall does *not*
|
|
* cause Hyper-V to reselect the pCPU based on the specified vCPU. Such an
|
|
* enhancement is planned for a future version. With that enhancement, the
|
|
* dummy vCPU selection won't matter, and interrupts for the same multi-MSI
|
|
* device will be spread across multiple pCPUs.
|
|
*/
|
|
|
|
/*
|
|
* Create MSI w/ dummy vCPU set targeting just one vCPU, overwritten
|
|
* by subsequent retarget in hv_irq_unmask().
|
|
*/
|
|
static int hv_compose_msi_req_get_cpu(const struct cpumask *affinity)
|
|
{
|
|
return cpumask_first_and(affinity, cpu_online_mask);
|
|
}
|
|
|
|
/*
|
|
* Make sure the dummy vCPU values for multi-MSI don't all point to vCPU0.
|
|
*/
|
|
static int hv_compose_multi_msi_req_get_cpu(void)
|
|
{
|
|
static DEFINE_SPINLOCK(multi_msi_cpu_lock);
|
|
|
|
/* -1 means starting with CPU 0 */
|
|
static int cpu_next = -1;
|
|
|
|
unsigned long flags;
|
|
int cpu;
|
|
|
|
spin_lock_irqsave(&multi_msi_cpu_lock, flags);
|
|
|
|
cpu_next = cpumask_next_wrap(cpu_next, cpu_online_mask, nr_cpu_ids,
|
|
false);
|
|
cpu = cpu_next;
|
|
|
|
spin_unlock_irqrestore(&multi_msi_cpu_lock, flags);
|
|
|
|
return cpu;
|
|
}
|
|
|
|
static u32 hv_compose_msi_req_v2(
|
|
struct pci_create_interrupt2 *int_pkt, int cpu,
|
|
u32 slot, u8 vector, u16 vector_count)
|
|
{
|
|
int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE2;
|
|
int_pkt->wslot.slot = slot;
|
|
int_pkt->int_desc.vector = vector;
|
|
int_pkt->int_desc.vector_count = vector_count;
|
|
int_pkt->int_desc.delivery_mode = DELIVERY_MODE;
|
|
int_pkt->int_desc.processor_array[0] =
|
|
hv_cpu_number_to_vp_number(cpu);
|
|
int_pkt->int_desc.processor_count = 1;
|
|
|
|
return sizeof(*int_pkt);
|
|
}
|
|
|
|
static u32 hv_compose_msi_req_v3(
|
|
struct pci_create_interrupt3 *int_pkt, int cpu,
|
|
u32 slot, u32 vector, u16 vector_count)
|
|
{
|
|
int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE3;
|
|
int_pkt->wslot.slot = slot;
|
|
int_pkt->int_desc.vector = vector;
|
|
int_pkt->int_desc.reserved = 0;
|
|
int_pkt->int_desc.vector_count = vector_count;
|
|
int_pkt->int_desc.delivery_mode = DELIVERY_MODE;
|
|
int_pkt->int_desc.processor_array[0] =
|
|
hv_cpu_number_to_vp_number(cpu);
|
|
int_pkt->int_desc.processor_count = 1;
|
|
|
|
return sizeof(*int_pkt);
|
|
}
|
|
|
|
/**
|
|
* hv_compose_msi_msg() - Supplies a valid MSI address/data
|
|
* @data: Everything about this MSI
|
|
* @msg: Buffer that is filled in by this function
|
|
*
|
|
* This function unpacks the IRQ looking for target CPU set, IDT
|
|
* vector and mode and sends a message to the parent partition
|
|
* asking for a mapping for that tuple in this partition. The
|
|
* response supplies a data value and address to which that data
|
|
* should be written to trigger that interrupt.
|
|
*/
|
|
static void hv_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
|
|
{
|
|
struct hv_pcibus_device *hbus;
|
|
struct vmbus_channel *channel;
|
|
struct hv_pci_dev *hpdev;
|
|
struct pci_bus *pbus;
|
|
struct pci_dev *pdev;
|
|
const struct cpumask *dest;
|
|
struct compose_comp_ctxt comp;
|
|
struct tran_int_desc *int_desc;
|
|
struct msi_desc *msi_desc;
|
|
/*
|
|
* vector_count should be u16: see hv_msi_desc, hv_msi_desc2
|
|
* and hv_msi_desc3. vector must be u32: see hv_msi_desc3.
|
|
*/
|
|
u16 vector_count;
|
|
u32 vector;
|
|
struct {
|
|
struct pci_packet pci_pkt;
|
|
union {
|
|
struct pci_create_interrupt v1;
|
|
struct pci_create_interrupt2 v2;
|
|
struct pci_create_interrupt3 v3;
|
|
} int_pkts;
|
|
} __packed ctxt;
|
|
bool multi_msi;
|
|
u64 trans_id;
|
|
u32 size;
|
|
int ret;
|
|
int cpu;
|
|
|
|
msi_desc = irq_data_get_msi_desc(data);
|
|
multi_msi = !msi_desc->pci.msi_attrib.is_msix &&
|
|
msi_desc->nvec_used > 1;
|
|
|
|
/* Reuse the previous allocation */
|
|
if (data->chip_data && multi_msi) {
|
|
int_desc = data->chip_data;
|
|
msg->address_hi = int_desc->address >> 32;
|
|
msg->address_lo = int_desc->address & 0xffffffff;
|
|
msg->data = int_desc->data;
|
|
return;
|
|
}
|
|
|
|
pdev = msi_desc_to_pci_dev(msi_desc);
|
|
dest = irq_data_get_effective_affinity_mask(data);
|
|
pbus = pdev->bus;
|
|
hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
|
|
channel = hbus->hdev->channel;
|
|
hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
|
|
if (!hpdev)
|
|
goto return_null_message;
|
|
|
|
/* Free any previous message that might have already been composed. */
|
|
if (data->chip_data && !multi_msi) {
|
|
int_desc = data->chip_data;
|
|
data->chip_data = NULL;
|
|
hv_int_desc_free(hpdev, int_desc);
|
|
}
|
|
|
|
int_desc = kzalloc(sizeof(*int_desc), GFP_ATOMIC);
|
|
if (!int_desc)
|
|
goto drop_reference;
|
|
|
|
if (multi_msi) {
|
|
/*
|
|
* If this is not the first MSI of Multi MSI, we already have
|
|
* a mapping. Can exit early.
|
|
*/
|
|
if (msi_desc->irq != data->irq) {
|
|
data->chip_data = int_desc;
|
|
int_desc->address = msi_desc->msg.address_lo |
|
|
(u64)msi_desc->msg.address_hi << 32;
|
|
int_desc->data = msi_desc->msg.data +
|
|
(data->irq - msi_desc->irq);
|
|
msg->address_hi = msi_desc->msg.address_hi;
|
|
msg->address_lo = msi_desc->msg.address_lo;
|
|
msg->data = int_desc->data;
|
|
put_pcichild(hpdev);
|
|
return;
|
|
}
|
|
/*
|
|
* The vector we select here is a dummy value. The correct
|
|
* value gets sent to the hypervisor in unmask(). This needs
|
|
* to be aligned with the count, and also not zero. Multi-msi
|
|
* is powers of 2 up to 32, so 32 will always work here.
|
|
*/
|
|
vector = 32;
|
|
vector_count = msi_desc->nvec_used;
|
|
cpu = hv_compose_multi_msi_req_get_cpu();
|
|
} else {
|
|
vector = hv_msi_get_int_vector(data);
|
|
vector_count = 1;
|
|
cpu = hv_compose_msi_req_get_cpu(dest);
|
|
}
|
|
|
|
/*
|
|
* hv_compose_msi_req_v1 and v2 are for x86 only, meaning 'vector'
|
|
* can't exceed u8. Cast 'vector' down to u8 for v1/v2 explicitly
|
|
* for better readability.
|
|
*/
|
|
memset(&ctxt, 0, sizeof(ctxt));
|
|
init_completion(&comp.comp_pkt.host_event);
|
|
ctxt.pci_pkt.completion_func = hv_pci_compose_compl;
|
|
ctxt.pci_pkt.compl_ctxt = ∁
|
|
|
|
switch (hbus->protocol_version) {
|
|
case PCI_PROTOCOL_VERSION_1_1:
|
|
size = hv_compose_msi_req_v1(&ctxt.int_pkts.v1,
|
|
hpdev->desc.win_slot.slot,
|
|
(u8)vector,
|
|
vector_count);
|
|
break;
|
|
|
|
case PCI_PROTOCOL_VERSION_1_2:
|
|
case PCI_PROTOCOL_VERSION_1_3:
|
|
size = hv_compose_msi_req_v2(&ctxt.int_pkts.v2,
|
|
cpu,
|
|
hpdev->desc.win_slot.slot,
|
|
(u8)vector,
|
|
vector_count);
|
|
break;
|
|
|
|
case PCI_PROTOCOL_VERSION_1_4:
|
|
size = hv_compose_msi_req_v3(&ctxt.int_pkts.v3,
|
|
cpu,
|
|
hpdev->desc.win_slot.slot,
|
|
vector,
|
|
vector_count);
|
|
break;
|
|
|
|
default:
|
|
/* As we only negotiate protocol versions known to this driver,
|
|
* this path should never hit. However, this is it not a hot
|
|
* path so we print a message to aid future updates.
|
|
*/
|
|
dev_err(&hbus->hdev->device,
|
|
"Unexpected vPCI protocol, update driver.");
|
|
goto free_int_desc;
|
|
}
|
|
|
|
ret = vmbus_sendpacket_getid(hpdev->hbus->hdev->channel, &ctxt.int_pkts,
|
|
size, (unsigned long)&ctxt.pci_pkt,
|
|
&trans_id, VM_PKT_DATA_INBAND,
|
|
VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
|
|
if (ret) {
|
|
dev_err(&hbus->hdev->device,
|
|
"Sending request for interrupt failed: 0x%x",
|
|
comp.comp_pkt.completion_status);
|
|
goto free_int_desc;
|
|
}
|
|
|
|
/*
|
|
* Prevents hv_pci_onchannelcallback() from running concurrently
|
|
* in the tasklet.
|
|
*/
|
|
tasklet_disable_in_atomic(&channel->callback_event);
|
|
|
|
/*
|
|
* Since this function is called with IRQ locks held, can't
|
|
* do normal wait for completion; instead poll.
|
|
*/
|
|
while (!try_wait_for_completion(&comp.comp_pkt.host_event)) {
|
|
unsigned long flags;
|
|
|
|
/* 0xFFFF means an invalid PCI VENDOR ID. */
|
|
if (hv_pcifront_get_vendor_id(hpdev) == 0xFFFF) {
|
|
dev_err_once(&hbus->hdev->device,
|
|
"the device has gone\n");
|
|
goto enable_tasklet;
|
|
}
|
|
|
|
/*
|
|
* Make sure that the ring buffer data structure doesn't get
|
|
* freed while we dereference the ring buffer pointer. Test
|
|
* for the channel's onchannel_callback being NULL within a
|
|
* sched_lock critical section. See also the inline comments
|
|
* in vmbus_reset_channel_cb().
|
|
*/
|
|
spin_lock_irqsave(&channel->sched_lock, flags);
|
|
if (unlikely(channel->onchannel_callback == NULL)) {
|
|
spin_unlock_irqrestore(&channel->sched_lock, flags);
|
|
goto enable_tasklet;
|
|
}
|
|
hv_pci_onchannelcallback(hbus);
|
|
spin_unlock_irqrestore(&channel->sched_lock, flags);
|
|
|
|
if (hpdev->state == hv_pcichild_ejecting) {
|
|
dev_err_once(&hbus->hdev->device,
|
|
"the device is being ejected\n");
|
|
goto enable_tasklet;
|
|
}
|
|
|
|
udelay(100);
|
|
}
|
|
|
|
tasklet_enable(&channel->callback_event);
|
|
|
|
if (comp.comp_pkt.completion_status < 0) {
|
|
dev_err(&hbus->hdev->device,
|
|
"Request for interrupt failed: 0x%x",
|
|
comp.comp_pkt.completion_status);
|
|
goto free_int_desc;
|
|
}
|
|
|
|
/*
|
|
* Record the assignment so that this can be unwound later. Using
|
|
* irq_set_chip_data() here would be appropriate, but the lock it takes
|
|
* is already held.
|
|
*/
|
|
*int_desc = comp.int_desc;
|
|
data->chip_data = int_desc;
|
|
|
|
/* Pass up the result. */
|
|
msg->address_hi = comp.int_desc.address >> 32;
|
|
msg->address_lo = comp.int_desc.address & 0xffffffff;
|
|
msg->data = comp.int_desc.data;
|
|
|
|
put_pcichild(hpdev);
|
|
return;
|
|
|
|
enable_tasklet:
|
|
tasklet_enable(&channel->callback_event);
|
|
/*
|
|
* The completion packet on the stack becomes invalid after 'return';
|
|
* remove the ID from the VMbus requestor if the identifier is still
|
|
* mapped to/associated with the packet. (The identifier could have
|
|
* been 're-used', i.e., already removed and (re-)mapped.)
|
|
*
|
|
* Cf. hv_pci_onchannelcallback().
|
|
*/
|
|
vmbus_request_addr_match(channel, trans_id, (unsigned long)&ctxt.pci_pkt);
|
|
free_int_desc:
|
|
kfree(int_desc);
|
|
drop_reference:
|
|
put_pcichild(hpdev);
|
|
return_null_message:
|
|
msg->address_hi = 0;
|
|
msg->address_lo = 0;
|
|
msg->data = 0;
|
|
}
|
|
|
|
/* HW Interrupt Chip Descriptor */
|
|
static struct irq_chip hv_msi_irq_chip = {
|
|
.name = "Hyper-V PCIe MSI",
|
|
.irq_compose_msi_msg = hv_compose_msi_msg,
|
|
.irq_set_affinity = irq_chip_set_affinity_parent,
|
|
#ifdef CONFIG_X86
|
|
.irq_ack = irq_chip_ack_parent,
|
|
#elif defined(CONFIG_ARM64)
|
|
.irq_eoi = irq_chip_eoi_parent,
|
|
#endif
|
|
.irq_mask = hv_irq_mask,
|
|
.irq_unmask = hv_irq_unmask,
|
|
};
|
|
|
|
static struct msi_domain_ops hv_msi_ops = {
|
|
.msi_prepare = hv_msi_prepare,
|
|
.msi_free = hv_msi_free,
|
|
};
|
|
|
|
/**
|
|
* hv_pcie_init_irq_domain() - Initialize IRQ domain
|
|
* @hbus: The root PCI bus
|
|
*
|
|
* This function creates an IRQ domain which will be used for
|
|
* interrupts from devices that have been passed through. These
|
|
* devices only support MSI and MSI-X, not line-based interrupts
|
|
* or simulations of line-based interrupts through PCIe's
|
|
* fabric-layer messages. Because interrupts are remapped, we
|
|
* can support multi-message MSI here.
|
|
*
|
|
* Return: '0' on success and error value on failure
|
|
*/
|
|
static int hv_pcie_init_irq_domain(struct hv_pcibus_device *hbus)
|
|
{
|
|
hbus->msi_info.chip = &hv_msi_irq_chip;
|
|
hbus->msi_info.ops = &hv_msi_ops;
|
|
hbus->msi_info.flags = (MSI_FLAG_USE_DEF_DOM_OPS |
|
|
MSI_FLAG_USE_DEF_CHIP_OPS | MSI_FLAG_MULTI_PCI_MSI |
|
|
MSI_FLAG_PCI_MSIX);
|
|
hbus->msi_info.handler = FLOW_HANDLER;
|
|
hbus->msi_info.handler_name = FLOW_NAME;
|
|
hbus->msi_info.data = hbus;
|
|
hbus->irq_domain = pci_msi_create_irq_domain(hbus->fwnode,
|
|
&hbus->msi_info,
|
|
hv_pci_get_root_domain());
|
|
if (!hbus->irq_domain) {
|
|
dev_err(&hbus->hdev->device,
|
|
"Failed to build an MSI IRQ domain\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
dev_set_msi_domain(&hbus->bridge->dev, hbus->irq_domain);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* get_bar_size() - Get the address space consumed by a BAR
|
|
* @bar_val: Value that a BAR returned after -1 was written
|
|
* to it.
|
|
*
|
|
* This function returns the size of the BAR, rounded up to 1
|
|
* page. It has to be rounded up because the hypervisor's page
|
|
* table entry that maps the BAR into the VM can't specify an
|
|
* offset within a page. The invariant is that the hypervisor
|
|
* must place any BARs of smaller than page length at the
|
|
* beginning of a page.
|
|
*
|
|
* Return: Size in bytes of the consumed MMIO space.
|
|
*/
|
|
static u64 get_bar_size(u64 bar_val)
|
|
{
|
|
return round_up((1 + ~(bar_val & PCI_BASE_ADDRESS_MEM_MASK)),
|
|
PAGE_SIZE);
|
|
}
|
|
|
|
/**
|
|
* survey_child_resources() - Total all MMIO requirements
|
|
* @hbus: Root PCI bus, as understood by this driver
|
|
*/
|
|
static void survey_child_resources(struct hv_pcibus_device *hbus)
|
|
{
|
|
struct hv_pci_dev *hpdev;
|
|
resource_size_t bar_size = 0;
|
|
unsigned long flags;
|
|
struct completion *event;
|
|
u64 bar_val;
|
|
int i;
|
|
|
|
/* If nobody is waiting on the answer, don't compute it. */
|
|
event = xchg(&hbus->survey_event, NULL);
|
|
if (!event)
|
|
return;
|
|
|
|
/* If the answer has already been computed, go with it. */
|
|
if (hbus->low_mmio_space || hbus->high_mmio_space) {
|
|
complete(event);
|
|
return;
|
|
}
|
|
|
|
spin_lock_irqsave(&hbus->device_list_lock, flags);
|
|
|
|
/*
|
|
* Due to an interesting quirk of the PCI spec, all memory regions
|
|
* for a child device are a power of 2 in size and aligned in memory,
|
|
* so it's sufficient to just add them up without tracking alignment.
|
|
*/
|
|
list_for_each_entry(hpdev, &hbus->children, list_entry) {
|
|
for (i = 0; i < PCI_STD_NUM_BARS; i++) {
|
|
if (hpdev->probed_bar[i] & PCI_BASE_ADDRESS_SPACE_IO)
|
|
dev_err(&hbus->hdev->device,
|
|
"There's an I/O BAR in this list!\n");
|
|
|
|
if (hpdev->probed_bar[i] != 0) {
|
|
/*
|
|
* A probed BAR has all the upper bits set that
|
|
* can be changed.
|
|
*/
|
|
|
|
bar_val = hpdev->probed_bar[i];
|
|
if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
|
|
bar_val |=
|
|
((u64)hpdev->probed_bar[++i] << 32);
|
|
else
|
|
bar_val |= 0xffffffff00000000ULL;
|
|
|
|
bar_size = get_bar_size(bar_val);
|
|
|
|
if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
|
|
hbus->high_mmio_space += bar_size;
|
|
else
|
|
hbus->low_mmio_space += bar_size;
|
|
}
|
|
}
|
|
}
|
|
|
|
spin_unlock_irqrestore(&hbus->device_list_lock, flags);
|
|
complete(event);
|
|
}
|
|
|
|
/**
|
|
* prepopulate_bars() - Fill in BARs with defaults
|
|
* @hbus: Root PCI bus, as understood by this driver
|
|
*
|
|
* The core PCI driver code seems much, much happier if the BARs
|
|
* for a device have values upon first scan. So fill them in.
|
|
* The algorithm below works down from large sizes to small,
|
|
* attempting to pack the assignments optimally. The assumption,
|
|
* enforced in other parts of the code, is that the beginning of
|
|
* the memory-mapped I/O space will be aligned on the largest
|
|
* BAR size.
|
|
*/
|
|
static void prepopulate_bars(struct hv_pcibus_device *hbus)
|
|
{
|
|
resource_size_t high_size = 0;
|
|
resource_size_t low_size = 0;
|
|
resource_size_t high_base = 0;
|
|
resource_size_t low_base = 0;
|
|
resource_size_t bar_size;
|
|
struct hv_pci_dev *hpdev;
|
|
unsigned long flags;
|
|
u64 bar_val;
|
|
u32 command;
|
|
bool high;
|
|
int i;
|
|
|
|
if (hbus->low_mmio_space) {
|
|
low_size = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
|
|
low_base = hbus->low_mmio_res->start;
|
|
}
|
|
|
|
if (hbus->high_mmio_space) {
|
|
high_size = 1ULL <<
|
|
(63 - __builtin_clzll(hbus->high_mmio_space));
|
|
high_base = hbus->high_mmio_res->start;
|
|
}
|
|
|
|
spin_lock_irqsave(&hbus->device_list_lock, flags);
|
|
|
|
/*
|
|
* Clear the memory enable bit, in case it's already set. This occurs
|
|
* in the suspend path of hibernation, where the device is suspended,
|
|
* resumed and suspended again: see hibernation_snapshot() and
|
|
* hibernation_platform_enter().
|
|
*
|
|
* If the memory enable bit is already set, Hyper-V silently ignores
|
|
* the below BAR updates, and the related PCI device driver can not
|
|
* work, because reading from the device register(s) always returns
|
|
* 0xFFFFFFFF (PCI_ERROR_RESPONSE).
|
|
*/
|
|
list_for_each_entry(hpdev, &hbus->children, list_entry) {
|
|
_hv_pcifront_read_config(hpdev, PCI_COMMAND, 2, &command);
|
|
command &= ~PCI_COMMAND_MEMORY;
|
|
_hv_pcifront_write_config(hpdev, PCI_COMMAND, 2, command);
|
|
}
|
|
|
|
/* Pick addresses for the BARs. */
|
|
do {
|
|
list_for_each_entry(hpdev, &hbus->children, list_entry) {
|
|
for (i = 0; i < PCI_STD_NUM_BARS; i++) {
|
|
bar_val = hpdev->probed_bar[i];
|
|
if (bar_val == 0)
|
|
continue;
|
|
high = bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64;
|
|
if (high) {
|
|
bar_val |=
|
|
((u64)hpdev->probed_bar[i + 1]
|
|
<< 32);
|
|
} else {
|
|
bar_val |= 0xffffffffULL << 32;
|
|
}
|
|
bar_size = get_bar_size(bar_val);
|
|
if (high) {
|
|
if (high_size != bar_size) {
|
|
i++;
|
|
continue;
|
|
}
|
|
_hv_pcifront_write_config(hpdev,
|
|
PCI_BASE_ADDRESS_0 + (4 * i),
|
|
4,
|
|
(u32)(high_base & 0xffffff00));
|
|
i++;
|
|
_hv_pcifront_write_config(hpdev,
|
|
PCI_BASE_ADDRESS_0 + (4 * i),
|
|
4, (u32)(high_base >> 32));
|
|
high_base += bar_size;
|
|
} else {
|
|
if (low_size != bar_size)
|
|
continue;
|
|
_hv_pcifront_write_config(hpdev,
|
|
PCI_BASE_ADDRESS_0 + (4 * i),
|
|
4,
|
|
(u32)(low_base & 0xffffff00));
|
|
low_base += bar_size;
|
|
}
|
|
}
|
|
if (high_size <= 1 && low_size <= 1) {
|
|
/*
|
|
* No need to set the PCI_COMMAND_MEMORY bit as
|
|
* the core PCI driver doesn't require the bit
|
|
* to be pre-set. Actually here we intentionally
|
|
* keep the bit off so that the PCI BAR probing
|
|
* in the core PCI driver doesn't cause Hyper-V
|
|
* to unnecessarily unmap/map the virtual BARs
|
|
* from/to the physical BARs multiple times.
|
|
* This reduces the VM boot time significantly
|
|
* if the BAR sizes are huge.
|
|
*/
|
|
break;
|
|
}
|
|
}
|
|
|
|
high_size >>= 1;
|
|
low_size >>= 1;
|
|
} while (high_size || low_size);
|
|
|
|
spin_unlock_irqrestore(&hbus->device_list_lock, flags);
|
|
}
|
|
|
|
/*
|
|
* Assign entries in sysfs pci slot directory.
|
|
*
|
|
* Note that this function does not need to lock the children list
|
|
* because it is called from pci_devices_present_work which
|
|
* is serialized with hv_eject_device_work because they are on the
|
|
* same ordered workqueue. Therefore hbus->children list will not change
|
|
* even when pci_create_slot sleeps.
|
|
*/
|
|
static void hv_pci_assign_slots(struct hv_pcibus_device *hbus)
|
|
{
|
|
struct hv_pci_dev *hpdev;
|
|
char name[SLOT_NAME_SIZE];
|
|
int slot_nr;
|
|
|
|
list_for_each_entry(hpdev, &hbus->children, list_entry) {
|
|
if (hpdev->pci_slot)
|
|
continue;
|
|
|
|
slot_nr = PCI_SLOT(wslot_to_devfn(hpdev->desc.win_slot.slot));
|
|
snprintf(name, SLOT_NAME_SIZE, "%u", hpdev->desc.ser);
|
|
hpdev->pci_slot = pci_create_slot(hbus->bridge->bus, slot_nr,
|
|
name, NULL);
|
|
if (IS_ERR(hpdev->pci_slot)) {
|
|
pr_warn("pci_create slot %s failed\n", name);
|
|
hpdev->pci_slot = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Remove entries in sysfs pci slot directory.
|
|
*/
|
|
static void hv_pci_remove_slots(struct hv_pcibus_device *hbus)
|
|
{
|
|
struct hv_pci_dev *hpdev;
|
|
|
|
list_for_each_entry(hpdev, &hbus->children, list_entry) {
|
|
if (!hpdev->pci_slot)
|
|
continue;
|
|
pci_destroy_slot(hpdev->pci_slot);
|
|
hpdev->pci_slot = NULL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Set NUMA node for the devices on the bus
|
|
*/
|
|
static void hv_pci_assign_numa_node(struct hv_pcibus_device *hbus)
|
|
{
|
|
struct pci_dev *dev;
|
|
struct pci_bus *bus = hbus->bridge->bus;
|
|
struct hv_pci_dev *hv_dev;
|
|
|
|
list_for_each_entry(dev, &bus->devices, bus_list) {
|
|
hv_dev = get_pcichild_wslot(hbus, devfn_to_wslot(dev->devfn));
|
|
if (!hv_dev)
|
|
continue;
|
|
|
|
if (hv_dev->desc.flags & HV_PCI_DEVICE_FLAG_NUMA_AFFINITY &&
|
|
hv_dev->desc.virtual_numa_node < num_possible_nodes())
|
|
/*
|
|
* The kernel may boot with some NUMA nodes offline
|
|
* (e.g. in a KDUMP kernel) or with NUMA disabled via
|
|
* "numa=off". In those cases, adjust the host provided
|
|
* NUMA node to a valid NUMA node used by the kernel.
|
|
*/
|
|
set_dev_node(&dev->dev,
|
|
numa_map_to_online_node(
|
|
hv_dev->desc.virtual_numa_node));
|
|
|
|
put_pcichild(hv_dev);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* create_root_hv_pci_bus() - Expose a new root PCI bus
|
|
* @hbus: Root PCI bus, as understood by this driver
|
|
*
|
|
* Return: 0 on success, -errno on failure
|
|
*/
|
|
static int create_root_hv_pci_bus(struct hv_pcibus_device *hbus)
|
|
{
|
|
int error;
|
|
struct pci_host_bridge *bridge = hbus->bridge;
|
|
|
|
bridge->dev.parent = &hbus->hdev->device;
|
|
bridge->sysdata = &hbus->sysdata;
|
|
bridge->ops = &hv_pcifront_ops;
|
|
|
|
error = pci_scan_root_bus_bridge(bridge);
|
|
if (error)
|
|
return error;
|
|
|
|
pci_lock_rescan_remove();
|
|
hv_pci_assign_numa_node(hbus);
|
|
pci_bus_assign_resources(bridge->bus);
|
|
hv_pci_assign_slots(hbus);
|
|
pci_bus_add_devices(bridge->bus);
|
|
pci_unlock_rescan_remove();
|
|
hbus->state = hv_pcibus_installed;
|
|
return 0;
|
|
}
|
|
|
|
struct q_res_req_compl {
|
|
struct completion host_event;
|
|
struct hv_pci_dev *hpdev;
|
|
};
|
|
|
|
/**
|
|
* q_resource_requirements() - Query Resource Requirements
|
|
* @context: The completion context.
|
|
* @resp: The response that came from the host.
|
|
* @resp_packet_size: The size in bytes of resp.
|
|
*
|
|
* This function is invoked on completion of a Query Resource
|
|
* Requirements packet.
|
|
*/
|
|
static void q_resource_requirements(void *context, struct pci_response *resp,
|
|
int resp_packet_size)
|
|
{
|
|
struct q_res_req_compl *completion = context;
|
|
struct pci_q_res_req_response *q_res_req =
|
|
(struct pci_q_res_req_response *)resp;
|
|
s32 status;
|
|
int i;
|
|
|
|
status = (resp_packet_size < sizeof(*q_res_req)) ? -1 : resp->status;
|
|
if (status < 0) {
|
|
dev_err(&completion->hpdev->hbus->hdev->device,
|
|
"query resource requirements failed: %x\n",
|
|
status);
|
|
} else {
|
|
for (i = 0; i < PCI_STD_NUM_BARS; i++) {
|
|
completion->hpdev->probed_bar[i] =
|
|
q_res_req->probed_bar[i];
|
|
}
|
|
}
|
|
|
|
complete(&completion->host_event);
|
|
}
|
|
|
|
/**
|
|
* new_pcichild_device() - Create a new child device
|
|
* @hbus: The internal struct tracking this root PCI bus.
|
|
* @desc: The information supplied so far from the host
|
|
* about the device.
|
|
*
|
|
* This function creates the tracking structure for a new child
|
|
* device and kicks off the process of figuring out what it is.
|
|
*
|
|
* Return: Pointer to the new tracking struct
|
|
*/
|
|
static struct hv_pci_dev *new_pcichild_device(struct hv_pcibus_device *hbus,
|
|
struct hv_pcidev_description *desc)
|
|
{
|
|
struct hv_pci_dev *hpdev;
|
|
struct pci_child_message *res_req;
|
|
struct q_res_req_compl comp_pkt;
|
|
struct {
|
|
struct pci_packet init_packet;
|
|
u8 buffer[sizeof(struct pci_child_message)];
|
|
} pkt;
|
|
unsigned long flags;
|
|
int ret;
|
|
|
|
hpdev = kzalloc(sizeof(*hpdev), GFP_KERNEL);
|
|
if (!hpdev)
|
|
return NULL;
|
|
|
|
hpdev->hbus = hbus;
|
|
|
|
memset(&pkt, 0, sizeof(pkt));
|
|
init_completion(&comp_pkt.host_event);
|
|
comp_pkt.hpdev = hpdev;
|
|
pkt.init_packet.compl_ctxt = &comp_pkt;
|
|
pkt.init_packet.completion_func = q_resource_requirements;
|
|
res_req = (struct pci_child_message *)&pkt.init_packet.message;
|
|
res_req->message_type.type = PCI_QUERY_RESOURCE_REQUIREMENTS;
|
|
res_req->wslot.slot = desc->win_slot.slot;
|
|
|
|
ret = vmbus_sendpacket(hbus->hdev->channel, res_req,
|
|
sizeof(struct pci_child_message),
|
|
(unsigned long)&pkt.init_packet,
|
|
VM_PKT_DATA_INBAND,
|
|
VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
|
|
if (ret)
|
|
goto error;
|
|
|
|
if (wait_for_response(hbus->hdev, &comp_pkt.host_event))
|
|
goto error;
|
|
|
|
hpdev->desc = *desc;
|
|
refcount_set(&hpdev->refs, 1);
|
|
get_pcichild(hpdev);
|
|
spin_lock_irqsave(&hbus->device_list_lock, flags);
|
|
|
|
list_add_tail(&hpdev->list_entry, &hbus->children);
|
|
spin_unlock_irqrestore(&hbus->device_list_lock, flags);
|
|
return hpdev;
|
|
|
|
error:
|
|
kfree(hpdev);
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* get_pcichild_wslot() - Find device from slot
|
|
* @hbus: Root PCI bus, as understood by this driver
|
|
* @wslot: Location on the bus
|
|
*
|
|
* This function looks up a PCI device and returns the internal
|
|
* representation of it. It acquires a reference on it, so that
|
|
* the device won't be deleted while somebody is using it. The
|
|
* caller is responsible for calling put_pcichild() to release
|
|
* this reference.
|
|
*
|
|
* Return: Internal representation of a PCI device
|
|
*/
|
|
static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
|
|
u32 wslot)
|
|
{
|
|
unsigned long flags;
|
|
struct hv_pci_dev *iter, *hpdev = NULL;
|
|
|
|
spin_lock_irqsave(&hbus->device_list_lock, flags);
|
|
list_for_each_entry(iter, &hbus->children, list_entry) {
|
|
if (iter->desc.win_slot.slot == wslot) {
|
|
hpdev = iter;
|
|
get_pcichild(hpdev);
|
|
break;
|
|
}
|
|
}
|
|
spin_unlock_irqrestore(&hbus->device_list_lock, flags);
|
|
|
|
return hpdev;
|
|
}
|
|
|
|
/**
|
|
* pci_devices_present_work() - Handle new list of child devices
|
|
* @work: Work struct embedded in struct hv_dr_work
|
|
*
|
|
* "Bus Relations" is the Windows term for "children of this
|
|
* bus." The terminology is preserved here for people trying to
|
|
* debug the interaction between Hyper-V and Linux. This
|
|
* function is called when the parent partition reports a list
|
|
* of functions that should be observed under this PCI Express
|
|
* port (bus).
|
|
*
|
|
* This function updates the list, and must tolerate being
|
|
* called multiple times with the same information. The typical
|
|
* number of child devices is one, with very atypical cases
|
|
* involving three or four, so the algorithms used here can be
|
|
* simple and inefficient.
|
|
*
|
|
* It must also treat the omission of a previously observed device as
|
|
* notification that the device no longer exists.
|
|
*
|
|
* Note that this function is serialized with hv_eject_device_work(),
|
|
* because both are pushed to the ordered workqueue hbus->wq.
|
|
*/
|
|
static void pci_devices_present_work(struct work_struct *work)
|
|
{
|
|
u32 child_no;
|
|
bool found;
|
|
struct hv_pcidev_description *new_desc;
|
|
struct hv_pci_dev *hpdev;
|
|
struct hv_pcibus_device *hbus;
|
|
struct list_head removed;
|
|
struct hv_dr_work *dr_wrk;
|
|
struct hv_dr_state *dr = NULL;
|
|
unsigned long flags;
|
|
|
|
dr_wrk = container_of(work, struct hv_dr_work, wrk);
|
|
hbus = dr_wrk->bus;
|
|
kfree(dr_wrk);
|
|
|
|
INIT_LIST_HEAD(&removed);
|
|
|
|
/* Pull this off the queue and process it if it was the last one. */
|
|
spin_lock_irqsave(&hbus->device_list_lock, flags);
|
|
while (!list_empty(&hbus->dr_list)) {
|
|
dr = list_first_entry(&hbus->dr_list, struct hv_dr_state,
|
|
list_entry);
|
|
list_del(&dr->list_entry);
|
|
|
|
/* Throw this away if the list still has stuff in it. */
|
|
if (!list_empty(&hbus->dr_list)) {
|
|
kfree(dr);
|
|
continue;
|
|
}
|
|
}
|
|
spin_unlock_irqrestore(&hbus->device_list_lock, flags);
|
|
|
|
if (!dr)
|
|
return;
|
|
|
|
/* First, mark all existing children as reported missing. */
|
|
spin_lock_irqsave(&hbus->device_list_lock, flags);
|
|
list_for_each_entry(hpdev, &hbus->children, list_entry) {
|
|
hpdev->reported_missing = true;
|
|
}
|
|
spin_unlock_irqrestore(&hbus->device_list_lock, flags);
|
|
|
|
/* Next, add back any reported devices. */
|
|
for (child_no = 0; child_no < dr->device_count; child_no++) {
|
|
found = false;
|
|
new_desc = &dr->func[child_no];
|
|
|
|
spin_lock_irqsave(&hbus->device_list_lock, flags);
|
|
list_for_each_entry(hpdev, &hbus->children, list_entry) {
|
|
if ((hpdev->desc.win_slot.slot == new_desc->win_slot.slot) &&
|
|
(hpdev->desc.v_id == new_desc->v_id) &&
|
|
(hpdev->desc.d_id == new_desc->d_id) &&
|
|
(hpdev->desc.ser == new_desc->ser)) {
|
|
hpdev->reported_missing = false;
|
|
found = true;
|
|
}
|
|
}
|
|
spin_unlock_irqrestore(&hbus->device_list_lock, flags);
|
|
|
|
if (!found) {
|
|
hpdev = new_pcichild_device(hbus, new_desc);
|
|
if (!hpdev)
|
|
dev_err(&hbus->hdev->device,
|
|
"couldn't record a child device.\n");
|
|
}
|
|
}
|
|
|
|
/* Move missing children to a list on the stack. */
|
|
spin_lock_irqsave(&hbus->device_list_lock, flags);
|
|
do {
|
|
found = false;
|
|
list_for_each_entry(hpdev, &hbus->children, list_entry) {
|
|
if (hpdev->reported_missing) {
|
|
found = true;
|
|
put_pcichild(hpdev);
|
|
list_move_tail(&hpdev->list_entry, &removed);
|
|
break;
|
|
}
|
|
}
|
|
} while (found);
|
|
spin_unlock_irqrestore(&hbus->device_list_lock, flags);
|
|
|
|
/* Delete everything that should no longer exist. */
|
|
while (!list_empty(&removed)) {
|
|
hpdev = list_first_entry(&removed, struct hv_pci_dev,
|
|
list_entry);
|
|
list_del(&hpdev->list_entry);
|
|
|
|
if (hpdev->pci_slot)
|
|
pci_destroy_slot(hpdev->pci_slot);
|
|
|
|
put_pcichild(hpdev);
|
|
}
|
|
|
|
switch (hbus->state) {
|
|
case hv_pcibus_installed:
|
|
/*
|
|
* Tell the core to rescan bus
|
|
* because there may have been changes.
|
|
*/
|
|
pci_lock_rescan_remove();
|
|
pci_scan_child_bus(hbus->bridge->bus);
|
|
hv_pci_assign_numa_node(hbus);
|
|
hv_pci_assign_slots(hbus);
|
|
pci_unlock_rescan_remove();
|
|
break;
|
|
|
|
case hv_pcibus_init:
|
|
case hv_pcibus_probed:
|
|
survey_child_resources(hbus);
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
kfree(dr);
|
|
}
|
|
|
|
/**
|
|
* hv_pci_start_relations_work() - Queue work to start device discovery
|
|
* @hbus: Root PCI bus, as understood by this driver
|
|
* @dr: The list of children returned from host
|
|
*
|
|
* Return: 0 on success, -errno on failure
|
|
*/
|
|
static int hv_pci_start_relations_work(struct hv_pcibus_device *hbus,
|
|
struct hv_dr_state *dr)
|
|
{
|
|
struct hv_dr_work *dr_wrk;
|
|
unsigned long flags;
|
|
bool pending_dr;
|
|
|
|
if (hbus->state == hv_pcibus_removing) {
|
|
dev_info(&hbus->hdev->device,
|
|
"PCI VMBus BUS_RELATIONS: ignored\n");
|
|
return -ENOENT;
|
|
}
|
|
|
|
dr_wrk = kzalloc(sizeof(*dr_wrk), GFP_NOWAIT);
|
|
if (!dr_wrk)
|
|
return -ENOMEM;
|
|
|
|
INIT_WORK(&dr_wrk->wrk, pci_devices_present_work);
|
|
dr_wrk->bus = hbus;
|
|
|
|
spin_lock_irqsave(&hbus->device_list_lock, flags);
|
|
/*
|
|
* If pending_dr is true, we have already queued a work,
|
|
* which will see the new dr. Otherwise, we need to
|
|
* queue a new work.
|
|
*/
|
|
pending_dr = !list_empty(&hbus->dr_list);
|
|
list_add_tail(&dr->list_entry, &hbus->dr_list);
|
|
spin_unlock_irqrestore(&hbus->device_list_lock, flags);
|
|
|
|
if (pending_dr)
|
|
kfree(dr_wrk);
|
|
else
|
|
queue_work(hbus->wq, &dr_wrk->wrk);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* hv_pci_devices_present() - Handle list of new children
|
|
* @hbus: Root PCI bus, as understood by this driver
|
|
* @relations: Packet from host listing children
|
|
*
|
|
* Process a new list of devices on the bus. The list of devices is
|
|
* discovered by VSP and sent to us via VSP message PCI_BUS_RELATIONS,
|
|
* whenever a new list of devices for this bus appears.
|
|
*/
|
|
static void hv_pci_devices_present(struct hv_pcibus_device *hbus,
|
|
struct pci_bus_relations *relations)
|
|
{
|
|
struct hv_dr_state *dr;
|
|
int i;
|
|
|
|
dr = kzalloc(struct_size(dr, func, relations->device_count),
|
|
GFP_NOWAIT);
|
|
if (!dr)
|
|
return;
|
|
|
|
dr->device_count = relations->device_count;
|
|
for (i = 0; i < dr->device_count; i++) {
|
|
dr->func[i].v_id = relations->func[i].v_id;
|
|
dr->func[i].d_id = relations->func[i].d_id;
|
|
dr->func[i].rev = relations->func[i].rev;
|
|
dr->func[i].prog_intf = relations->func[i].prog_intf;
|
|
dr->func[i].subclass = relations->func[i].subclass;
|
|
dr->func[i].base_class = relations->func[i].base_class;
|
|
dr->func[i].subsystem_id = relations->func[i].subsystem_id;
|
|
dr->func[i].win_slot = relations->func[i].win_slot;
|
|
dr->func[i].ser = relations->func[i].ser;
|
|
}
|
|
|
|
if (hv_pci_start_relations_work(hbus, dr))
|
|
kfree(dr);
|
|
}
|
|
|
|
/**
|
|
* hv_pci_devices_present2() - Handle list of new children
|
|
* @hbus: Root PCI bus, as understood by this driver
|
|
* @relations: Packet from host listing children
|
|
*
|
|
* This function is the v2 version of hv_pci_devices_present()
|
|
*/
|
|
static void hv_pci_devices_present2(struct hv_pcibus_device *hbus,
|
|
struct pci_bus_relations2 *relations)
|
|
{
|
|
struct hv_dr_state *dr;
|
|
int i;
|
|
|
|
dr = kzalloc(struct_size(dr, func, relations->device_count),
|
|
GFP_NOWAIT);
|
|
if (!dr)
|
|
return;
|
|
|
|
dr->device_count = relations->device_count;
|
|
for (i = 0; i < dr->device_count; i++) {
|
|
dr->func[i].v_id = relations->func[i].v_id;
|
|
dr->func[i].d_id = relations->func[i].d_id;
|
|
dr->func[i].rev = relations->func[i].rev;
|
|
dr->func[i].prog_intf = relations->func[i].prog_intf;
|
|
dr->func[i].subclass = relations->func[i].subclass;
|
|
dr->func[i].base_class = relations->func[i].base_class;
|
|
dr->func[i].subsystem_id = relations->func[i].subsystem_id;
|
|
dr->func[i].win_slot = relations->func[i].win_slot;
|
|
dr->func[i].ser = relations->func[i].ser;
|
|
dr->func[i].flags = relations->func[i].flags;
|
|
dr->func[i].virtual_numa_node =
|
|
relations->func[i].virtual_numa_node;
|
|
}
|
|
|
|
if (hv_pci_start_relations_work(hbus, dr))
|
|
kfree(dr);
|
|
}
|
|
|
|
/**
|
|
* hv_eject_device_work() - Asynchronously handles ejection
|
|
* @work: Work struct embedded in internal device struct
|
|
*
|
|
* This function handles ejecting a device. Windows will
|
|
* attempt to gracefully eject a device, waiting 60 seconds to
|
|
* hear back from the guest OS that this completed successfully.
|
|
* If this timer expires, the device will be forcibly removed.
|
|
*/
|
|
static void hv_eject_device_work(struct work_struct *work)
|
|
{
|
|
struct pci_eject_response *ejct_pkt;
|
|
struct hv_pcibus_device *hbus;
|
|
struct hv_pci_dev *hpdev;
|
|
struct pci_dev *pdev;
|
|
unsigned long flags;
|
|
int wslot;
|
|
struct {
|
|
struct pci_packet pkt;
|
|
u8 buffer[sizeof(struct pci_eject_response)];
|
|
} ctxt;
|
|
|
|
hpdev = container_of(work, struct hv_pci_dev, wrk);
|
|
hbus = hpdev->hbus;
|
|
|
|
WARN_ON(hpdev->state != hv_pcichild_ejecting);
|
|
|
|
/*
|
|
* Ejection can come before or after the PCI bus has been set up, so
|
|
* attempt to find it and tear down the bus state, if it exists. This
|
|
* must be done without constructs like pci_domain_nr(hbus->bridge->bus)
|
|
* because hbus->bridge->bus may not exist yet.
|
|
*/
|
|
wslot = wslot_to_devfn(hpdev->desc.win_slot.slot);
|
|
pdev = pci_get_domain_bus_and_slot(hbus->bridge->domain_nr, 0, wslot);
|
|
if (pdev) {
|
|
pci_lock_rescan_remove();
|
|
pci_stop_and_remove_bus_device(pdev);
|
|
pci_dev_put(pdev);
|
|
pci_unlock_rescan_remove();
|
|
}
|
|
|
|
spin_lock_irqsave(&hbus->device_list_lock, flags);
|
|
list_del(&hpdev->list_entry);
|
|
spin_unlock_irqrestore(&hbus->device_list_lock, flags);
|
|
|
|
if (hpdev->pci_slot)
|
|
pci_destroy_slot(hpdev->pci_slot);
|
|
|
|
memset(&ctxt, 0, sizeof(ctxt));
|
|
ejct_pkt = (struct pci_eject_response *)&ctxt.pkt.message;
|
|
ejct_pkt->message_type.type = PCI_EJECTION_COMPLETE;
|
|
ejct_pkt->wslot.slot = hpdev->desc.win_slot.slot;
|
|
vmbus_sendpacket(hbus->hdev->channel, ejct_pkt,
|
|
sizeof(*ejct_pkt), 0,
|
|
VM_PKT_DATA_INBAND, 0);
|
|
|
|
/* For the get_pcichild() in hv_pci_eject_device() */
|
|
put_pcichild(hpdev);
|
|
/* For the two refs got in new_pcichild_device() */
|
|
put_pcichild(hpdev);
|
|
put_pcichild(hpdev);
|
|
/* hpdev has been freed. Do not use it any more. */
|
|
}
|
|
|
|
/**
|
|
* hv_pci_eject_device() - Handles device ejection
|
|
* @hpdev: Internal device tracking struct
|
|
*
|
|
* This function is invoked when an ejection packet arrives. It
|
|
* just schedules work so that we don't re-enter the packet
|
|
* delivery code handling the ejection.
|
|
*/
|
|
static void hv_pci_eject_device(struct hv_pci_dev *hpdev)
|
|
{
|
|
struct hv_pcibus_device *hbus = hpdev->hbus;
|
|
struct hv_device *hdev = hbus->hdev;
|
|
|
|
if (hbus->state == hv_pcibus_removing) {
|
|
dev_info(&hdev->device, "PCI VMBus EJECT: ignored\n");
|
|
return;
|
|
}
|
|
|
|
hpdev->state = hv_pcichild_ejecting;
|
|
get_pcichild(hpdev);
|
|
INIT_WORK(&hpdev->wrk, hv_eject_device_work);
|
|
queue_work(hbus->wq, &hpdev->wrk);
|
|
}
|
|
|
|
/**
|
|
* hv_pci_onchannelcallback() - Handles incoming packets
|
|
* @context: Internal bus tracking struct
|
|
*
|
|
* This function is invoked whenever the host sends a packet to
|
|
* this channel (which is private to this root PCI bus).
|
|
*/
|
|
static void hv_pci_onchannelcallback(void *context)
|
|
{
|
|
const int packet_size = 0x100;
|
|
int ret;
|
|
struct hv_pcibus_device *hbus = context;
|
|
struct vmbus_channel *chan = hbus->hdev->channel;
|
|
u32 bytes_recvd;
|
|
u64 req_id, req_addr;
|
|
struct vmpacket_descriptor *desc;
|
|
unsigned char *buffer;
|
|
int bufferlen = packet_size;
|
|
struct pci_packet *comp_packet;
|
|
struct pci_response *response;
|
|
struct pci_incoming_message *new_message;
|
|
struct pci_bus_relations *bus_rel;
|
|
struct pci_bus_relations2 *bus_rel2;
|
|
struct pci_dev_inval_block *inval;
|
|
struct pci_dev_incoming *dev_message;
|
|
struct hv_pci_dev *hpdev;
|
|
unsigned long flags;
|
|
|
|
buffer = kmalloc(bufferlen, GFP_ATOMIC);
|
|
if (!buffer)
|
|
return;
|
|
|
|
while (1) {
|
|
ret = vmbus_recvpacket_raw(chan, buffer, bufferlen,
|
|
&bytes_recvd, &req_id);
|
|
|
|
if (ret == -ENOBUFS) {
|
|
kfree(buffer);
|
|
/* Handle large packet */
|
|
bufferlen = bytes_recvd;
|
|
buffer = kmalloc(bytes_recvd, GFP_ATOMIC);
|
|
if (!buffer)
|
|
return;
|
|
continue;
|
|
}
|
|
|
|
/* Zero length indicates there are no more packets. */
|
|
if (ret || !bytes_recvd)
|
|
break;
|
|
|
|
/*
|
|
* All incoming packets must be at least as large as a
|
|
* response.
|
|
*/
|
|
if (bytes_recvd <= sizeof(struct pci_response))
|
|
continue;
|
|
desc = (struct vmpacket_descriptor *)buffer;
|
|
|
|
switch (desc->type) {
|
|
case VM_PKT_COMP:
|
|
|
|
lock_requestor(chan, flags);
|
|
req_addr = __vmbus_request_addr_match(chan, req_id,
|
|
VMBUS_RQST_ADDR_ANY);
|
|
if (req_addr == VMBUS_RQST_ERROR) {
|
|
unlock_requestor(chan, flags);
|
|
dev_err(&hbus->hdev->device,
|
|
"Invalid transaction ID %llx\n",
|
|
req_id);
|
|
break;
|
|
}
|
|
comp_packet = (struct pci_packet *)req_addr;
|
|
response = (struct pci_response *)buffer;
|
|
/*
|
|
* Call ->completion_func() within the critical section to make
|
|
* sure that the packet pointer is still valid during the call:
|
|
* here 'valid' means that there's a task still waiting for the
|
|
* completion, and that the packet data is still on the waiting
|
|
* task's stack. Cf. hv_compose_msi_msg().
|
|
*/
|
|
comp_packet->completion_func(comp_packet->compl_ctxt,
|
|
response,
|
|
bytes_recvd);
|
|
unlock_requestor(chan, flags);
|
|
break;
|
|
|
|
case VM_PKT_DATA_INBAND:
|
|
|
|
new_message = (struct pci_incoming_message *)buffer;
|
|
switch (new_message->message_type.type) {
|
|
case PCI_BUS_RELATIONS:
|
|
|
|
bus_rel = (struct pci_bus_relations *)buffer;
|
|
if (bytes_recvd < sizeof(*bus_rel) ||
|
|
bytes_recvd <
|
|
struct_size(bus_rel, func,
|
|
bus_rel->device_count)) {
|
|
dev_err(&hbus->hdev->device,
|
|
"bus relations too small\n");
|
|
break;
|
|
}
|
|
|
|
hv_pci_devices_present(hbus, bus_rel);
|
|
break;
|
|
|
|
case PCI_BUS_RELATIONS2:
|
|
|
|
bus_rel2 = (struct pci_bus_relations2 *)buffer;
|
|
if (bytes_recvd < sizeof(*bus_rel2) ||
|
|
bytes_recvd <
|
|
struct_size(bus_rel2, func,
|
|
bus_rel2->device_count)) {
|
|
dev_err(&hbus->hdev->device,
|
|
"bus relations v2 too small\n");
|
|
break;
|
|
}
|
|
|
|
hv_pci_devices_present2(hbus, bus_rel2);
|
|
break;
|
|
|
|
case PCI_EJECT:
|
|
|
|
dev_message = (struct pci_dev_incoming *)buffer;
|
|
if (bytes_recvd < sizeof(*dev_message)) {
|
|
dev_err(&hbus->hdev->device,
|
|
"eject message too small\n");
|
|
break;
|
|
}
|
|
hpdev = get_pcichild_wslot(hbus,
|
|
dev_message->wslot.slot);
|
|
if (hpdev) {
|
|
hv_pci_eject_device(hpdev);
|
|
put_pcichild(hpdev);
|
|
}
|
|
break;
|
|
|
|
case PCI_INVALIDATE_BLOCK:
|
|
|
|
inval = (struct pci_dev_inval_block *)buffer;
|
|
if (bytes_recvd < sizeof(*inval)) {
|
|
dev_err(&hbus->hdev->device,
|
|
"invalidate message too small\n");
|
|
break;
|
|
}
|
|
hpdev = get_pcichild_wslot(hbus,
|
|
inval->wslot.slot);
|
|
if (hpdev) {
|
|
if (hpdev->block_invalidate) {
|
|
hpdev->block_invalidate(
|
|
hpdev->invalidate_context,
|
|
inval->block_mask);
|
|
}
|
|
put_pcichild(hpdev);
|
|
}
|
|
break;
|
|
|
|
default:
|
|
dev_warn(&hbus->hdev->device,
|
|
"Unimplemented protocol message %x\n",
|
|
new_message->message_type.type);
|
|
break;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
dev_err(&hbus->hdev->device,
|
|
"unhandled packet type %d, tid %llx len %d\n",
|
|
desc->type, req_id, bytes_recvd);
|
|
break;
|
|
}
|
|
}
|
|
|
|
kfree(buffer);
|
|
}
|
|
|
|
/**
|
|
* hv_pci_protocol_negotiation() - Set up protocol
|
|
* @hdev: VMBus's tracking struct for this root PCI bus.
|
|
* @version: Array of supported channel protocol versions in
|
|
* the order of probing - highest go first.
|
|
* @num_version: Number of elements in the version array.
|
|
*
|
|
* This driver is intended to support running on Windows 10
|
|
* (server) and later versions. It will not run on earlier
|
|
* versions, as they assume that many of the operations which
|
|
* Linux needs accomplished with a spinlock held were done via
|
|
* asynchronous messaging via VMBus. Windows 10 increases the
|
|
* surface area of PCI emulation so that these actions can take
|
|
* place by suspending a virtual processor for their duration.
|
|
*
|
|
* This function negotiates the channel protocol version,
|
|
* failing if the host doesn't support the necessary protocol
|
|
* level.
|
|
*/
|
|
static int hv_pci_protocol_negotiation(struct hv_device *hdev,
|
|
enum pci_protocol_version_t version[],
|
|
int num_version)
|
|
{
|
|
struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
|
|
struct pci_version_request *version_req;
|
|
struct hv_pci_compl comp_pkt;
|
|
struct pci_packet *pkt;
|
|
int ret;
|
|
int i;
|
|
|
|
/*
|
|
* Initiate the handshake with the host and negotiate
|
|
* a version that the host can support. We start with the
|
|
* highest version number and go down if the host cannot
|
|
* support it.
|
|
*/
|
|
pkt = kzalloc(sizeof(*pkt) + sizeof(*version_req), GFP_KERNEL);
|
|
if (!pkt)
|
|
return -ENOMEM;
|
|
|
|
init_completion(&comp_pkt.host_event);
|
|
pkt->completion_func = hv_pci_generic_compl;
|
|
pkt->compl_ctxt = &comp_pkt;
|
|
version_req = (struct pci_version_request *)&pkt->message;
|
|
version_req->message_type.type = PCI_QUERY_PROTOCOL_VERSION;
|
|
|
|
for (i = 0; i < num_version; i++) {
|
|
version_req->protocol_version = version[i];
|
|
ret = vmbus_sendpacket(hdev->channel, version_req,
|
|
sizeof(struct pci_version_request),
|
|
(unsigned long)pkt, VM_PKT_DATA_INBAND,
|
|
VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
|
|
if (!ret)
|
|
ret = wait_for_response(hdev, &comp_pkt.host_event);
|
|
|
|
if (ret) {
|
|
dev_err(&hdev->device,
|
|
"PCI Pass-through VSP failed to request version: %d",
|
|
ret);
|
|
goto exit;
|
|
}
|
|
|
|
if (comp_pkt.completion_status >= 0) {
|
|
hbus->protocol_version = version[i];
|
|
dev_info(&hdev->device,
|
|
"PCI VMBus probing: Using version %#x\n",
|
|
hbus->protocol_version);
|
|
goto exit;
|
|
}
|
|
|
|
if (comp_pkt.completion_status != STATUS_REVISION_MISMATCH) {
|
|
dev_err(&hdev->device,
|
|
"PCI Pass-through VSP failed version request: %#x",
|
|
comp_pkt.completion_status);
|
|
ret = -EPROTO;
|
|
goto exit;
|
|
}
|
|
|
|
reinit_completion(&comp_pkt.host_event);
|
|
}
|
|
|
|
dev_err(&hdev->device,
|
|
"PCI pass-through VSP failed to find supported version");
|
|
ret = -EPROTO;
|
|
|
|
exit:
|
|
kfree(pkt);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* hv_pci_free_bridge_windows() - Release memory regions for the
|
|
* bus
|
|
* @hbus: Root PCI bus, as understood by this driver
|
|
*/
|
|
static void hv_pci_free_bridge_windows(struct hv_pcibus_device *hbus)
|
|
{
|
|
/*
|
|
* Set the resources back to the way they looked when they
|
|
* were allocated by setting IORESOURCE_BUSY again.
|
|
*/
|
|
|
|
if (hbus->low_mmio_space && hbus->low_mmio_res) {
|
|
hbus->low_mmio_res->flags |= IORESOURCE_BUSY;
|
|
vmbus_free_mmio(hbus->low_mmio_res->start,
|
|
resource_size(hbus->low_mmio_res));
|
|
}
|
|
|
|
if (hbus->high_mmio_space && hbus->high_mmio_res) {
|
|
hbus->high_mmio_res->flags |= IORESOURCE_BUSY;
|
|
vmbus_free_mmio(hbus->high_mmio_res->start,
|
|
resource_size(hbus->high_mmio_res));
|
|
}
|
|
}
|
|
|
|
/**
|
|
* hv_pci_allocate_bridge_windows() - Allocate memory regions
|
|
* for the bus
|
|
* @hbus: Root PCI bus, as understood by this driver
|
|
*
|
|
* This function calls vmbus_allocate_mmio(), which is itself a
|
|
* bit of a compromise. Ideally, we might change the pnp layer
|
|
* in the kernel such that it comprehends either PCI devices
|
|
* which are "grandchildren of ACPI," with some intermediate bus
|
|
* node (in this case, VMBus) or change it such that it
|
|
* understands VMBus. The pnp layer, however, has been declared
|
|
* deprecated, and not subject to change.
|
|
*
|
|
* The workaround, implemented here, is to ask VMBus to allocate
|
|
* MMIO space for this bus. VMBus itself knows which ranges are
|
|
* appropriate by looking at its own ACPI objects. Then, after
|
|
* these ranges are claimed, they're modified to look like they
|
|
* would have looked if the ACPI and pnp code had allocated
|
|
* bridge windows. These descriptors have to exist in this form
|
|
* in order to satisfy the code which will get invoked when the
|
|
* endpoint PCI function driver calls request_mem_region() or
|
|
* request_mem_region_exclusive().
|
|
*
|
|
* Return: 0 on success, -errno on failure
|
|
*/
|
|
static int hv_pci_allocate_bridge_windows(struct hv_pcibus_device *hbus)
|
|
{
|
|
resource_size_t align;
|
|
int ret;
|
|
|
|
if (hbus->low_mmio_space) {
|
|
align = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
|
|
ret = vmbus_allocate_mmio(&hbus->low_mmio_res, hbus->hdev, 0,
|
|
(u64)(u32)0xffffffff,
|
|
hbus->low_mmio_space,
|
|
align, false);
|
|
if (ret) {
|
|
dev_err(&hbus->hdev->device,
|
|
"Need %#llx of low MMIO space. Consider reconfiguring the VM.\n",
|
|
hbus->low_mmio_space);
|
|
return ret;
|
|
}
|
|
|
|
/* Modify this resource to become a bridge window. */
|
|
hbus->low_mmio_res->flags |= IORESOURCE_WINDOW;
|
|
hbus->low_mmio_res->flags &= ~IORESOURCE_BUSY;
|
|
pci_add_resource(&hbus->bridge->windows, hbus->low_mmio_res);
|
|
}
|
|
|
|
if (hbus->high_mmio_space) {
|
|
align = 1ULL << (63 - __builtin_clzll(hbus->high_mmio_space));
|
|
ret = vmbus_allocate_mmio(&hbus->high_mmio_res, hbus->hdev,
|
|
0x100000000, -1,
|
|
hbus->high_mmio_space, align,
|
|
false);
|
|
if (ret) {
|
|
dev_err(&hbus->hdev->device,
|
|
"Need %#llx of high MMIO space. Consider reconfiguring the VM.\n",
|
|
hbus->high_mmio_space);
|
|
goto release_low_mmio;
|
|
}
|
|
|
|
/* Modify this resource to become a bridge window. */
|
|
hbus->high_mmio_res->flags |= IORESOURCE_WINDOW;
|
|
hbus->high_mmio_res->flags &= ~IORESOURCE_BUSY;
|
|
pci_add_resource(&hbus->bridge->windows, hbus->high_mmio_res);
|
|
}
|
|
|
|
return 0;
|
|
|
|
release_low_mmio:
|
|
if (hbus->low_mmio_res) {
|
|
vmbus_free_mmio(hbus->low_mmio_res->start,
|
|
resource_size(hbus->low_mmio_res));
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* hv_allocate_config_window() - Find MMIO space for PCI Config
|
|
* @hbus: Root PCI bus, as understood by this driver
|
|
*
|
|
* This function claims memory-mapped I/O space for accessing
|
|
* configuration space for the functions on this bus.
|
|
*
|
|
* Return: 0 on success, -errno on failure
|
|
*/
|
|
static int hv_allocate_config_window(struct hv_pcibus_device *hbus)
|
|
{
|
|
int ret;
|
|
|
|
/*
|
|
* Set up a region of MMIO space to use for accessing configuration
|
|
* space.
|
|
*/
|
|
ret = vmbus_allocate_mmio(&hbus->mem_config, hbus->hdev, 0, -1,
|
|
PCI_CONFIG_MMIO_LENGTH, 0x1000, false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* vmbus_allocate_mmio() gets used for allocating both device endpoint
|
|
* resource claims (those which cannot be overlapped) and the ranges
|
|
* which are valid for the children of this bus, which are intended
|
|
* to be overlapped by those children. Set the flag on this claim
|
|
* meaning that this region can't be overlapped.
|
|
*/
|
|
|
|
hbus->mem_config->flags |= IORESOURCE_BUSY;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void hv_free_config_window(struct hv_pcibus_device *hbus)
|
|
{
|
|
vmbus_free_mmio(hbus->mem_config->start, PCI_CONFIG_MMIO_LENGTH);
|
|
}
|
|
|
|
static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs);
|
|
|
|
/**
|
|
* hv_pci_enter_d0() - Bring the "bus" into the D0 power state
|
|
* @hdev: VMBus's tracking struct for this root PCI bus
|
|
*
|
|
* Return: 0 on success, -errno on failure
|
|
*/
|
|
static int hv_pci_enter_d0(struct hv_device *hdev)
|
|
{
|
|
struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
|
|
struct pci_bus_d0_entry *d0_entry;
|
|
struct hv_pci_compl comp_pkt;
|
|
struct pci_packet *pkt;
|
|
int ret;
|
|
|
|
/*
|
|
* Tell the host that the bus is ready to use, and moved into the
|
|
* powered-on state. This includes telling the host which region
|
|
* of memory-mapped I/O space has been chosen for configuration space
|
|
* access.
|
|
*/
|
|
pkt = kzalloc(sizeof(*pkt) + sizeof(*d0_entry), GFP_KERNEL);
|
|
if (!pkt)
|
|
return -ENOMEM;
|
|
|
|
init_completion(&comp_pkt.host_event);
|
|
pkt->completion_func = hv_pci_generic_compl;
|
|
pkt->compl_ctxt = &comp_pkt;
|
|
d0_entry = (struct pci_bus_d0_entry *)&pkt->message;
|
|
d0_entry->message_type.type = PCI_BUS_D0ENTRY;
|
|
d0_entry->mmio_base = hbus->mem_config->start;
|
|
|
|
ret = vmbus_sendpacket(hdev->channel, d0_entry, sizeof(*d0_entry),
|
|
(unsigned long)pkt, VM_PKT_DATA_INBAND,
|
|
VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
|
|
if (!ret)
|
|
ret = wait_for_response(hdev, &comp_pkt.host_event);
|
|
|
|
if (ret)
|
|
goto exit;
|
|
|
|
if (comp_pkt.completion_status < 0) {
|
|
dev_err(&hdev->device,
|
|
"PCI Pass-through VSP failed D0 Entry with status %x\n",
|
|
comp_pkt.completion_status);
|
|
ret = -EPROTO;
|
|
goto exit;
|
|
}
|
|
|
|
ret = 0;
|
|
|
|
exit:
|
|
kfree(pkt);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* hv_pci_query_relations() - Ask host to send list of child
|
|
* devices
|
|
* @hdev: VMBus's tracking struct for this root PCI bus
|
|
*
|
|
* Return: 0 on success, -errno on failure
|
|
*/
|
|
static int hv_pci_query_relations(struct hv_device *hdev)
|
|
{
|
|
struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
|
|
struct pci_message message;
|
|
struct completion comp;
|
|
int ret;
|
|
|
|
/* Ask the host to send along the list of child devices */
|
|
init_completion(&comp);
|
|
if (cmpxchg(&hbus->survey_event, NULL, &comp))
|
|
return -ENOTEMPTY;
|
|
|
|
memset(&message, 0, sizeof(message));
|
|
message.type = PCI_QUERY_BUS_RELATIONS;
|
|
|
|
ret = vmbus_sendpacket(hdev->channel, &message, sizeof(message),
|
|
0, VM_PKT_DATA_INBAND, 0);
|
|
if (!ret)
|
|
ret = wait_for_response(hdev, &comp);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* hv_send_resources_allocated() - Report local resource choices
|
|
* @hdev: VMBus's tracking struct for this root PCI bus
|
|
*
|
|
* The host OS is expecting to be sent a request as a message
|
|
* which contains all the resources that the device will use.
|
|
* The response contains those same resources, "translated"
|
|
* which is to say, the values which should be used by the
|
|
* hardware, when it delivers an interrupt. (MMIO resources are
|
|
* used in local terms.) This is nice for Windows, and lines up
|
|
* with the FDO/PDO split, which doesn't exist in Linux. Linux
|
|
* is deeply expecting to scan an emulated PCI configuration
|
|
* space. So this message is sent here only to drive the state
|
|
* machine on the host forward.
|
|
*
|
|
* Return: 0 on success, -errno on failure
|
|
*/
|
|
static int hv_send_resources_allocated(struct hv_device *hdev)
|
|
{
|
|
struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
|
|
struct pci_resources_assigned *res_assigned;
|
|
struct pci_resources_assigned2 *res_assigned2;
|
|
struct hv_pci_compl comp_pkt;
|
|
struct hv_pci_dev *hpdev;
|
|
struct pci_packet *pkt;
|
|
size_t size_res;
|
|
int wslot;
|
|
int ret;
|
|
|
|
size_res = (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2)
|
|
? sizeof(*res_assigned) : sizeof(*res_assigned2);
|
|
|
|
pkt = kmalloc(sizeof(*pkt) + size_res, GFP_KERNEL);
|
|
if (!pkt)
|
|
return -ENOMEM;
|
|
|
|
ret = 0;
|
|
|
|
for (wslot = 0; wslot < 256; wslot++) {
|
|
hpdev = get_pcichild_wslot(hbus, wslot);
|
|
if (!hpdev)
|
|
continue;
|
|
|
|
memset(pkt, 0, sizeof(*pkt) + size_res);
|
|
init_completion(&comp_pkt.host_event);
|
|
pkt->completion_func = hv_pci_generic_compl;
|
|
pkt->compl_ctxt = &comp_pkt;
|
|
|
|
if (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2) {
|
|
res_assigned =
|
|
(struct pci_resources_assigned *)&pkt->message;
|
|
res_assigned->message_type.type =
|
|
PCI_RESOURCES_ASSIGNED;
|
|
res_assigned->wslot.slot = hpdev->desc.win_slot.slot;
|
|
} else {
|
|
res_assigned2 =
|
|
(struct pci_resources_assigned2 *)&pkt->message;
|
|
res_assigned2->message_type.type =
|
|
PCI_RESOURCES_ASSIGNED2;
|
|
res_assigned2->wslot.slot = hpdev->desc.win_slot.slot;
|
|
}
|
|
put_pcichild(hpdev);
|
|
|
|
ret = vmbus_sendpacket(hdev->channel, &pkt->message,
|
|
size_res, (unsigned long)pkt,
|
|
VM_PKT_DATA_INBAND,
|
|
VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
|
|
if (!ret)
|
|
ret = wait_for_response(hdev, &comp_pkt.host_event);
|
|
if (ret)
|
|
break;
|
|
|
|
if (comp_pkt.completion_status < 0) {
|
|
ret = -EPROTO;
|
|
dev_err(&hdev->device,
|
|
"resource allocated returned 0x%x",
|
|
comp_pkt.completion_status);
|
|
break;
|
|
}
|
|
|
|
hbus->wslot_res_allocated = wslot;
|
|
}
|
|
|
|
kfree(pkt);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* hv_send_resources_released() - Report local resources
|
|
* released
|
|
* @hdev: VMBus's tracking struct for this root PCI bus
|
|
*
|
|
* Return: 0 on success, -errno on failure
|
|
*/
|
|
static int hv_send_resources_released(struct hv_device *hdev)
|
|
{
|
|
struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
|
|
struct pci_child_message pkt;
|
|
struct hv_pci_dev *hpdev;
|
|
int wslot;
|
|
int ret;
|
|
|
|
for (wslot = hbus->wslot_res_allocated; wslot >= 0; wslot--) {
|
|
hpdev = get_pcichild_wslot(hbus, wslot);
|
|
if (!hpdev)
|
|
continue;
|
|
|
|
memset(&pkt, 0, sizeof(pkt));
|
|
pkt.message_type.type = PCI_RESOURCES_RELEASED;
|
|
pkt.wslot.slot = hpdev->desc.win_slot.slot;
|
|
|
|
put_pcichild(hpdev);
|
|
|
|
ret = vmbus_sendpacket(hdev->channel, &pkt, sizeof(pkt), 0,
|
|
VM_PKT_DATA_INBAND, 0);
|
|
if (ret)
|
|
return ret;
|
|
|
|
hbus->wslot_res_allocated = wslot - 1;
|
|
}
|
|
|
|
hbus->wslot_res_allocated = -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define HVPCI_DOM_MAP_SIZE (64 * 1024)
|
|
static DECLARE_BITMAP(hvpci_dom_map, HVPCI_DOM_MAP_SIZE);
|
|
|
|
/*
|
|
* PCI domain number 0 is used by emulated devices on Gen1 VMs, so define 0
|
|
* as invalid for passthrough PCI devices of this driver.
|
|
*/
|
|
#define HVPCI_DOM_INVALID 0
|
|
|
|
/**
|
|
* hv_get_dom_num() - Get a valid PCI domain number
|
|
* Check if the PCI domain number is in use, and return another number if
|
|
* it is in use.
|
|
*
|
|
* @dom: Requested domain number
|
|
*
|
|
* return: domain number on success, HVPCI_DOM_INVALID on failure
|
|
*/
|
|
static u16 hv_get_dom_num(u16 dom)
|
|
{
|
|
unsigned int i;
|
|
|
|
if (test_and_set_bit(dom, hvpci_dom_map) == 0)
|
|
return dom;
|
|
|
|
for_each_clear_bit(i, hvpci_dom_map, HVPCI_DOM_MAP_SIZE) {
|
|
if (test_and_set_bit(i, hvpci_dom_map) == 0)
|
|
return i;
|
|
}
|
|
|
|
return HVPCI_DOM_INVALID;
|
|
}
|
|
|
|
/**
|
|
* hv_put_dom_num() - Mark the PCI domain number as free
|
|
* @dom: Domain number to be freed
|
|
*/
|
|
static void hv_put_dom_num(u16 dom)
|
|
{
|
|
clear_bit(dom, hvpci_dom_map);
|
|
}
|
|
|
|
/**
|
|
* hv_pci_probe() - New VMBus channel probe, for a root PCI bus
|
|
* @hdev: VMBus's tracking struct for this root PCI bus
|
|
* @dev_id: Identifies the device itself
|
|
*
|
|
* Return: 0 on success, -errno on failure
|
|
*/
|
|
static int hv_pci_probe(struct hv_device *hdev,
|
|
const struct hv_vmbus_device_id *dev_id)
|
|
{
|
|
struct pci_host_bridge *bridge;
|
|
struct hv_pcibus_device *hbus;
|
|
u16 dom_req, dom;
|
|
char *name;
|
|
bool enter_d0_retry = true;
|
|
int ret;
|
|
|
|
/*
|
|
* hv_pcibus_device contains the hypercall arguments for retargeting in
|
|
* hv_irq_unmask(). Those must not cross a page boundary.
|
|
*/
|
|
BUILD_BUG_ON(sizeof(*hbus) > HV_HYP_PAGE_SIZE);
|
|
|
|
bridge = devm_pci_alloc_host_bridge(&hdev->device, 0);
|
|
if (!bridge)
|
|
return -ENOMEM;
|
|
|
|
/*
|
|
* With the recent 59bb47985c1d ("mm, sl[aou]b: guarantee natural
|
|
* alignment for kmalloc(power-of-two)"), kzalloc() is able to allocate
|
|
* a 4KB buffer that is guaranteed to be 4KB-aligned. Here the size and
|
|
* alignment of hbus is important because hbus's field
|
|
* retarget_msi_interrupt_params must not cross a 4KB page boundary.
|
|
*
|
|
* Here we prefer kzalloc to get_zeroed_page(), because a buffer
|
|
* allocated by the latter is not tracked and scanned by kmemleak, and
|
|
* hence kmemleak reports the pointer contained in the hbus buffer
|
|
* (i.e. the hpdev struct, which is created in new_pcichild_device() and
|
|
* is tracked by hbus->children) as memory leak (false positive).
|
|
*
|
|
* If the kernel doesn't have 59bb47985c1d, get_zeroed_page() *must* be
|
|
* used to allocate the hbus buffer and we can avoid the kmemleak false
|
|
* positive by using kmemleak_alloc() and kmemleak_free() to ask
|
|
* kmemleak to track and scan the hbus buffer.
|
|
*/
|
|
hbus = kzalloc(HV_HYP_PAGE_SIZE, GFP_KERNEL);
|
|
if (!hbus)
|
|
return -ENOMEM;
|
|
|
|
hbus->bridge = bridge;
|
|
hbus->state = hv_pcibus_init;
|
|
hbus->wslot_res_allocated = -1;
|
|
|
|
/*
|
|
* The PCI bus "domain" is what is called "segment" in ACPI and other
|
|
* specs. Pull it from the instance ID, to get something usually
|
|
* unique. In rare cases of collision, we will find out another number
|
|
* not in use.
|
|
*
|
|
* Note that, since this code only runs in a Hyper-V VM, Hyper-V
|
|
* together with this guest driver can guarantee that (1) The only
|
|
* domain used by Gen1 VMs for something that looks like a physical
|
|
* PCI bus (which is actually emulated by the hypervisor) is domain 0.
|
|
* (2) There will be no overlap between domains (after fixing possible
|
|
* collisions) in the same VM.
|
|
*/
|
|
dom_req = hdev->dev_instance.b[5] << 8 | hdev->dev_instance.b[4];
|
|
dom = hv_get_dom_num(dom_req);
|
|
|
|
if (dom == HVPCI_DOM_INVALID) {
|
|
dev_err(&hdev->device,
|
|
"Unable to use dom# 0x%x or other numbers", dom_req);
|
|
ret = -EINVAL;
|
|
goto free_bus;
|
|
}
|
|
|
|
if (dom != dom_req)
|
|
dev_info(&hdev->device,
|
|
"PCI dom# 0x%x has collision, using 0x%x",
|
|
dom_req, dom);
|
|
|
|
hbus->bridge->domain_nr = dom;
|
|
#ifdef CONFIG_X86
|
|
hbus->sysdata.domain = dom;
|
|
#elif defined(CONFIG_ARM64)
|
|
/*
|
|
* Set the PCI bus parent to be the corresponding VMbus
|
|
* device. Then the VMbus device will be assigned as the
|
|
* ACPI companion in pcibios_root_bridge_prepare() and
|
|
* pci_dma_configure() will propagate device coherence
|
|
* information to devices created on the bus.
|
|
*/
|
|
hbus->sysdata.parent = hdev->device.parent;
|
|
#endif
|
|
|
|
hbus->hdev = hdev;
|
|
INIT_LIST_HEAD(&hbus->children);
|
|
INIT_LIST_HEAD(&hbus->dr_list);
|
|
spin_lock_init(&hbus->config_lock);
|
|
spin_lock_init(&hbus->device_list_lock);
|
|
spin_lock_init(&hbus->retarget_msi_interrupt_lock);
|
|
hbus->wq = alloc_ordered_workqueue("hv_pci_%x", 0,
|
|
hbus->bridge->domain_nr);
|
|
if (!hbus->wq) {
|
|
ret = -ENOMEM;
|
|
goto free_dom;
|
|
}
|
|
|
|
hdev->channel->next_request_id_callback = vmbus_next_request_id;
|
|
hdev->channel->request_addr_callback = vmbus_request_addr;
|
|
hdev->channel->rqstor_size = HV_PCI_RQSTOR_SIZE;
|
|
|
|
ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0,
|
|
hv_pci_onchannelcallback, hbus);
|
|
if (ret)
|
|
goto destroy_wq;
|
|
|
|
hv_set_drvdata(hdev, hbus);
|
|
|
|
ret = hv_pci_protocol_negotiation(hdev, pci_protocol_versions,
|
|
ARRAY_SIZE(pci_protocol_versions));
|
|
if (ret)
|
|
goto close;
|
|
|
|
ret = hv_allocate_config_window(hbus);
|
|
if (ret)
|
|
goto close;
|
|
|
|
hbus->cfg_addr = ioremap(hbus->mem_config->start,
|
|
PCI_CONFIG_MMIO_LENGTH);
|
|
if (!hbus->cfg_addr) {
|
|
dev_err(&hdev->device,
|
|
"Unable to map a virtual address for config space\n");
|
|
ret = -ENOMEM;
|
|
goto free_config;
|
|
}
|
|
|
|
name = kasprintf(GFP_KERNEL, "%pUL", &hdev->dev_instance);
|
|
if (!name) {
|
|
ret = -ENOMEM;
|
|
goto unmap;
|
|
}
|
|
|
|
hbus->fwnode = irq_domain_alloc_named_fwnode(name);
|
|
kfree(name);
|
|
if (!hbus->fwnode) {
|
|
ret = -ENOMEM;
|
|
goto unmap;
|
|
}
|
|
|
|
ret = hv_pcie_init_irq_domain(hbus);
|
|
if (ret)
|
|
goto free_fwnode;
|
|
|
|
retry:
|
|
ret = hv_pci_query_relations(hdev);
|
|
if (ret)
|
|
goto free_irq_domain;
|
|
|
|
ret = hv_pci_enter_d0(hdev);
|
|
/*
|
|
* In certain case (Kdump) the pci device of interest was
|
|
* not cleanly shut down and resource is still held on host
|
|
* side, the host could return invalid device status.
|
|
* We need to explicitly request host to release the resource
|
|
* and try to enter D0 again.
|
|
* Since the hv_pci_bus_exit() call releases structures
|
|
* of all its child devices, we need to start the retry from
|
|
* hv_pci_query_relations() call, requesting host to send
|
|
* the synchronous child device relations message before this
|
|
* information is needed in hv_send_resources_allocated()
|
|
* call later.
|
|
*/
|
|
if (ret == -EPROTO && enter_d0_retry) {
|
|
enter_d0_retry = false;
|
|
|
|
dev_err(&hdev->device, "Retrying D0 Entry\n");
|
|
|
|
/*
|
|
* Hv_pci_bus_exit() calls hv_send_resources_released()
|
|
* to free up resources of its child devices.
|
|
* In the kdump kernel we need to set the
|
|
* wslot_res_allocated to 255 so it scans all child
|
|
* devices to release resources allocated in the
|
|
* normal kernel before panic happened.
|
|
*/
|
|
hbus->wslot_res_allocated = 255;
|
|
ret = hv_pci_bus_exit(hdev, true);
|
|
|
|
if (ret == 0)
|
|
goto retry;
|
|
|
|
dev_err(&hdev->device,
|
|
"Retrying D0 failed with ret %d\n", ret);
|
|
}
|
|
if (ret)
|
|
goto free_irq_domain;
|
|
|
|
ret = hv_pci_allocate_bridge_windows(hbus);
|
|
if (ret)
|
|
goto exit_d0;
|
|
|
|
ret = hv_send_resources_allocated(hdev);
|
|
if (ret)
|
|
goto free_windows;
|
|
|
|
prepopulate_bars(hbus);
|
|
|
|
hbus->state = hv_pcibus_probed;
|
|
|
|
ret = create_root_hv_pci_bus(hbus);
|
|
if (ret)
|
|
goto free_windows;
|
|
|
|
return 0;
|
|
|
|
free_windows:
|
|
hv_pci_free_bridge_windows(hbus);
|
|
exit_d0:
|
|
(void) hv_pci_bus_exit(hdev, true);
|
|
free_irq_domain:
|
|
irq_domain_remove(hbus->irq_domain);
|
|
free_fwnode:
|
|
irq_domain_free_fwnode(hbus->fwnode);
|
|
unmap:
|
|
iounmap(hbus->cfg_addr);
|
|
free_config:
|
|
hv_free_config_window(hbus);
|
|
close:
|
|
vmbus_close(hdev->channel);
|
|
destroy_wq:
|
|
destroy_workqueue(hbus->wq);
|
|
free_dom:
|
|
hv_put_dom_num(hbus->bridge->domain_nr);
|
|
free_bus:
|
|
kfree(hbus);
|
|
return ret;
|
|
}
|
|
|
|
static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs)
|
|
{
|
|
struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
|
|
struct vmbus_channel *chan = hdev->channel;
|
|
struct {
|
|
struct pci_packet teardown_packet;
|
|
u8 buffer[sizeof(struct pci_message)];
|
|
} pkt;
|
|
struct hv_pci_compl comp_pkt;
|
|
struct hv_pci_dev *hpdev, *tmp;
|
|
unsigned long flags;
|
|
u64 trans_id;
|
|
int ret;
|
|
|
|
/*
|
|
* After the host sends the RESCIND_CHANNEL message, it doesn't
|
|
* access the per-channel ringbuffer any longer.
|
|
*/
|
|
if (chan->rescind)
|
|
return 0;
|
|
|
|
if (!keep_devs) {
|
|
struct list_head removed;
|
|
|
|
/* Move all present children to the list on stack */
|
|
INIT_LIST_HEAD(&removed);
|
|
spin_lock_irqsave(&hbus->device_list_lock, flags);
|
|
list_for_each_entry_safe(hpdev, tmp, &hbus->children, list_entry)
|
|
list_move_tail(&hpdev->list_entry, &removed);
|
|
spin_unlock_irqrestore(&hbus->device_list_lock, flags);
|
|
|
|
/* Remove all children in the list */
|
|
list_for_each_entry_safe(hpdev, tmp, &removed, list_entry) {
|
|
list_del(&hpdev->list_entry);
|
|
if (hpdev->pci_slot)
|
|
pci_destroy_slot(hpdev->pci_slot);
|
|
/* For the two refs got in new_pcichild_device() */
|
|
put_pcichild(hpdev);
|
|
put_pcichild(hpdev);
|
|
}
|
|
}
|
|
|
|
ret = hv_send_resources_released(hdev);
|
|
if (ret) {
|
|
dev_err(&hdev->device,
|
|
"Couldn't send resources released packet(s)\n");
|
|
return ret;
|
|
}
|
|
|
|
memset(&pkt.teardown_packet, 0, sizeof(pkt.teardown_packet));
|
|
init_completion(&comp_pkt.host_event);
|
|
pkt.teardown_packet.completion_func = hv_pci_generic_compl;
|
|
pkt.teardown_packet.compl_ctxt = &comp_pkt;
|
|
pkt.teardown_packet.message[0].type = PCI_BUS_D0EXIT;
|
|
|
|
ret = vmbus_sendpacket_getid(chan, &pkt.teardown_packet.message,
|
|
sizeof(struct pci_message),
|
|
(unsigned long)&pkt.teardown_packet,
|
|
&trans_id, VM_PKT_DATA_INBAND,
|
|
VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (wait_for_completion_timeout(&comp_pkt.host_event, 10 * HZ) == 0) {
|
|
/*
|
|
* The completion packet on the stack becomes invalid after
|
|
* 'return'; remove the ID from the VMbus requestor if the
|
|
* identifier is still mapped to/associated with the packet.
|
|
*
|
|
* Cf. hv_pci_onchannelcallback().
|
|
*/
|
|
vmbus_request_addr_match(chan, trans_id,
|
|
(unsigned long)&pkt.teardown_packet);
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* hv_pci_remove() - Remove routine for this VMBus channel
|
|
* @hdev: VMBus's tracking struct for this root PCI bus
|
|
*/
|
|
static void hv_pci_remove(struct hv_device *hdev)
|
|
{
|
|
struct hv_pcibus_device *hbus;
|
|
|
|
hbus = hv_get_drvdata(hdev);
|
|
if (hbus->state == hv_pcibus_installed) {
|
|
tasklet_disable(&hdev->channel->callback_event);
|
|
hbus->state = hv_pcibus_removing;
|
|
tasklet_enable(&hdev->channel->callback_event);
|
|
destroy_workqueue(hbus->wq);
|
|
hbus->wq = NULL;
|
|
/*
|
|
* At this point, no work is running or can be scheduled
|
|
* on hbus-wq. We can't race with hv_pci_devices_present()
|
|
* or hv_pci_eject_device(), it's safe to proceed.
|
|
*/
|
|
|
|
/* Remove the bus from PCI's point of view. */
|
|
pci_lock_rescan_remove();
|
|
pci_stop_root_bus(hbus->bridge->bus);
|
|
hv_pci_remove_slots(hbus);
|
|
pci_remove_root_bus(hbus->bridge->bus);
|
|
pci_unlock_rescan_remove();
|
|
}
|
|
|
|
hv_pci_bus_exit(hdev, false);
|
|
|
|
vmbus_close(hdev->channel);
|
|
|
|
iounmap(hbus->cfg_addr);
|
|
hv_free_config_window(hbus);
|
|
hv_pci_free_bridge_windows(hbus);
|
|
irq_domain_remove(hbus->irq_domain);
|
|
irq_domain_free_fwnode(hbus->fwnode);
|
|
|
|
hv_put_dom_num(hbus->bridge->domain_nr);
|
|
|
|
kfree(hbus);
|
|
}
|
|
|
|
static int hv_pci_suspend(struct hv_device *hdev)
|
|
{
|
|
struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
|
|
enum hv_pcibus_state old_state;
|
|
int ret;
|
|
|
|
/*
|
|
* hv_pci_suspend() must make sure there are no pending work items
|
|
* before calling vmbus_close(), since it runs in a process context
|
|
* as a callback in dpm_suspend(). When it starts to run, the channel
|
|
* callback hv_pci_onchannelcallback(), which runs in a tasklet
|
|
* context, can be still running concurrently and scheduling new work
|
|
* items onto hbus->wq in hv_pci_devices_present() and
|
|
* hv_pci_eject_device(), and the work item handlers can access the
|
|
* vmbus channel, which can be being closed by hv_pci_suspend(), e.g.
|
|
* the work item handler pci_devices_present_work() ->
|
|
* new_pcichild_device() writes to the vmbus channel.
|
|
*
|
|
* To eliminate the race, hv_pci_suspend() disables the channel
|
|
* callback tasklet, sets hbus->state to hv_pcibus_removing, and
|
|
* re-enables the tasklet. This way, when hv_pci_suspend() proceeds,
|
|
* it knows that no new work item can be scheduled, and then it flushes
|
|
* hbus->wq and safely closes the vmbus channel.
|
|
*/
|
|
tasklet_disable(&hdev->channel->callback_event);
|
|
|
|
/* Change the hbus state to prevent new work items. */
|
|
old_state = hbus->state;
|
|
if (hbus->state == hv_pcibus_installed)
|
|
hbus->state = hv_pcibus_removing;
|
|
|
|
tasklet_enable(&hdev->channel->callback_event);
|
|
|
|
if (old_state != hv_pcibus_installed)
|
|
return -EINVAL;
|
|
|
|
flush_workqueue(hbus->wq);
|
|
|
|
ret = hv_pci_bus_exit(hdev, true);
|
|
if (ret)
|
|
return ret;
|
|
|
|
vmbus_close(hdev->channel);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int hv_pci_restore_msi_msg(struct pci_dev *pdev, void *arg)
|
|
{
|
|
struct irq_data *irq_data;
|
|
struct msi_desc *entry;
|
|
int ret = 0;
|
|
|
|
msi_lock_descs(&pdev->dev);
|
|
msi_for_each_desc(entry, &pdev->dev, MSI_DESC_ASSOCIATED) {
|
|
irq_data = irq_get_irq_data(entry->irq);
|
|
if (WARN_ON_ONCE(!irq_data)) {
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
hv_compose_msi_msg(irq_data, &entry->msg);
|
|
}
|
|
msi_unlock_descs(&pdev->dev);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Upon resume, pci_restore_msi_state() -> ... -> __pci_write_msi_msg()
|
|
* directly writes the MSI/MSI-X registers via MMIO, but since Hyper-V
|
|
* doesn't trap and emulate the MMIO accesses, here hv_compose_msi_msg()
|
|
* must be used to ask Hyper-V to re-create the IOMMU Interrupt Remapping
|
|
* Table entries.
|
|
*/
|
|
static void hv_pci_restore_msi_state(struct hv_pcibus_device *hbus)
|
|
{
|
|
pci_walk_bus(hbus->bridge->bus, hv_pci_restore_msi_msg, NULL);
|
|
}
|
|
|
|
static int hv_pci_resume(struct hv_device *hdev)
|
|
{
|
|
struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
|
|
enum pci_protocol_version_t version[1];
|
|
int ret;
|
|
|
|
hbus->state = hv_pcibus_init;
|
|
|
|
hdev->channel->next_request_id_callback = vmbus_next_request_id;
|
|
hdev->channel->request_addr_callback = vmbus_request_addr;
|
|
hdev->channel->rqstor_size = HV_PCI_RQSTOR_SIZE;
|
|
|
|
ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0,
|
|
hv_pci_onchannelcallback, hbus);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Only use the version that was in use before hibernation. */
|
|
version[0] = hbus->protocol_version;
|
|
ret = hv_pci_protocol_negotiation(hdev, version, 1);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = hv_pci_query_relations(hdev);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = hv_pci_enter_d0(hdev);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = hv_send_resources_allocated(hdev);
|
|
if (ret)
|
|
goto out;
|
|
|
|
prepopulate_bars(hbus);
|
|
|
|
hv_pci_restore_msi_state(hbus);
|
|
|
|
hbus->state = hv_pcibus_installed;
|
|
return 0;
|
|
out:
|
|
vmbus_close(hdev->channel);
|
|
return ret;
|
|
}
|
|
|
|
static const struct hv_vmbus_device_id hv_pci_id_table[] = {
|
|
/* PCI Pass-through Class ID */
|
|
/* 44C4F61D-4444-4400-9D52-802E27EDE19F */
|
|
{ HV_PCIE_GUID, },
|
|
{ },
|
|
};
|
|
|
|
MODULE_DEVICE_TABLE(vmbus, hv_pci_id_table);
|
|
|
|
static struct hv_driver hv_pci_drv = {
|
|
.name = "hv_pci",
|
|
.id_table = hv_pci_id_table,
|
|
.probe = hv_pci_probe,
|
|
.remove = hv_pci_remove,
|
|
.suspend = hv_pci_suspend,
|
|
.resume = hv_pci_resume,
|
|
};
|
|
|
|
static void __exit exit_hv_pci_drv(void)
|
|
{
|
|
vmbus_driver_unregister(&hv_pci_drv);
|
|
|
|
hvpci_block_ops.read_block = NULL;
|
|
hvpci_block_ops.write_block = NULL;
|
|
hvpci_block_ops.reg_blk_invalidate = NULL;
|
|
}
|
|
|
|
static int __init init_hv_pci_drv(void)
|
|
{
|
|
int ret;
|
|
|
|
if (!hv_is_hyperv_initialized())
|
|
return -ENODEV;
|
|
|
|
ret = hv_pci_irqchip_init();
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Set the invalid domain number's bit, so it will not be used */
|
|
set_bit(HVPCI_DOM_INVALID, hvpci_dom_map);
|
|
|
|
/* Initialize PCI block r/w interface */
|
|
hvpci_block_ops.read_block = hv_read_config_block;
|
|
hvpci_block_ops.write_block = hv_write_config_block;
|
|
hvpci_block_ops.reg_blk_invalidate = hv_register_block_invalidate;
|
|
|
|
return vmbus_driver_register(&hv_pci_drv);
|
|
}
|
|
|
|
module_init(init_hv_pci_drv);
|
|
module_exit(exit_hv_pci_drv);
|
|
|
|
MODULE_DESCRIPTION("Hyper-V PCI");
|
|
MODULE_LICENSE("GPL v2");
|