linux-zen-server/drivers/pci/endpoint/functions/pci-epf-ntb.c

2148 lines
73 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Endpoint Function Driver to implement Non-Transparent Bridge functionality
*
* Copyright (C) 2020 Texas Instruments
* Author: Kishon Vijay Abraham I <kishon@ti.com>
*/
/*
* The PCI NTB function driver configures the SoC with multiple PCIe Endpoint
* (EP) controller instances (see diagram below) in such a way that
* transactions from one EP controller are routed to the other EP controller.
* Once PCI NTB function driver configures the SoC with multiple EP instances,
* HOST1 and HOST2 can communicate with each other using SoC as a bridge.
*
* +-------------+ +-------------+
* | | | |
* | HOST1 | | HOST2 |
* | | | |
* +------^------+ +------^------+
* | |
* | |
* +---------|-------------------------------------------------|---------+
* | +------v------+ +------v------+ |
* | | | | | |
* | | EP | | EP | |
* | | CONTROLLER1 | | CONTROLLER2 | |
* | | <-----------------------------------> | |
* | | | | | |
* | | | | | |
* | | | SoC With Multiple EP Instances | | |
* | | | (Configured using NTB Function) | | |
* | +-------------+ +-------------+ |
* +---------------------------------------------------------------------+
*/
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/pci-epc.h>
#include <linux/pci-epf.h>
static struct workqueue_struct *kpcintb_workqueue;
#define COMMAND_CONFIGURE_DOORBELL 1
#define COMMAND_TEARDOWN_DOORBELL 2
#define COMMAND_CONFIGURE_MW 3
#define COMMAND_TEARDOWN_MW 4
#define COMMAND_LINK_UP 5
#define COMMAND_LINK_DOWN 6
#define COMMAND_STATUS_OK 1
#define COMMAND_STATUS_ERROR 2
#define LINK_STATUS_UP BIT(0)
#define SPAD_COUNT 64
#define DB_COUNT 4
#define NTB_MW_OFFSET 2
#define DB_COUNT_MASK GENMASK(15, 0)
#define MSIX_ENABLE BIT(16)
#define MAX_DB_COUNT 32
#define MAX_MW 4
enum epf_ntb_bar {
BAR_CONFIG,
BAR_PEER_SPAD,
BAR_DB_MW1,
BAR_MW2,
BAR_MW3,
BAR_MW4,
};
struct epf_ntb {
u32 num_mws;
u32 db_count;
u32 spad_count;
struct pci_epf *epf;
u64 mws_size[MAX_MW];
struct config_group group;
struct epf_ntb_epc *epc[2];
};
#define to_epf_ntb(epf_group) container_of((epf_group), struct epf_ntb, group)
struct epf_ntb_epc {
u8 func_no;
u8 vfunc_no;
bool linkup;
bool is_msix;
int msix_bar;
u32 spad_size;
struct pci_epc *epc;
struct epf_ntb *epf_ntb;
void __iomem *mw_addr[6];
size_t msix_table_offset;
struct epf_ntb_ctrl *reg;
struct pci_epf_bar *epf_bar;
enum pci_barno epf_ntb_bar[6];
struct delayed_work cmd_handler;
enum pci_epc_interface_type type;
const struct pci_epc_features *epc_features;
};
struct epf_ntb_ctrl {
u32 command;
u32 argument;
u16 command_status;
u16 link_status;
u32 topology;
u64 addr;
u64 size;
u32 num_mws;
u32 mw1_offset;
u32 spad_offset;
u32 spad_count;
u32 db_entry_size;
u32 db_data[MAX_DB_COUNT];
u32 db_offset[MAX_DB_COUNT];
} __packed;
static struct pci_epf_header epf_ntb_header = {
.vendorid = PCI_ANY_ID,
.deviceid = PCI_ANY_ID,
.baseclass_code = PCI_BASE_CLASS_MEMORY,
.interrupt_pin = PCI_INTERRUPT_INTA,
};
/**
* epf_ntb_link_up() - Raise link_up interrupt to both the hosts
* @ntb: NTB device that facilitates communication between HOST1 and HOST2
* @link_up: true or false indicating Link is UP or Down
*
* Once NTB function in HOST1 and the NTB function in HOST2 invoke
* ntb_link_enable(), this NTB function driver will trigger a link event to
* the NTB client in both the hosts.
*/
static int epf_ntb_link_up(struct epf_ntb *ntb, bool link_up)
{
enum pci_epc_interface_type type;
enum pci_epc_irq_type irq_type;
struct epf_ntb_epc *ntb_epc;
struct epf_ntb_ctrl *ctrl;
struct pci_epc *epc;
u8 func_no, vfunc_no;
bool is_msix;
int ret;
for (type = PRIMARY_INTERFACE; type <= SECONDARY_INTERFACE; type++) {
ntb_epc = ntb->epc[type];
epc = ntb_epc->epc;
func_no = ntb_epc->func_no;
vfunc_no = ntb_epc->vfunc_no;
is_msix = ntb_epc->is_msix;
ctrl = ntb_epc->reg;
if (link_up)
ctrl->link_status |= LINK_STATUS_UP;
else
ctrl->link_status &= ~LINK_STATUS_UP;
irq_type = is_msix ? PCI_EPC_IRQ_MSIX : PCI_EPC_IRQ_MSI;
ret = pci_epc_raise_irq(epc, func_no, vfunc_no, irq_type, 1);
if (ret) {
dev_err(&epc->dev,
"%s intf: Failed to raise Link Up IRQ\n",
pci_epc_interface_string(type));
return ret;
}
}
return 0;
}
/**
* epf_ntb_configure_mw() - Configure the Outbound Address Space for one host
* to access the memory window of other host
* @ntb: NTB device that facilitates communication between HOST1 and HOST2
* @type: PRIMARY interface or SECONDARY interface
* @mw: Index of the memory window (either 0, 1, 2 or 3)
*
* +-----------------+ +---->+----------------+-----------+-----------------+
* | BAR0 | | | Doorbell 1 +-----------> MSI|X ADDRESS 1 |
* +-----------------+ | +----------------+ +-----------------+
* | BAR1 | | | Doorbell 2 +---------+ | |
* +-----------------+----+ +----------------+ | | |
* | BAR2 | | Doorbell 3 +-------+ | +-----------------+
* +-----------------+----+ +----------------+ | +-> MSI|X ADDRESS 2 |
* | BAR3 | | | Doorbell 4 +-----+ | +-----------------+
* +-----------------+ | |----------------+ | | | |
* | BAR4 | | | | | | +-----------------+
* +-----------------+ | | MW1 +---+ | +-->+ MSI|X ADDRESS 3||
* | BAR5 | | | | | | +-----------------+
* +-----------------+ +---->-----------------+ | | | |
* EP CONTROLLER 1 | | | | +-----------------+
* | | | +---->+ MSI|X ADDRESS 4 |
* +----------------+ | +-----------------+
* (A) EP CONTROLLER 2 | | |
* (OB SPACE) | | |
* +-------> MW1 |
* | |
* | |
* (B) +-----------------+
* | |
* | |
* | |
* | |
* | |
* +-----------------+
* PCI Address Space
* (Managed by HOST2)
*
* This function performs stage (B) in the above diagram (see MW1) i.e., map OB
* address space of memory window to PCI address space.
*
* This operation requires 3 parameters
* 1) Address in the outbound address space
* 2) Address in the PCI Address space
* 3) Size of the address region to be mapped
*
* The address in the outbound address space (for MW1, MW2, MW3 and MW4) is
* stored in epf_bar corresponding to BAR_DB_MW1 for MW1 and BAR_MW2, BAR_MW3
* BAR_MW4 for rest of the BARs of epf_ntb_epc that is connected to HOST1. This
* is populated in epf_ntb_alloc_peer_mem() in this driver.
*
* The address and size of the PCI address region that has to be mapped would
* be provided by HOST2 in ctrl->addr and ctrl->size of epf_ntb_epc that is
* connected to HOST2.
*
* Please note Memory window1 (MW1) and Doorbell registers together will be
* mapped to a single BAR (BAR2) above for 32-bit BARs. The exact BAR that's
* used for Memory window (MW) can be obtained from epf_ntb_bar[BAR_DB_MW1],
* epf_ntb_bar[BAR_MW2], epf_ntb_bar[BAR_MW2], epf_ntb_bar[BAR_MW2].
*/
static int epf_ntb_configure_mw(struct epf_ntb *ntb,
enum pci_epc_interface_type type, u32 mw)
{
struct epf_ntb_epc *peer_ntb_epc, *ntb_epc;
struct pci_epf_bar *peer_epf_bar;
enum pci_barno peer_barno;
struct epf_ntb_ctrl *ctrl;
phys_addr_t phys_addr;
u8 func_no, vfunc_no;
struct pci_epc *epc;
u64 addr, size;
int ret = 0;
ntb_epc = ntb->epc[type];
epc = ntb_epc->epc;
peer_ntb_epc = ntb->epc[!type];
peer_barno = peer_ntb_epc->epf_ntb_bar[mw + NTB_MW_OFFSET];
peer_epf_bar = &peer_ntb_epc->epf_bar[peer_barno];
phys_addr = peer_epf_bar->phys_addr;
ctrl = ntb_epc->reg;
addr = ctrl->addr;
size = ctrl->size;
if (mw + NTB_MW_OFFSET == BAR_DB_MW1)
phys_addr += ctrl->mw1_offset;
if (size > ntb->mws_size[mw]) {
dev_err(&epc->dev,
"%s intf: MW: %d Req Sz:%llxx > Supported Sz:%llx\n",
pci_epc_interface_string(type), mw, size,
ntb->mws_size[mw]);
ret = -EINVAL;
goto err_invalid_size;
}
func_no = ntb_epc->func_no;
vfunc_no = ntb_epc->vfunc_no;
ret = pci_epc_map_addr(epc, func_no, vfunc_no, phys_addr, addr, size);
if (ret)
dev_err(&epc->dev,
"%s intf: Failed to map memory window %d address\n",
pci_epc_interface_string(type), mw);
err_invalid_size:
return ret;
}
/**
* epf_ntb_teardown_mw() - Teardown the configured OB ATU
* @ntb: NTB device that facilitates communication between HOST1 and HOST2
* @type: PRIMARY interface or SECONDARY interface
* @mw: Index of the memory window (either 0, 1, 2 or 3)
*
* Teardown the configured OB ATU configured in epf_ntb_configure_mw() using
* pci_epc_unmap_addr()
*/
static void epf_ntb_teardown_mw(struct epf_ntb *ntb,
enum pci_epc_interface_type type, u32 mw)
{
struct epf_ntb_epc *peer_ntb_epc, *ntb_epc;
struct pci_epf_bar *peer_epf_bar;
enum pci_barno peer_barno;
struct epf_ntb_ctrl *ctrl;
phys_addr_t phys_addr;
u8 func_no, vfunc_no;
struct pci_epc *epc;
ntb_epc = ntb->epc[type];
epc = ntb_epc->epc;
peer_ntb_epc = ntb->epc[!type];
peer_barno = peer_ntb_epc->epf_ntb_bar[mw + NTB_MW_OFFSET];
peer_epf_bar = &peer_ntb_epc->epf_bar[peer_barno];
phys_addr = peer_epf_bar->phys_addr;
ctrl = ntb_epc->reg;
if (mw + NTB_MW_OFFSET == BAR_DB_MW1)
phys_addr += ctrl->mw1_offset;
func_no = ntb_epc->func_no;
vfunc_no = ntb_epc->vfunc_no;
pci_epc_unmap_addr(epc, func_no, vfunc_no, phys_addr);
}
/**
* epf_ntb_configure_msi() - Map OB address space to MSI address
* @ntb: NTB device that facilitates communication between HOST1 and HOST2
* @type: PRIMARY interface or SECONDARY interface
* @db_count: Number of doorbell interrupts to map
*
*+-----------------+ +----->+----------------+-----------+-----------------+
*| BAR0 | | | Doorbell 1 +---+-------> MSI ADDRESS |
*+-----------------+ | +----------------+ | +-----------------+
*| BAR1 | | | Doorbell 2 +---+ | |
*+-----------------+----+ +----------------+ | | |
*| BAR2 | | Doorbell 3 +---+ | |
*+-----------------+----+ +----------------+ | | |
*| BAR3 | | | Doorbell 4 +---+ | |
*+-----------------+ | |----------------+ | |
*| BAR4 | | | | | |
*+-----------------+ | | MW1 | | |
*| BAR5 | | | | | |
*+-----------------+ +----->-----------------+ | |
* EP CONTROLLER 1 | | | |
* | | | |
* +----------------+ +-----------------+
* (A) EP CONTROLLER 2 | |
* (OB SPACE) | |
* | MW1 |
* | |
* | |
* (B) +-----------------+
* | |
* | |
* | |
* | |
* | |
* +-----------------+
* PCI Address Space
* (Managed by HOST2)
*
*
* This function performs stage (B) in the above diagram (see Doorbell 1,
* Doorbell 2, Doorbell 3, Doorbell 4) i.e map OB address space corresponding to
* doorbell to MSI address in PCI address space.
*
* This operation requires 3 parameters
* 1) Address reserved for doorbell in the outbound address space
* 2) MSI-X address in the PCIe Address space
* 3) Number of MSI-X interrupts that has to be configured
*
* The address in the outbound address space (for the Doorbell) is stored in
* epf_bar corresponding to BAR_DB_MW1 of epf_ntb_epc that is connected to
* HOST1. This is populated in epf_ntb_alloc_peer_mem() in this driver along
* with address for MW1.
*
* pci_epc_map_msi_irq() takes the MSI address from MSI capability register
* and maps the OB address (obtained in epf_ntb_alloc_peer_mem()) to the MSI
* address.
*
* epf_ntb_configure_msi() also stores the MSI data to raise each interrupt
* in db_data of the peer's control region. This helps the peer to raise
* doorbell of the other host by writing db_data to the BAR corresponding to
* BAR_DB_MW1.
*/
static int epf_ntb_configure_msi(struct epf_ntb *ntb,
enum pci_epc_interface_type type, u16 db_count)
{
struct epf_ntb_epc *peer_ntb_epc, *ntb_epc;
u32 db_entry_size, db_data, db_offset;
struct pci_epf_bar *peer_epf_bar;
struct epf_ntb_ctrl *peer_ctrl;
enum pci_barno peer_barno;
phys_addr_t phys_addr;
u8 func_no, vfunc_no;
struct pci_epc *epc;
int ret, i;
ntb_epc = ntb->epc[type];
epc = ntb_epc->epc;
peer_ntb_epc = ntb->epc[!type];
peer_barno = peer_ntb_epc->epf_ntb_bar[BAR_DB_MW1];
peer_epf_bar = &peer_ntb_epc->epf_bar[peer_barno];
peer_ctrl = peer_ntb_epc->reg;
db_entry_size = peer_ctrl->db_entry_size;
phys_addr = peer_epf_bar->phys_addr;
func_no = ntb_epc->func_no;
vfunc_no = ntb_epc->vfunc_no;
ret = pci_epc_map_msi_irq(epc, func_no, vfunc_no, phys_addr, db_count,
db_entry_size, &db_data, &db_offset);
if (ret) {
dev_err(&epc->dev, "%s intf: Failed to map MSI IRQ\n",
pci_epc_interface_string(type));
return ret;
}
for (i = 0; i < db_count; i++) {
peer_ctrl->db_data[i] = db_data | i;
peer_ctrl->db_offset[i] = db_offset;
}
return 0;
}
/**
* epf_ntb_configure_msix() - Map OB address space to MSI-X address
* @ntb: NTB device that facilitates communication between HOST1 and HOST2
* @type: PRIMARY interface or SECONDARY interface
* @db_count: Number of doorbell interrupts to map
*
*+-----------------+ +----->+----------------+-----------+-----------------+
*| BAR0 | | | Doorbell 1 +-----------> MSI-X ADDRESS 1 |
*+-----------------+ | +----------------+ +-----------------+
*| BAR1 | | | Doorbell 2 +---------+ | |
*+-----------------+----+ +----------------+ | | |
*| BAR2 | | Doorbell 3 +-------+ | +-----------------+
*+-----------------+----+ +----------------+ | +-> MSI-X ADDRESS 2 |
*| BAR3 | | | Doorbell 4 +-----+ | +-----------------+
*+-----------------+ | |----------------+ | | | |
*| BAR4 | | | | | | +-----------------+
*+-----------------+ | | MW1 + | +-->+ MSI-X ADDRESS 3||
*| BAR5 | | | | | +-----------------+
*+-----------------+ +----->-----------------+ | | |
* EP CONTROLLER 1 | | | +-----------------+
* | | +---->+ MSI-X ADDRESS 4 |
* +----------------+ +-----------------+
* (A) EP CONTROLLER 2 | |
* (OB SPACE) | |
* | MW1 |
* | |
* | |
* (B) +-----------------+
* | |
* | |
* | |
* | |
* | |
* +-----------------+
* PCI Address Space
* (Managed by HOST2)
*
* This function performs stage (B) in the above diagram (see Doorbell 1,
* Doorbell 2, Doorbell 3, Doorbell 4) i.e map OB address space corresponding to
* doorbell to MSI-X address in PCI address space.
*
* This operation requires 3 parameters
* 1) Address reserved for doorbell in the outbound address space
* 2) MSI-X address in the PCIe Address space
* 3) Number of MSI-X interrupts that has to be configured
*
* The address in the outbound address space (for the Doorbell) is stored in
* epf_bar corresponding to BAR_DB_MW1 of epf_ntb_epc that is connected to
* HOST1. This is populated in epf_ntb_alloc_peer_mem() in this driver along
* with address for MW1.
*
* The MSI-X address is in the MSI-X table of EP CONTROLLER 2 and
* the count of doorbell is in ctrl->argument of epf_ntb_epc that is connected
* to HOST2. MSI-X table is stored memory mapped to ntb_epc->msix_bar and the
* offset is in ntb_epc->msix_table_offset. From this epf_ntb_configure_msix()
* gets the MSI-X address and data.
*
* epf_ntb_configure_msix() also stores the MSI-X data to raise each interrupt
* in db_data of the peer's control region. This helps the peer to raise
* doorbell of the other host by writing db_data to the BAR corresponding to
* BAR_DB_MW1.
*/
static int epf_ntb_configure_msix(struct epf_ntb *ntb,
enum pci_epc_interface_type type,
u16 db_count)
{
const struct pci_epc_features *epc_features;
struct epf_ntb_epc *peer_ntb_epc, *ntb_epc;
struct pci_epf_bar *peer_epf_bar, *epf_bar;
struct pci_epf_msix_tbl *msix_tbl;
struct epf_ntb_ctrl *peer_ctrl;
u32 db_entry_size, msg_data;
enum pci_barno peer_barno;
phys_addr_t phys_addr;
u8 func_no, vfunc_no;
struct pci_epc *epc;
size_t align;
u64 msg_addr;
int ret, i;
ntb_epc = ntb->epc[type];
epc = ntb_epc->epc;
epf_bar = &ntb_epc->epf_bar[ntb_epc->msix_bar];
msix_tbl = epf_bar->addr + ntb_epc->msix_table_offset;
peer_ntb_epc = ntb->epc[!type];
peer_barno = peer_ntb_epc->epf_ntb_bar[BAR_DB_MW1];
peer_epf_bar = &peer_ntb_epc->epf_bar[peer_barno];
phys_addr = peer_epf_bar->phys_addr;
peer_ctrl = peer_ntb_epc->reg;
epc_features = ntb_epc->epc_features;
align = epc_features->align;
func_no = ntb_epc->func_no;
vfunc_no = ntb_epc->vfunc_no;
db_entry_size = peer_ctrl->db_entry_size;
for (i = 0; i < db_count; i++) {
msg_addr = ALIGN_DOWN(msix_tbl[i].msg_addr, align);
msg_data = msix_tbl[i].msg_data;
ret = pci_epc_map_addr(epc, func_no, vfunc_no, phys_addr, msg_addr,
db_entry_size);
if (ret) {
dev_err(&epc->dev,
"%s intf: Failed to configure MSI-X IRQ\n",
pci_epc_interface_string(type));
return ret;
}
phys_addr = phys_addr + db_entry_size;
peer_ctrl->db_data[i] = msg_data;
peer_ctrl->db_offset[i] = msix_tbl[i].msg_addr & (align - 1);
}
ntb_epc->is_msix = true;
return 0;
}
/**
* epf_ntb_configure_db() - Configure the Outbound Address Space for one host
* to ring the doorbell of other host
* @ntb: NTB device that facilitates communication between HOST1 and HOST2
* @type: PRIMARY interface or SECONDARY interface
* @db_count: Count of the number of doorbells that has to be configured
* @msix: Indicates whether MSI-X or MSI should be used
*
* Invokes epf_ntb_configure_msix() or epf_ntb_configure_msi() required for
* one HOST to ring the doorbell of other HOST.
*/
static int epf_ntb_configure_db(struct epf_ntb *ntb,
enum pci_epc_interface_type type,
u16 db_count, bool msix)
{
struct epf_ntb_epc *ntb_epc;
struct pci_epc *epc;
int ret;
if (db_count > MAX_DB_COUNT)
return -EINVAL;
ntb_epc = ntb->epc[type];
epc = ntb_epc->epc;
if (msix)
ret = epf_ntb_configure_msix(ntb, type, db_count);
else
ret = epf_ntb_configure_msi(ntb, type, db_count);
if (ret)
dev_err(&epc->dev, "%s intf: Failed to configure DB\n",
pci_epc_interface_string(type));
return ret;
}
/**
* epf_ntb_teardown_db() - Unmap address in OB address space to MSI/MSI-X
* address
* @ntb: NTB device that facilitates communication between HOST1 and HOST2
* @type: PRIMARY interface or SECONDARY interface
*
* Invoke pci_epc_unmap_addr() to unmap OB address to MSI/MSI-X address.
*/
static void
epf_ntb_teardown_db(struct epf_ntb *ntb, enum pci_epc_interface_type type)
{
struct epf_ntb_epc *peer_ntb_epc, *ntb_epc;
struct pci_epf_bar *peer_epf_bar;
enum pci_barno peer_barno;
phys_addr_t phys_addr;
u8 func_no, vfunc_no;
struct pci_epc *epc;
ntb_epc = ntb->epc[type];
epc = ntb_epc->epc;
peer_ntb_epc = ntb->epc[!type];
peer_barno = peer_ntb_epc->epf_ntb_bar[BAR_DB_MW1];
peer_epf_bar = &peer_ntb_epc->epf_bar[peer_barno];
phys_addr = peer_epf_bar->phys_addr;
func_no = ntb_epc->func_no;
vfunc_no = ntb_epc->vfunc_no;
pci_epc_unmap_addr(epc, func_no, vfunc_no, phys_addr);
}
/**
* epf_ntb_cmd_handler() - Handle commands provided by the NTB Host
* @work: work_struct for the two epf_ntb_epc (PRIMARY and SECONDARY)
*
* Workqueue function that gets invoked for the two epf_ntb_epc
* periodically (once every 5ms) to see if it has received any commands
* from NTB host. The host can send commands to configure doorbell or
* configure memory window or to update link status.
*/
static void epf_ntb_cmd_handler(struct work_struct *work)
{
enum pci_epc_interface_type type;
struct epf_ntb_epc *ntb_epc;
struct epf_ntb_ctrl *ctrl;
u32 command, argument;
struct epf_ntb *ntb;
struct device *dev;
u16 db_count;
bool is_msix;
int ret;
ntb_epc = container_of(work, struct epf_ntb_epc, cmd_handler.work);
ctrl = ntb_epc->reg;
command = ctrl->command;
if (!command)
goto reset_handler;
argument = ctrl->argument;
ctrl->command = 0;
ctrl->argument = 0;
ctrl = ntb_epc->reg;
type = ntb_epc->type;
ntb = ntb_epc->epf_ntb;
dev = &ntb->epf->dev;
switch (command) {
case COMMAND_CONFIGURE_DOORBELL:
db_count = argument & DB_COUNT_MASK;
is_msix = argument & MSIX_ENABLE;
ret = epf_ntb_configure_db(ntb, type, db_count, is_msix);
if (ret < 0)
ctrl->command_status = COMMAND_STATUS_ERROR;
else
ctrl->command_status = COMMAND_STATUS_OK;
break;
case COMMAND_TEARDOWN_DOORBELL:
epf_ntb_teardown_db(ntb, type);
ctrl->command_status = COMMAND_STATUS_OK;
break;
case COMMAND_CONFIGURE_MW:
ret = epf_ntb_configure_mw(ntb, type, argument);
if (ret < 0)
ctrl->command_status = COMMAND_STATUS_ERROR;
else
ctrl->command_status = COMMAND_STATUS_OK;
break;
case COMMAND_TEARDOWN_MW:
epf_ntb_teardown_mw(ntb, type, argument);
ctrl->command_status = COMMAND_STATUS_OK;
break;
case COMMAND_LINK_UP:
ntb_epc->linkup = true;
if (ntb->epc[PRIMARY_INTERFACE]->linkup &&
ntb->epc[SECONDARY_INTERFACE]->linkup) {
ret = epf_ntb_link_up(ntb, true);
if (ret < 0)
ctrl->command_status = COMMAND_STATUS_ERROR;
else
ctrl->command_status = COMMAND_STATUS_OK;
goto reset_handler;
}
ctrl->command_status = COMMAND_STATUS_OK;
break;
case COMMAND_LINK_DOWN:
ntb_epc->linkup = false;
ret = epf_ntb_link_up(ntb, false);
if (ret < 0)
ctrl->command_status = COMMAND_STATUS_ERROR;
else
ctrl->command_status = COMMAND_STATUS_OK;
break;
default:
dev_err(dev, "%s intf UNKNOWN command: %d\n",
pci_epc_interface_string(type), command);
break;
}
reset_handler:
queue_delayed_work(kpcintb_workqueue, &ntb_epc->cmd_handler,
msecs_to_jiffies(5));
}
/**
* epf_ntb_peer_spad_bar_clear() - Clear Peer Scratchpad BAR
* @ntb_epc: EPC associated with one of the HOST which holds peer's outbound
* address.
*
*+-----------------+------->+------------------+ +-----------------+
*| BAR0 | | CONFIG REGION | | BAR0 |
*+-----------------+----+ +------------------+<-------+-----------------+
*| BAR1 | | |SCRATCHPAD REGION | | BAR1 |
*+-----------------+ +-->+------------------+<-------+-----------------+
*| BAR2 | Local Memory | BAR2 |
*+-----------------+ +-----------------+
*| BAR3 | | BAR3 |
*+-----------------+ +-----------------+
*| BAR4 | | BAR4 |
*+-----------------+ +-----------------+
*| BAR5 | | BAR5 |
*+-----------------+ +-----------------+
* EP CONTROLLER 1 EP CONTROLLER 2
*
* Clear BAR1 of EP CONTROLLER 2 which contains the HOST2's peer scratchpad
* region. While BAR1 is the default peer scratchpad BAR, an NTB could have
* other BARs for peer scratchpad (because of 64-bit BARs or reserved BARs).
* This function can get the exact BAR used for peer scratchpad from
* epf_ntb_bar[BAR_PEER_SPAD].
*
* Since HOST2's peer scratchpad is also HOST1's self scratchpad, this function
* gets the address of peer scratchpad from
* peer_ntb_epc->epf_ntb_bar[BAR_CONFIG].
*/
static void epf_ntb_peer_spad_bar_clear(struct epf_ntb_epc *ntb_epc)
{
struct pci_epf_bar *epf_bar;
enum pci_barno barno;
u8 func_no, vfunc_no;
struct pci_epc *epc;
epc = ntb_epc->epc;
func_no = ntb_epc->func_no;
vfunc_no = ntb_epc->vfunc_no;
barno = ntb_epc->epf_ntb_bar[BAR_PEER_SPAD];
epf_bar = &ntb_epc->epf_bar[barno];
pci_epc_clear_bar(epc, func_no, vfunc_no, epf_bar);
}
/**
* epf_ntb_peer_spad_bar_set() - Set peer scratchpad BAR
* @ntb: NTB device that facilitates communication between HOST1 and HOST2
* @type: PRIMARY interface or SECONDARY interface
*
*+-----------------+------->+------------------+ +-----------------+
*| BAR0 | | CONFIG REGION | | BAR0 |
*+-----------------+----+ +------------------+<-------+-----------------+
*| BAR1 | | |SCRATCHPAD REGION | | BAR1 |
*+-----------------+ +-->+------------------+<-------+-----------------+
*| BAR2 | Local Memory | BAR2 |
*+-----------------+ +-----------------+
*| BAR3 | | BAR3 |
*+-----------------+ +-----------------+
*| BAR4 | | BAR4 |
*+-----------------+ +-----------------+
*| BAR5 | | BAR5 |
*+-----------------+ +-----------------+
* EP CONTROLLER 1 EP CONTROLLER 2
*
* Set BAR1 of EP CONTROLLER 2 which contains the HOST2's peer scratchpad
* region. While BAR1 is the default peer scratchpad BAR, an NTB could have
* other BARs for peer scratchpad (because of 64-bit BARs or reserved BARs).
* This function can get the exact BAR used for peer scratchpad from
* epf_ntb_bar[BAR_PEER_SPAD].
*
* Since HOST2's peer scratchpad is also HOST1's self scratchpad, this function
* gets the address of peer scratchpad from
* peer_ntb_epc->epf_ntb_bar[BAR_CONFIG].
*/
static int epf_ntb_peer_spad_bar_set(struct epf_ntb *ntb,
enum pci_epc_interface_type type)
{
struct epf_ntb_epc *peer_ntb_epc, *ntb_epc;
struct pci_epf_bar *peer_epf_bar, *epf_bar;
enum pci_barno peer_barno, barno;
u32 peer_spad_offset;
u8 func_no, vfunc_no;
struct pci_epc *epc;
struct device *dev;
int ret;
dev = &ntb->epf->dev;
peer_ntb_epc = ntb->epc[!type];
peer_barno = peer_ntb_epc->epf_ntb_bar[BAR_CONFIG];
peer_epf_bar = &peer_ntb_epc->epf_bar[peer_barno];
ntb_epc = ntb->epc[type];
barno = ntb_epc->epf_ntb_bar[BAR_PEER_SPAD];
epf_bar = &ntb_epc->epf_bar[barno];
func_no = ntb_epc->func_no;
vfunc_no = ntb_epc->vfunc_no;
epc = ntb_epc->epc;
peer_spad_offset = peer_ntb_epc->reg->spad_offset;
epf_bar->phys_addr = peer_epf_bar->phys_addr + peer_spad_offset;
epf_bar->size = peer_ntb_epc->spad_size;
epf_bar->barno = barno;
epf_bar->flags = PCI_BASE_ADDRESS_MEM_TYPE_32;
ret = pci_epc_set_bar(epc, func_no, vfunc_no, epf_bar);
if (ret) {
dev_err(dev, "%s intf: peer SPAD BAR set failed\n",
pci_epc_interface_string(type));
return ret;
}
return 0;
}
/**
* epf_ntb_config_sspad_bar_clear() - Clear Config + Self scratchpad BAR
* @ntb_epc: EPC associated with one of the HOST which holds peer's outbound
* address.
*
* +-----------------+------->+------------------+ +-----------------+
* | BAR0 | | CONFIG REGION | | BAR0 |
* +-----------------+----+ +------------------+<-------+-----------------+
* | BAR1 | | |SCRATCHPAD REGION | | BAR1 |
* +-----------------+ +-->+------------------+<-------+-----------------+
* | BAR2 | Local Memory | BAR2 |
* +-----------------+ +-----------------+
* | BAR3 | | BAR3 |
* +-----------------+ +-----------------+
* | BAR4 | | BAR4 |
* +-----------------+ +-----------------+
* | BAR5 | | BAR5 |
* +-----------------+ +-----------------+
* EP CONTROLLER 1 EP CONTROLLER 2
*
* Clear BAR0 of EP CONTROLLER 1 which contains the HOST1's config and
* self scratchpad region (removes inbound ATU configuration). While BAR0 is
* the default self scratchpad BAR, an NTB could have other BARs for self
* scratchpad (because of reserved BARs). This function can get the exact BAR
* used for self scratchpad from epf_ntb_bar[BAR_CONFIG].
*
* Please note the self scratchpad region and config region is combined to
* a single region and mapped using the same BAR. Also note HOST2's peer
* scratchpad is HOST1's self scratchpad.
*/
static void epf_ntb_config_sspad_bar_clear(struct epf_ntb_epc *ntb_epc)
{
struct pci_epf_bar *epf_bar;
enum pci_barno barno;
u8 func_no, vfunc_no;
struct pci_epc *epc;
epc = ntb_epc->epc;
func_no = ntb_epc->func_no;
vfunc_no = ntb_epc->vfunc_no;
barno = ntb_epc->epf_ntb_bar[BAR_CONFIG];
epf_bar = &ntb_epc->epf_bar[barno];
pci_epc_clear_bar(epc, func_no, vfunc_no, epf_bar);
}
/**
* epf_ntb_config_sspad_bar_set() - Set Config + Self scratchpad BAR
* @ntb_epc: EPC associated with one of the HOST which holds peer's outbound
* address.
*
* +-----------------+------->+------------------+ +-----------------+
* | BAR0 | | CONFIG REGION | | BAR0 |
* +-----------------+----+ +------------------+<-------+-----------------+
* | BAR1 | | |SCRATCHPAD REGION | | BAR1 |
* +-----------------+ +-->+------------------+<-------+-----------------+
* | BAR2 | Local Memory | BAR2 |
* +-----------------+ +-----------------+
* | BAR3 | | BAR3 |
* +-----------------+ +-----------------+
* | BAR4 | | BAR4 |
* +-----------------+ +-----------------+
* | BAR5 | | BAR5 |
* +-----------------+ +-----------------+
* EP CONTROLLER 1 EP CONTROLLER 2
*
* Map BAR0 of EP CONTROLLER 1 which contains the HOST1's config and
* self scratchpad region. While BAR0 is the default self scratchpad BAR, an
* NTB could have other BARs for self scratchpad (because of reserved BARs).
* This function can get the exact BAR used for self scratchpad from
* epf_ntb_bar[BAR_CONFIG].
*
* Please note the self scratchpad region and config region is combined to
* a single region and mapped using the same BAR. Also note HOST2's peer
* scratchpad is HOST1's self scratchpad.
*/
static int epf_ntb_config_sspad_bar_set(struct epf_ntb_epc *ntb_epc)
{
struct pci_epf_bar *epf_bar;
enum pci_barno barno;
u8 func_no, vfunc_no;
struct epf_ntb *ntb;
struct pci_epc *epc;
struct device *dev;
int ret;
ntb = ntb_epc->epf_ntb;
dev = &ntb->epf->dev;
epc = ntb_epc->epc;
func_no = ntb_epc->func_no;
vfunc_no = ntb_epc->vfunc_no;
barno = ntb_epc->epf_ntb_bar[BAR_CONFIG];
epf_bar = &ntb_epc->epf_bar[barno];
ret = pci_epc_set_bar(epc, func_no, vfunc_no, epf_bar);
if (ret) {
dev_err(dev, "%s inft: Config/Status/SPAD BAR set failed\n",
pci_epc_interface_string(ntb_epc->type));
return ret;
}
return 0;
}
/**
* epf_ntb_config_spad_bar_free() - Free the physical memory associated with
* config + scratchpad region
* @ntb: NTB device that facilitates communication between HOST1 and HOST2
*
* +-----------------+------->+------------------+ +-----------------+
* | BAR0 | | CONFIG REGION | | BAR0 |
* +-----------------+----+ +------------------+<-------+-----------------+
* | BAR1 | | |SCRATCHPAD REGION | | BAR1 |
* +-----------------+ +-->+------------------+<-------+-----------------+
* | BAR2 | Local Memory | BAR2 |
* +-----------------+ +-----------------+
* | BAR3 | | BAR3 |
* +-----------------+ +-----------------+
* | BAR4 | | BAR4 |
* +-----------------+ +-----------------+
* | BAR5 | | BAR5 |
* +-----------------+ +-----------------+
* EP CONTROLLER 1 EP CONTROLLER 2
*
* Free the Local Memory mentioned in the above diagram. After invoking this
* function, any of config + self scratchpad region of HOST1 or peer scratchpad
* region of HOST2 should not be accessed.
*/
static void epf_ntb_config_spad_bar_free(struct epf_ntb *ntb)
{
enum pci_epc_interface_type type;
struct epf_ntb_epc *ntb_epc;
enum pci_barno barno;
struct pci_epf *epf;
epf = ntb->epf;
for (type = PRIMARY_INTERFACE; type <= SECONDARY_INTERFACE; type++) {
ntb_epc = ntb->epc[type];
barno = ntb_epc->epf_ntb_bar[BAR_CONFIG];
if (ntb_epc->reg)
pci_epf_free_space(epf, ntb_epc->reg, barno, type);
}
}
/**
* epf_ntb_config_spad_bar_alloc() - Allocate memory for config + scratchpad
* region
* @ntb: NTB device that facilitates communication between HOST1 and HOST2
* @type: PRIMARY interface or SECONDARY interface
*
* +-----------------+------->+------------------+ +-----------------+
* | BAR0 | | CONFIG REGION | | BAR0 |
* +-----------------+----+ +------------------+<-------+-----------------+
* | BAR1 | | |SCRATCHPAD REGION | | BAR1 |
* +-----------------+ +-->+------------------+<-------+-----------------+
* | BAR2 | Local Memory | BAR2 |
* +-----------------+ +-----------------+
* | BAR3 | | BAR3 |
* +-----------------+ +-----------------+
* | BAR4 | | BAR4 |
* +-----------------+ +-----------------+
* | BAR5 | | BAR5 |
* +-----------------+ +-----------------+
* EP CONTROLLER 1 EP CONTROLLER 2
*
* Allocate the Local Memory mentioned in the above diagram. The size of
* CONFIG REGION is sizeof(struct epf_ntb_ctrl) and size of SCRATCHPAD REGION
* is obtained from "spad-count" configfs entry.
*
* The size of both config region and scratchpad region has to be aligned,
* since the scratchpad region will also be mapped as PEER SCRATCHPAD of
* other host using a separate BAR.
*/
static int epf_ntb_config_spad_bar_alloc(struct epf_ntb *ntb,
enum pci_epc_interface_type type)
{
const struct pci_epc_features *peer_epc_features, *epc_features;
struct epf_ntb_epc *peer_ntb_epc, *ntb_epc;
size_t msix_table_size, pba_size, align;
enum pci_barno peer_barno, barno;
struct epf_ntb_ctrl *ctrl;
u32 spad_size, ctrl_size;
u64 size, peer_size;
struct pci_epf *epf;
struct device *dev;
bool msix_capable;
u32 spad_count;
void *base;
epf = ntb->epf;
dev = &epf->dev;
ntb_epc = ntb->epc[type];
epc_features = ntb_epc->epc_features;
barno = ntb_epc->epf_ntb_bar[BAR_CONFIG];
size = epc_features->bar_fixed_size[barno];
align = epc_features->align;
peer_ntb_epc = ntb->epc[!type];
peer_epc_features = peer_ntb_epc->epc_features;
peer_barno = ntb_epc->epf_ntb_bar[BAR_PEER_SPAD];
peer_size = peer_epc_features->bar_fixed_size[peer_barno];
/* Check if epc_features is populated incorrectly */
if ((!IS_ALIGNED(size, align)))
return -EINVAL;
spad_count = ntb->spad_count;
ctrl_size = sizeof(struct epf_ntb_ctrl);
spad_size = spad_count * 4;
msix_capable = epc_features->msix_capable;
if (msix_capable) {
msix_table_size = PCI_MSIX_ENTRY_SIZE * ntb->db_count;
ctrl_size = ALIGN(ctrl_size, 8);
ntb_epc->msix_table_offset = ctrl_size;
ntb_epc->msix_bar = barno;
/* Align to QWORD or 8 Bytes */
pba_size = ALIGN(DIV_ROUND_UP(ntb->db_count, 8), 8);
ctrl_size = ctrl_size + msix_table_size + pba_size;
}
if (!align) {
ctrl_size = roundup_pow_of_two(ctrl_size);
spad_size = roundup_pow_of_two(spad_size);
} else {
ctrl_size = ALIGN(ctrl_size, align);
spad_size = ALIGN(spad_size, align);
}
if (peer_size) {
if (peer_size < spad_size)
spad_count = peer_size / 4;
spad_size = peer_size;
}
/*
* In order to make sure SPAD offset is aligned to its size,
* expand control region size to the size of SPAD if SPAD size
* is greater than control region size.
*/
if (spad_size > ctrl_size)
ctrl_size = spad_size;
if (!size)
size = ctrl_size + spad_size;
else if (size < ctrl_size + spad_size)
return -EINVAL;
base = pci_epf_alloc_space(epf, size, barno, align, type);
if (!base) {
dev_err(dev, "%s intf: Config/Status/SPAD alloc region fail\n",
pci_epc_interface_string(type));
return -ENOMEM;
}
ntb_epc->reg = base;
ctrl = ntb_epc->reg;
ctrl->spad_offset = ctrl_size;
ctrl->spad_count = spad_count;
ctrl->num_mws = ntb->num_mws;
ctrl->db_entry_size = align ? align : 4;
ntb_epc->spad_size = spad_size;
return 0;
}
/**
* epf_ntb_config_spad_bar_alloc_interface() - Allocate memory for config +
* scratchpad region for each of PRIMARY and SECONDARY interface
* @ntb: NTB device that facilitates communication between HOST1 and HOST2
*
* Wrapper for epf_ntb_config_spad_bar_alloc() which allocates memory for
* config + scratchpad region for a specific interface
*/
static int epf_ntb_config_spad_bar_alloc_interface(struct epf_ntb *ntb)
{
enum pci_epc_interface_type type;
struct device *dev;
int ret;
dev = &ntb->epf->dev;
for (type = PRIMARY_INTERFACE; type <= SECONDARY_INTERFACE; type++) {
ret = epf_ntb_config_spad_bar_alloc(ntb, type);
if (ret) {
dev_err(dev, "%s intf: Config/SPAD BAR alloc failed\n",
pci_epc_interface_string(type));
return ret;
}
}
return 0;
}
/**
* epf_ntb_free_peer_mem() - Free memory allocated in peers outbound address
* space
* @ntb_epc: EPC associated with one of the HOST which holds peers outbound
* address regions
*
* +-----------------+ +---->+----------------+-----------+-----------------+
* | BAR0 | | | Doorbell 1 +-----------> MSI|X ADDRESS 1 |
* +-----------------+ | +----------------+ +-----------------+
* | BAR1 | | | Doorbell 2 +---------+ | |
* +-----------------+----+ +----------------+ | | |
* | BAR2 | | Doorbell 3 +-------+ | +-----------------+
* +-----------------+----+ +----------------+ | +-> MSI|X ADDRESS 2 |
* | BAR3 | | | Doorbell 4 +-----+ | +-----------------+
* +-----------------+ | |----------------+ | | | |
* | BAR4 | | | | | | +-----------------+
* +-----------------+ | | MW1 +---+ | +-->+ MSI|X ADDRESS 3||
* | BAR5 | | | | | | +-----------------+
* +-----------------+ +---->-----------------+ | | | |
* EP CONTROLLER 1 | | | | +-----------------+
* | | | +---->+ MSI|X ADDRESS 4 |
* +----------------+ | +-----------------+
* (A) EP CONTROLLER 2 | | |
* (OB SPACE) | | |
* +-------> MW1 |
* | |
* | |
* (B) +-----------------+
* | |
* | |
* | |
* | |
* | |
* +-----------------+
* PCI Address Space
* (Managed by HOST2)
*
* Free memory allocated in EP CONTROLLER 2 (OB SPACE) in the above diagram.
* It'll free Doorbell 1, Doorbell 2, Doorbell 3, Doorbell 4, MW1 (and MW2, MW3,
* MW4).
*/
static void epf_ntb_free_peer_mem(struct epf_ntb_epc *ntb_epc)
{
struct pci_epf_bar *epf_bar;
void __iomem *mw_addr;
phys_addr_t phys_addr;
enum epf_ntb_bar bar;
enum pci_barno barno;
struct pci_epc *epc;
size_t size;
epc = ntb_epc->epc;
for (bar = BAR_DB_MW1; bar < BAR_MW4; bar++) {
barno = ntb_epc->epf_ntb_bar[bar];
mw_addr = ntb_epc->mw_addr[barno];
epf_bar = &ntb_epc->epf_bar[barno];
phys_addr = epf_bar->phys_addr;
size = epf_bar->size;
if (mw_addr) {
pci_epc_mem_free_addr(epc, phys_addr, mw_addr, size);
ntb_epc->mw_addr[barno] = NULL;
}
}
}
/**
* epf_ntb_db_mw_bar_clear() - Clear doorbell and memory BAR
* @ntb_epc: EPC associated with one of the HOST which holds peer's outbound
* address
*
* +-----------------+ +---->+----------------+-----------+-----------------+
* | BAR0 | | | Doorbell 1 +-----------> MSI|X ADDRESS 1 |
* +-----------------+ | +----------------+ +-----------------+
* | BAR1 | | | Doorbell 2 +---------+ | |
* +-----------------+----+ +----------------+ | | |
* | BAR2 | | Doorbell 3 +-------+ | +-----------------+
* +-----------------+----+ +----------------+ | +-> MSI|X ADDRESS 2 |
* | BAR3 | | | Doorbell 4 +-----+ | +-----------------+
* +-----------------+ | |----------------+ | | | |
* | BAR4 | | | | | | +-----------------+
* +-----------------+ | | MW1 +---+ | +-->+ MSI|X ADDRESS 3||
* | BAR5 | | | | | | +-----------------+
* +-----------------+ +---->-----------------+ | | | |
* EP CONTROLLER 1 | | | | +-----------------+
* | | | +---->+ MSI|X ADDRESS 4 |
* +----------------+ | +-----------------+
* (A) EP CONTROLLER 2 | | |
* (OB SPACE) | | |
* +-------> MW1 |
* | |
* | |
* (B) +-----------------+
* | |
* | |
* | |
* | |
* | |
* +-----------------+
* PCI Address Space
* (Managed by HOST2)
*
* Clear doorbell and memory BARs (remove inbound ATU configuration). In the above
* diagram it clears BAR2 TO BAR5 of EP CONTROLLER 1 (Doorbell BAR, MW1 BAR, MW2
* BAR, MW3 BAR and MW4 BAR).
*/
static void epf_ntb_db_mw_bar_clear(struct epf_ntb_epc *ntb_epc)
{
struct pci_epf_bar *epf_bar;
enum epf_ntb_bar bar;
enum pci_barno barno;
u8 func_no, vfunc_no;
struct pci_epc *epc;
epc = ntb_epc->epc;
func_no = ntb_epc->func_no;
vfunc_no = ntb_epc->vfunc_no;
for (bar = BAR_DB_MW1; bar < BAR_MW4; bar++) {
barno = ntb_epc->epf_ntb_bar[bar];
epf_bar = &ntb_epc->epf_bar[barno];
pci_epc_clear_bar(epc, func_no, vfunc_no, epf_bar);
}
}
/**
* epf_ntb_db_mw_bar_cleanup() - Clear doorbell/memory BAR and free memory
* allocated in peers outbound address space
* @ntb: NTB device that facilitates communication between HOST1 and HOST2
* @type: PRIMARY interface or SECONDARY interface
*
* Wrapper for epf_ntb_db_mw_bar_clear() to clear HOST1's BAR and
* epf_ntb_free_peer_mem() which frees up HOST2 outbound memory.
*/
static void epf_ntb_db_mw_bar_cleanup(struct epf_ntb *ntb,
enum pci_epc_interface_type type)
{
struct epf_ntb_epc *peer_ntb_epc, *ntb_epc;
ntb_epc = ntb->epc[type];
peer_ntb_epc = ntb->epc[!type];
epf_ntb_db_mw_bar_clear(ntb_epc);
epf_ntb_free_peer_mem(peer_ntb_epc);
}
/**
* epf_ntb_configure_interrupt() - Configure MSI/MSI-X capability
* @ntb: NTB device that facilitates communication between HOST1 and HOST2
* @type: PRIMARY interface or SECONDARY interface
*
* Configure MSI/MSI-X capability for each interface with number of
* interrupts equal to "db_count" configfs entry.
*/
static int epf_ntb_configure_interrupt(struct epf_ntb *ntb,
enum pci_epc_interface_type type)
{
const struct pci_epc_features *epc_features;
bool msix_capable, msi_capable;
struct epf_ntb_epc *ntb_epc;
u8 func_no, vfunc_no;
struct pci_epc *epc;
struct device *dev;
u32 db_count;
int ret;
ntb_epc = ntb->epc[type];
dev = &ntb->epf->dev;
epc_features = ntb_epc->epc_features;
msix_capable = epc_features->msix_capable;
msi_capable = epc_features->msi_capable;
if (!(msix_capable || msi_capable)) {
dev_err(dev, "MSI or MSI-X is required for doorbell\n");
return -EINVAL;
}
func_no = ntb_epc->func_no;
vfunc_no = ntb_epc->vfunc_no;
db_count = ntb->db_count;
if (db_count > MAX_DB_COUNT) {
dev_err(dev, "DB count cannot be more than %d\n", MAX_DB_COUNT);
return -EINVAL;
}
ntb->db_count = db_count;
epc = ntb_epc->epc;
if (msi_capable) {
ret = pci_epc_set_msi(epc, func_no, vfunc_no, db_count);
if (ret) {
dev_err(dev, "%s intf: MSI configuration failed\n",
pci_epc_interface_string(type));
return ret;
}
}
if (msix_capable) {
ret = pci_epc_set_msix(epc, func_no, vfunc_no, db_count,
ntb_epc->msix_bar,
ntb_epc->msix_table_offset);
if (ret) {
dev_err(dev, "MSI configuration failed\n");
return ret;
}
}
return 0;
}
/**
* epf_ntb_alloc_peer_mem() - Allocate memory in peer's outbound address space
* @dev: The PCI device.
* @ntb_epc: EPC associated with one of the HOST whose BAR holds peer's outbound
* address
* @bar: BAR of @ntb_epc in for which memory has to be allocated (could be
* BAR_DB_MW1, BAR_MW2, BAR_MW3, BAR_MW4)
* @peer_ntb_epc: EPC associated with HOST whose outbound address space is
* used by @ntb_epc
* @size: Size of the address region that has to be allocated in peers OB SPACE
*
*
* +-----------------+ +---->+----------------+-----------+-----------------+
* | BAR0 | | | Doorbell 1 +-----------> MSI|X ADDRESS 1 |
* +-----------------+ | +----------------+ +-----------------+
* | BAR1 | | | Doorbell 2 +---------+ | |
* +-----------------+----+ +----------------+ | | |
* | BAR2 | | Doorbell 3 +-------+ | +-----------------+
* +-----------------+----+ +----------------+ | +-> MSI|X ADDRESS 2 |
* | BAR3 | | | Doorbell 4 +-----+ | +-----------------+
* +-----------------+ | |----------------+ | | | |
* | BAR4 | | | | | | +-----------------+
* +-----------------+ | | MW1 +---+ | +-->+ MSI|X ADDRESS 3||
* | BAR5 | | | | | | +-----------------+
* +-----------------+ +---->-----------------+ | | | |
* EP CONTROLLER 1 | | | | +-----------------+
* | | | +---->+ MSI|X ADDRESS 4 |
* +----------------+ | +-----------------+
* (A) EP CONTROLLER 2 | | |
* (OB SPACE) | | |
* +-------> MW1 |
* | |
* | |
* (B) +-----------------+
* | |
* | |
* | |
* | |
* | |
* +-----------------+
* PCI Address Space
* (Managed by HOST2)
*
* Allocate memory in OB space of EP CONTROLLER 2 in the above diagram. Allocate
* for Doorbell 1, Doorbell 2, Doorbell 3, Doorbell 4, MW1 (and MW2, MW3, MW4).
*/
static int epf_ntb_alloc_peer_mem(struct device *dev,
struct epf_ntb_epc *ntb_epc,
enum epf_ntb_bar bar,
struct epf_ntb_epc *peer_ntb_epc,
size_t size)
{
const struct pci_epc_features *epc_features;
struct pci_epf_bar *epf_bar;
struct pci_epc *peer_epc;
phys_addr_t phys_addr;
void __iomem *mw_addr;
enum pci_barno barno;
size_t align;
epc_features = ntb_epc->epc_features;
align = epc_features->align;
if (size < 128)
size = 128;
if (align)
size = ALIGN(size, align);
else
size = roundup_pow_of_two(size);
peer_epc = peer_ntb_epc->epc;
mw_addr = pci_epc_mem_alloc_addr(peer_epc, &phys_addr, size);
if (!mw_addr) {
dev_err(dev, "%s intf: Failed to allocate OB address\n",
pci_epc_interface_string(peer_ntb_epc->type));
return -ENOMEM;
}
barno = ntb_epc->epf_ntb_bar[bar];
epf_bar = &ntb_epc->epf_bar[barno];
ntb_epc->mw_addr[barno] = mw_addr;
epf_bar->phys_addr = phys_addr;
epf_bar->size = size;
epf_bar->barno = barno;
epf_bar->flags = PCI_BASE_ADDRESS_MEM_TYPE_32;
return 0;
}
/**
* epf_ntb_db_mw_bar_init() - Configure Doorbell and Memory window BARs
* @ntb: NTB device that facilitates communication between HOST1 and HOST2
* @type: PRIMARY interface or SECONDARY interface
*
* Wrapper for epf_ntb_alloc_peer_mem() and pci_epc_set_bar() that allocates
* memory in OB address space of HOST2 and configures BAR of HOST1
*/
static int epf_ntb_db_mw_bar_init(struct epf_ntb *ntb,
enum pci_epc_interface_type type)
{
const struct pci_epc_features *epc_features;
struct epf_ntb_epc *peer_ntb_epc, *ntb_epc;
struct pci_epf_bar *epf_bar;
struct epf_ntb_ctrl *ctrl;
u32 num_mws, db_count;
enum epf_ntb_bar bar;
enum pci_barno barno;
u8 func_no, vfunc_no;
struct pci_epc *epc;
struct device *dev;
size_t align;
int ret, i;
u64 size;
ntb_epc = ntb->epc[type];
peer_ntb_epc = ntb->epc[!type];
dev = &ntb->epf->dev;
epc_features = ntb_epc->epc_features;
align = epc_features->align;
func_no = ntb_epc->func_no;
vfunc_no = ntb_epc->vfunc_no;
epc = ntb_epc->epc;
num_mws = ntb->num_mws;
db_count = ntb->db_count;
for (bar = BAR_DB_MW1, i = 0; i < num_mws; bar++, i++) {
if (bar == BAR_DB_MW1) {
align = align ? align : 4;
size = db_count * align;
size = ALIGN(size, ntb->mws_size[i]);
ctrl = ntb_epc->reg;
ctrl->mw1_offset = size;
size += ntb->mws_size[i];
} else {
size = ntb->mws_size[i];
}
ret = epf_ntb_alloc_peer_mem(dev, ntb_epc, bar,
peer_ntb_epc, size);
if (ret) {
dev_err(dev, "%s intf: DoorBell mem alloc failed\n",
pci_epc_interface_string(type));
goto err_alloc_peer_mem;
}
barno = ntb_epc->epf_ntb_bar[bar];
epf_bar = &ntb_epc->epf_bar[barno];
ret = pci_epc_set_bar(epc, func_no, vfunc_no, epf_bar);
if (ret) {
dev_err(dev, "%s intf: DoorBell BAR set failed\n",
pci_epc_interface_string(type));
goto err_alloc_peer_mem;
}
}
return 0;
err_alloc_peer_mem:
epf_ntb_db_mw_bar_cleanup(ntb, type);
return ret;
}
/**
* epf_ntb_epc_destroy_interface() - Cleanup NTB EPC interface
* @ntb: NTB device that facilitates communication between HOST1 and HOST2
* @type: PRIMARY interface or SECONDARY interface
*
* Unbind NTB function device from EPC and relinquish reference to pci_epc
* for each of the interface.
*/
static void epf_ntb_epc_destroy_interface(struct epf_ntb *ntb,
enum pci_epc_interface_type type)
{
struct epf_ntb_epc *ntb_epc;
struct pci_epc *epc;
struct pci_epf *epf;
if (type < 0)
return;
epf = ntb->epf;
ntb_epc = ntb->epc[type];
if (!ntb_epc)
return;
epc = ntb_epc->epc;
pci_epc_remove_epf(epc, epf, type);
pci_epc_put(epc);
}
/**
* epf_ntb_epc_destroy() - Cleanup NTB EPC interface
* @ntb: NTB device that facilitates communication between HOST1 and HOST2
*
* Wrapper for epf_ntb_epc_destroy_interface() to cleanup all the NTB interfaces
*/
static void epf_ntb_epc_destroy(struct epf_ntb *ntb)
{
enum pci_epc_interface_type type;
for (type = PRIMARY_INTERFACE; type <= SECONDARY_INTERFACE; type++)
epf_ntb_epc_destroy_interface(ntb, type);
}
/**
* epf_ntb_epc_create_interface() - Create and initialize NTB EPC interface
* @ntb: NTB device that facilitates communication between HOST1 and HOST2
* @epc: struct pci_epc to which a particular NTB interface should be associated
* @type: PRIMARY interface or SECONDARY interface
*
* Allocate memory for NTB EPC interface and initialize it.
*/
static int epf_ntb_epc_create_interface(struct epf_ntb *ntb,
struct pci_epc *epc,
enum pci_epc_interface_type type)
{
const struct pci_epc_features *epc_features;
struct pci_epf_bar *epf_bar;
struct epf_ntb_epc *ntb_epc;
u8 func_no, vfunc_no;
struct pci_epf *epf;
struct device *dev;
dev = &ntb->epf->dev;
ntb_epc = devm_kzalloc(dev, sizeof(*ntb_epc), GFP_KERNEL);
if (!ntb_epc)
return -ENOMEM;
epf = ntb->epf;
vfunc_no = epf->vfunc_no;
if (type == PRIMARY_INTERFACE) {
func_no = epf->func_no;
epf_bar = epf->bar;
} else {
func_no = epf->sec_epc_func_no;
epf_bar = epf->sec_epc_bar;
}
ntb_epc->linkup = false;
ntb_epc->epc = epc;
ntb_epc->func_no = func_no;
ntb_epc->vfunc_no = vfunc_no;
ntb_epc->type = type;
ntb_epc->epf_bar = epf_bar;
ntb_epc->epf_ntb = ntb;
epc_features = pci_epc_get_features(epc, func_no, vfunc_no);
if (!epc_features)
return -EINVAL;
ntb_epc->epc_features = epc_features;
ntb->epc[type] = ntb_epc;
return 0;
}
/**
* epf_ntb_epc_create() - Create and initialize NTB EPC interface
* @ntb: NTB device that facilitates communication between HOST1 and HOST2
*
* Get a reference to EPC device and bind NTB function device to that EPC
* for each of the interface. It is also a wrapper to
* epf_ntb_epc_create_interface() to allocate memory for NTB EPC interface
* and initialize it
*/
static int epf_ntb_epc_create(struct epf_ntb *ntb)
{
struct pci_epf *epf;
struct device *dev;
int ret;
epf = ntb->epf;
dev = &epf->dev;
ret = epf_ntb_epc_create_interface(ntb, epf->epc, PRIMARY_INTERFACE);
if (ret) {
dev_err(dev, "PRIMARY intf: Fail to create NTB EPC\n");
return ret;
}
ret = epf_ntb_epc_create_interface(ntb, epf->sec_epc,
SECONDARY_INTERFACE);
if (ret) {
dev_err(dev, "SECONDARY intf: Fail to create NTB EPC\n");
goto err_epc_create;
}
return 0;
err_epc_create:
epf_ntb_epc_destroy_interface(ntb, PRIMARY_INTERFACE);
return ret;
}
/**
* epf_ntb_init_epc_bar_interface() - Identify BARs to be used for each of
* the NTB constructs (scratchpad region, doorbell, memorywindow)
* @ntb: NTB device that facilitates communication between HOST1 and HOST2
* @type: PRIMARY interface or SECONDARY interface
*
* Identify the free BARs to be used for each of BAR_CONFIG, BAR_PEER_SPAD,
* BAR_DB_MW1, BAR_MW2, BAR_MW3 and BAR_MW4.
*/
static int epf_ntb_init_epc_bar_interface(struct epf_ntb *ntb,
enum pci_epc_interface_type type)
{
const struct pci_epc_features *epc_features;
struct epf_ntb_epc *ntb_epc;
enum pci_barno barno;
enum epf_ntb_bar bar;
struct device *dev;
u32 num_mws;
int i;
barno = BAR_0;
ntb_epc = ntb->epc[type];
num_mws = ntb->num_mws;
dev = &ntb->epf->dev;
epc_features = ntb_epc->epc_features;
/* These are required BARs which are mandatory for NTB functionality */
for (bar = BAR_CONFIG; bar <= BAR_DB_MW1; bar++, barno++) {
barno = pci_epc_get_next_free_bar(epc_features, barno);
if (barno < 0) {
dev_err(dev, "%s intf: Fail to get NTB function BAR\n",
pci_epc_interface_string(type));
return barno;
}
ntb_epc->epf_ntb_bar[bar] = barno;
}
/* These are optional BARs which don't impact NTB functionality */
for (bar = BAR_MW2, i = 1; i < num_mws; bar++, barno++, i++) {
barno = pci_epc_get_next_free_bar(epc_features, barno);
if (barno < 0) {
ntb->num_mws = i;
dev_dbg(dev, "BAR not available for > MW%d\n", i + 1);
}
ntb_epc->epf_ntb_bar[bar] = barno;
}
return 0;
}
/**
* epf_ntb_init_epc_bar() - Identify BARs to be used for each of the NTB
* constructs (scratchpad region, doorbell, memorywindow)
* @ntb: NTB device that facilitates communication between HOST1 and HOST2
*
* Wrapper to epf_ntb_init_epc_bar_interface() to identify the free BARs
* to be used for each of BAR_CONFIG, BAR_PEER_SPAD, BAR_DB_MW1, BAR_MW2,
* BAR_MW3 and BAR_MW4 for all the interfaces.
*/
static int epf_ntb_init_epc_bar(struct epf_ntb *ntb)
{
enum pci_epc_interface_type type;
struct device *dev;
int ret;
dev = &ntb->epf->dev;
for (type = PRIMARY_INTERFACE; type <= SECONDARY_INTERFACE; type++) {
ret = epf_ntb_init_epc_bar_interface(ntb, type);
if (ret) {
dev_err(dev, "Fail to init EPC bar for %s interface\n",
pci_epc_interface_string(type));
return ret;
}
}
return 0;
}
/**
* epf_ntb_epc_init_interface() - Initialize NTB interface
* @ntb: NTB device that facilitates communication between HOST1 and HOST2
* @type: PRIMARY interface or SECONDARY interface
*
* Wrapper to initialize a particular EPC interface and start the workqueue
* to check for commands from host. This function will write to the
* EP controller HW for configuring it.
*/
static int epf_ntb_epc_init_interface(struct epf_ntb *ntb,
enum pci_epc_interface_type type)
{
struct epf_ntb_epc *ntb_epc;
u8 func_no, vfunc_no;
struct pci_epc *epc;
struct pci_epf *epf;
struct device *dev;
int ret;
ntb_epc = ntb->epc[type];
epf = ntb->epf;
dev = &epf->dev;
epc = ntb_epc->epc;
func_no = ntb_epc->func_no;
vfunc_no = ntb_epc->vfunc_no;
ret = epf_ntb_config_sspad_bar_set(ntb->epc[type]);
if (ret) {
dev_err(dev, "%s intf: Config/self SPAD BAR init failed\n",
pci_epc_interface_string(type));
return ret;
}
ret = epf_ntb_peer_spad_bar_set(ntb, type);
if (ret) {
dev_err(dev, "%s intf: Peer SPAD BAR init failed\n",
pci_epc_interface_string(type));
goto err_peer_spad_bar_init;
}
ret = epf_ntb_configure_interrupt(ntb, type);
if (ret) {
dev_err(dev, "%s intf: Interrupt configuration failed\n",
pci_epc_interface_string(type));
goto err_peer_spad_bar_init;
}
ret = epf_ntb_db_mw_bar_init(ntb, type);
if (ret) {
dev_err(dev, "%s intf: DB/MW BAR init failed\n",
pci_epc_interface_string(type));
goto err_db_mw_bar_init;
}
if (vfunc_no <= 1) {
ret = pci_epc_write_header(epc, func_no, vfunc_no, epf->header);
if (ret) {
dev_err(dev, "%s intf: Configuration header write failed\n",
pci_epc_interface_string(type));
goto err_write_header;
}
}
INIT_DELAYED_WORK(&ntb->epc[type]->cmd_handler, epf_ntb_cmd_handler);
queue_work(kpcintb_workqueue, &ntb->epc[type]->cmd_handler.work);
return 0;
err_write_header:
epf_ntb_db_mw_bar_cleanup(ntb, type);
err_db_mw_bar_init:
epf_ntb_peer_spad_bar_clear(ntb->epc[type]);
err_peer_spad_bar_init:
epf_ntb_config_sspad_bar_clear(ntb->epc[type]);
return ret;
}
/**
* epf_ntb_epc_cleanup_interface() - Cleanup NTB interface
* @ntb: NTB device that facilitates communication between HOST1 and HOST2
* @type: PRIMARY interface or SECONDARY interface
*
* Wrapper to cleanup a particular NTB interface.
*/
static void epf_ntb_epc_cleanup_interface(struct epf_ntb *ntb,
enum pci_epc_interface_type type)
{
struct epf_ntb_epc *ntb_epc;
if (type < 0)
return;
ntb_epc = ntb->epc[type];
cancel_delayed_work(&ntb_epc->cmd_handler);
epf_ntb_db_mw_bar_cleanup(ntb, type);
epf_ntb_peer_spad_bar_clear(ntb_epc);
epf_ntb_config_sspad_bar_clear(ntb_epc);
}
/**
* epf_ntb_epc_cleanup() - Cleanup all NTB interfaces
* @ntb: NTB device that facilitates communication between HOST1 and HOST2
*
* Wrapper to cleanup all NTB interfaces.
*/
static void epf_ntb_epc_cleanup(struct epf_ntb *ntb)
{
enum pci_epc_interface_type type;
for (type = PRIMARY_INTERFACE; type <= SECONDARY_INTERFACE; type++)
epf_ntb_epc_cleanup_interface(ntb, type);
}
/**
* epf_ntb_epc_init() - Initialize all NTB interfaces
* @ntb: NTB device that facilitates communication between HOST1 and HOST2
*
* Wrapper to initialize all NTB interface and start the workqueue
* to check for commands from host.
*/
static int epf_ntb_epc_init(struct epf_ntb *ntb)
{
enum pci_epc_interface_type type;
struct device *dev;
int ret;
dev = &ntb->epf->dev;
for (type = PRIMARY_INTERFACE; type <= SECONDARY_INTERFACE; type++) {
ret = epf_ntb_epc_init_interface(ntb, type);
if (ret) {
dev_err(dev, "%s intf: Failed to initialize\n",
pci_epc_interface_string(type));
goto err_init_type;
}
}
return 0;
err_init_type:
epf_ntb_epc_cleanup_interface(ntb, type - 1);
return ret;
}
/**
* epf_ntb_bind() - Initialize endpoint controller to provide NTB functionality
* @epf: NTB endpoint function device
*
* Initialize both the endpoint controllers associated with NTB function device.
* Invoked when a primary interface or secondary interface is bound to EPC
* device. This function will succeed only when EPC is bound to both the
* interfaces.
*/
static int epf_ntb_bind(struct pci_epf *epf)
{
struct epf_ntb *ntb = epf_get_drvdata(epf);
struct device *dev = &epf->dev;
int ret;
if (!epf->epc) {
dev_dbg(dev, "PRIMARY EPC interface not yet bound\n");
return 0;
}
if (!epf->sec_epc) {
dev_dbg(dev, "SECONDARY EPC interface not yet bound\n");
return 0;
}
ret = epf_ntb_epc_create(ntb);
if (ret) {
dev_err(dev, "Failed to create NTB EPC\n");
return ret;
}
ret = epf_ntb_init_epc_bar(ntb);
if (ret) {
dev_err(dev, "Failed to create NTB EPC\n");
goto err_bar_init;
}
ret = epf_ntb_config_spad_bar_alloc_interface(ntb);
if (ret) {
dev_err(dev, "Failed to allocate BAR memory\n");
goto err_bar_alloc;
}
ret = epf_ntb_epc_init(ntb);
if (ret) {
dev_err(dev, "Failed to initialize EPC\n");
goto err_bar_alloc;
}
epf_set_drvdata(epf, ntb);
return 0;
err_bar_alloc:
epf_ntb_config_spad_bar_free(ntb);
err_bar_init:
epf_ntb_epc_destroy(ntb);
return ret;
}
/**
* epf_ntb_unbind() - Cleanup the initialization from epf_ntb_bind()
* @epf: NTB endpoint function device
*
* Cleanup the initialization from epf_ntb_bind()
*/
static void epf_ntb_unbind(struct pci_epf *epf)
{
struct epf_ntb *ntb = epf_get_drvdata(epf);
epf_ntb_epc_cleanup(ntb);
epf_ntb_config_spad_bar_free(ntb);
epf_ntb_epc_destroy(ntb);
}
#define EPF_NTB_R(_name) \
static ssize_t epf_ntb_##_name##_show(struct config_item *item, \
char *page) \
{ \
struct config_group *group = to_config_group(item); \
struct epf_ntb *ntb = to_epf_ntb(group); \
\
return sysfs_emit(page, "%d\n", ntb->_name); \
}
#define EPF_NTB_W(_name) \
static ssize_t epf_ntb_##_name##_store(struct config_item *item, \
const char *page, size_t len) \
{ \
struct config_group *group = to_config_group(item); \
struct epf_ntb *ntb = to_epf_ntb(group); \
u32 val; \
\
if (kstrtou32(page, 0, &val) < 0) \
return -EINVAL; \
\
ntb->_name = val; \
\
return len; \
}
#define EPF_NTB_MW_R(_name) \
static ssize_t epf_ntb_##_name##_show(struct config_item *item, \
char *page) \
{ \
struct config_group *group = to_config_group(item); \
struct epf_ntb *ntb = to_epf_ntb(group); \
int win_no; \
\
sscanf(#_name, "mw%d", &win_no); \
\
return sysfs_emit(page, "%lld\n", ntb->mws_size[win_no - 1]); \
}
#define EPF_NTB_MW_W(_name) \
static ssize_t epf_ntb_##_name##_store(struct config_item *item, \
const char *page, size_t len) \
{ \
struct config_group *group = to_config_group(item); \
struct epf_ntb *ntb = to_epf_ntb(group); \
struct device *dev = &ntb->epf->dev; \
int win_no; \
u64 val; \
\
if (kstrtou64(page, 0, &val) < 0) \
return -EINVAL; \
\
if (sscanf(#_name, "mw%d", &win_no) != 1) \
return -EINVAL; \
\
if (ntb->num_mws < win_no) { \
dev_err(dev, "Invalid num_nws: %d value\n", ntb->num_mws); \
return -EINVAL; \
} \
\
ntb->mws_size[win_no - 1] = val; \
\
return len; \
}
static ssize_t epf_ntb_num_mws_store(struct config_item *item,
const char *page, size_t len)
{
struct config_group *group = to_config_group(item);
struct epf_ntb *ntb = to_epf_ntb(group);
u32 val;
if (kstrtou32(page, 0, &val) < 0)
return -EINVAL;
if (val > MAX_MW)
return -EINVAL;
ntb->num_mws = val;
return len;
}
EPF_NTB_R(spad_count)
EPF_NTB_W(spad_count)
EPF_NTB_R(db_count)
EPF_NTB_W(db_count)
EPF_NTB_R(num_mws)
EPF_NTB_MW_R(mw1)
EPF_NTB_MW_W(mw1)
EPF_NTB_MW_R(mw2)
EPF_NTB_MW_W(mw2)
EPF_NTB_MW_R(mw3)
EPF_NTB_MW_W(mw3)
EPF_NTB_MW_R(mw4)
EPF_NTB_MW_W(mw4)
CONFIGFS_ATTR(epf_ntb_, spad_count);
CONFIGFS_ATTR(epf_ntb_, db_count);
CONFIGFS_ATTR(epf_ntb_, num_mws);
CONFIGFS_ATTR(epf_ntb_, mw1);
CONFIGFS_ATTR(epf_ntb_, mw2);
CONFIGFS_ATTR(epf_ntb_, mw3);
CONFIGFS_ATTR(epf_ntb_, mw4);
static struct configfs_attribute *epf_ntb_attrs[] = {
&epf_ntb_attr_spad_count,
&epf_ntb_attr_db_count,
&epf_ntb_attr_num_mws,
&epf_ntb_attr_mw1,
&epf_ntb_attr_mw2,
&epf_ntb_attr_mw3,
&epf_ntb_attr_mw4,
NULL,
};
static const struct config_item_type ntb_group_type = {
.ct_attrs = epf_ntb_attrs,
.ct_owner = THIS_MODULE,
};
/**
* epf_ntb_add_cfs() - Add configfs directory specific to NTB
* @epf: NTB endpoint function device
* @group: A pointer to the config_group structure referencing a group of
* config_items of a specific type that belong to a specific sub-system.
*
* Add configfs directory specific to NTB. This directory will hold
* NTB specific properties like db_count, spad_count, num_mws etc.,
*/
static struct config_group *epf_ntb_add_cfs(struct pci_epf *epf,
struct config_group *group)
{
struct epf_ntb *ntb = epf_get_drvdata(epf);
struct config_group *ntb_group = &ntb->group;
struct device *dev = &epf->dev;
config_group_init_type_name(ntb_group, dev_name(dev), &ntb_group_type);
return ntb_group;
}
/**
* epf_ntb_probe() - Probe NTB function driver
* @epf: NTB endpoint function device
*
* Probe NTB function driver when endpoint function bus detects a NTB
* endpoint function.
*/
static int epf_ntb_probe(struct pci_epf *epf)
{
struct epf_ntb *ntb;
struct device *dev;
dev = &epf->dev;
ntb = devm_kzalloc(dev, sizeof(*ntb), GFP_KERNEL);
if (!ntb)
return -ENOMEM;
epf->header = &epf_ntb_header;
ntb->epf = epf;
epf_set_drvdata(epf, ntb);
return 0;
}
static struct pci_epf_ops epf_ntb_ops = {
.bind = epf_ntb_bind,
.unbind = epf_ntb_unbind,
.add_cfs = epf_ntb_add_cfs,
};
static const struct pci_epf_device_id epf_ntb_ids[] = {
{
.name = "pci_epf_ntb",
},
{},
};
static struct pci_epf_driver epf_ntb_driver = {
.driver.name = "pci_epf_ntb",
.probe = epf_ntb_probe,
.id_table = epf_ntb_ids,
.ops = &epf_ntb_ops,
.owner = THIS_MODULE,
};
static int __init epf_ntb_init(void)
{
int ret;
kpcintb_workqueue = alloc_workqueue("kpcintb", WQ_MEM_RECLAIM |
WQ_HIGHPRI, 0);
ret = pci_epf_register_driver(&epf_ntb_driver);
if (ret) {
destroy_workqueue(kpcintb_workqueue);
pr_err("Failed to register pci epf ntb driver --> %d\n", ret);
return ret;
}
return 0;
}
module_init(epf_ntb_init);
static void __exit epf_ntb_exit(void)
{
pci_epf_unregister_driver(&epf_ntb_driver);
destroy_workqueue(kpcintb_workqueue);
}
module_exit(epf_ntb_exit);
MODULE_DESCRIPTION("PCI EPF NTB DRIVER");
MODULE_AUTHOR("Kishon Vijay Abraham I <kishon@ti.com>");
MODULE_LICENSE("GPL v2");