571 lines
13 KiB
C
571 lines
13 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* PCI Endpoint *Function* (EPF) library
|
|
*
|
|
* Copyright (C) 2017 Texas Instruments
|
|
* Author: Kishon Vijay Abraham I <kishon@ti.com>
|
|
*/
|
|
|
|
#include <linux/device.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/module.h>
|
|
|
|
#include <linux/pci-epc.h>
|
|
#include <linux/pci-epf.h>
|
|
#include <linux/pci-ep-cfs.h>
|
|
|
|
static DEFINE_MUTEX(pci_epf_mutex);
|
|
|
|
static struct bus_type pci_epf_bus_type;
|
|
static const struct device_type pci_epf_type;
|
|
|
|
/**
|
|
* pci_epf_type_add_cfs() - Help function drivers to expose function specific
|
|
* attributes in configfs
|
|
* @epf: the EPF device that has to be configured using configfs
|
|
* @group: the parent configfs group (corresponding to entries in
|
|
* pci_epf_device_id)
|
|
*
|
|
* Invoke to expose function specific attributes in configfs. If the function
|
|
* driver does not have anything to expose (attributes configured by user),
|
|
* return NULL.
|
|
*/
|
|
struct config_group *pci_epf_type_add_cfs(struct pci_epf *epf,
|
|
struct config_group *group)
|
|
{
|
|
struct config_group *epf_type_group;
|
|
|
|
if (!epf->driver) {
|
|
dev_err(&epf->dev, "epf device not bound to driver\n");
|
|
return NULL;
|
|
}
|
|
|
|
if (!epf->driver->ops->add_cfs)
|
|
return NULL;
|
|
|
|
mutex_lock(&epf->lock);
|
|
epf_type_group = epf->driver->ops->add_cfs(epf, group);
|
|
mutex_unlock(&epf->lock);
|
|
|
|
return epf_type_group;
|
|
}
|
|
EXPORT_SYMBOL_GPL(pci_epf_type_add_cfs);
|
|
|
|
/**
|
|
* pci_epf_unbind() - Notify the function driver that the binding between the
|
|
* EPF device and EPC device has been lost
|
|
* @epf: the EPF device which has lost the binding with the EPC device
|
|
*
|
|
* Invoke to notify the function driver that the binding between the EPF device
|
|
* and EPC device has been lost.
|
|
*/
|
|
void pci_epf_unbind(struct pci_epf *epf)
|
|
{
|
|
struct pci_epf *epf_vf;
|
|
|
|
if (!epf->driver) {
|
|
dev_WARN(&epf->dev, "epf device not bound to driver\n");
|
|
return;
|
|
}
|
|
|
|
mutex_lock(&epf->lock);
|
|
list_for_each_entry(epf_vf, &epf->pci_vepf, list) {
|
|
if (epf_vf->is_bound)
|
|
epf_vf->driver->ops->unbind(epf_vf);
|
|
}
|
|
if (epf->is_bound)
|
|
epf->driver->ops->unbind(epf);
|
|
mutex_unlock(&epf->lock);
|
|
module_put(epf->driver->owner);
|
|
}
|
|
EXPORT_SYMBOL_GPL(pci_epf_unbind);
|
|
|
|
/**
|
|
* pci_epf_bind() - Notify the function driver that the EPF device has been
|
|
* bound to a EPC device
|
|
* @epf: the EPF device which has been bound to the EPC device
|
|
*
|
|
* Invoke to notify the function driver that it has been bound to a EPC device
|
|
*/
|
|
int pci_epf_bind(struct pci_epf *epf)
|
|
{
|
|
struct device *dev = &epf->dev;
|
|
struct pci_epf *epf_vf;
|
|
u8 func_no, vfunc_no;
|
|
struct pci_epc *epc;
|
|
int ret;
|
|
|
|
if (!epf->driver) {
|
|
dev_WARN(dev, "epf device not bound to driver\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!try_module_get(epf->driver->owner))
|
|
return -EAGAIN;
|
|
|
|
mutex_lock(&epf->lock);
|
|
list_for_each_entry(epf_vf, &epf->pci_vepf, list) {
|
|
vfunc_no = epf_vf->vfunc_no;
|
|
|
|
if (vfunc_no < 1) {
|
|
dev_err(dev, "Invalid virtual function number\n");
|
|
ret = -EINVAL;
|
|
goto ret;
|
|
}
|
|
|
|
epc = epf->epc;
|
|
func_no = epf->func_no;
|
|
if (!IS_ERR_OR_NULL(epc)) {
|
|
if (!epc->max_vfs) {
|
|
dev_err(dev, "No support for virt function\n");
|
|
ret = -EINVAL;
|
|
goto ret;
|
|
}
|
|
|
|
if (vfunc_no > epc->max_vfs[func_no]) {
|
|
dev_err(dev, "PF%d: Exceeds max vfunc number\n",
|
|
func_no);
|
|
ret = -EINVAL;
|
|
goto ret;
|
|
}
|
|
}
|
|
|
|
epc = epf->sec_epc;
|
|
func_no = epf->sec_epc_func_no;
|
|
if (!IS_ERR_OR_NULL(epc)) {
|
|
if (!epc->max_vfs) {
|
|
dev_err(dev, "No support for virt function\n");
|
|
ret = -EINVAL;
|
|
goto ret;
|
|
}
|
|
|
|
if (vfunc_no > epc->max_vfs[func_no]) {
|
|
dev_err(dev, "PF%d: Exceeds max vfunc number\n",
|
|
func_no);
|
|
ret = -EINVAL;
|
|
goto ret;
|
|
}
|
|
}
|
|
|
|
epf_vf->func_no = epf->func_no;
|
|
epf_vf->sec_epc_func_no = epf->sec_epc_func_no;
|
|
epf_vf->epc = epf->epc;
|
|
epf_vf->sec_epc = epf->sec_epc;
|
|
ret = epf_vf->driver->ops->bind(epf_vf);
|
|
if (ret)
|
|
goto ret;
|
|
epf_vf->is_bound = true;
|
|
}
|
|
|
|
ret = epf->driver->ops->bind(epf);
|
|
if (ret)
|
|
goto ret;
|
|
epf->is_bound = true;
|
|
|
|
mutex_unlock(&epf->lock);
|
|
return 0;
|
|
|
|
ret:
|
|
mutex_unlock(&epf->lock);
|
|
pci_epf_unbind(epf);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(pci_epf_bind);
|
|
|
|
/**
|
|
* pci_epf_add_vepf() - associate virtual EP function to physical EP function
|
|
* @epf_pf: the physical EP function to which the virtual EP function should be
|
|
* associated
|
|
* @epf_vf: the virtual EP function to be added
|
|
*
|
|
* A physical endpoint function can be associated with multiple virtual
|
|
* endpoint functions. Invoke pci_epf_add_epf() to add a virtual PCI endpoint
|
|
* function to a physical PCI endpoint function.
|
|
*/
|
|
int pci_epf_add_vepf(struct pci_epf *epf_pf, struct pci_epf *epf_vf)
|
|
{
|
|
u32 vfunc_no;
|
|
|
|
if (IS_ERR_OR_NULL(epf_pf) || IS_ERR_OR_NULL(epf_vf))
|
|
return -EINVAL;
|
|
|
|
if (epf_pf->epc || epf_vf->epc || epf_vf->epf_pf)
|
|
return -EBUSY;
|
|
|
|
if (epf_pf->sec_epc || epf_vf->sec_epc)
|
|
return -EBUSY;
|
|
|
|
mutex_lock(&epf_pf->lock);
|
|
vfunc_no = find_first_zero_bit(&epf_pf->vfunction_num_map,
|
|
BITS_PER_LONG);
|
|
if (vfunc_no >= BITS_PER_LONG) {
|
|
mutex_unlock(&epf_pf->lock);
|
|
return -EINVAL;
|
|
}
|
|
|
|
set_bit(vfunc_no, &epf_pf->vfunction_num_map);
|
|
epf_vf->vfunc_no = vfunc_no;
|
|
|
|
epf_vf->epf_pf = epf_pf;
|
|
epf_vf->is_vf = true;
|
|
|
|
list_add_tail(&epf_vf->list, &epf_pf->pci_vepf);
|
|
mutex_unlock(&epf_pf->lock);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(pci_epf_add_vepf);
|
|
|
|
/**
|
|
* pci_epf_remove_vepf() - remove virtual EP function from physical EP function
|
|
* @epf_pf: the physical EP function from which the virtual EP function should
|
|
* be removed
|
|
* @epf_vf: the virtual EP function to be removed
|
|
*
|
|
* Invoke to remove a virtual endpoint function from the physical endpoint
|
|
* function.
|
|
*/
|
|
void pci_epf_remove_vepf(struct pci_epf *epf_pf, struct pci_epf *epf_vf)
|
|
{
|
|
if (IS_ERR_OR_NULL(epf_pf) || IS_ERR_OR_NULL(epf_vf))
|
|
return;
|
|
|
|
mutex_lock(&epf_pf->lock);
|
|
clear_bit(epf_vf->vfunc_no, &epf_pf->vfunction_num_map);
|
|
list_del(&epf_vf->list);
|
|
mutex_unlock(&epf_pf->lock);
|
|
}
|
|
EXPORT_SYMBOL_GPL(pci_epf_remove_vepf);
|
|
|
|
/**
|
|
* pci_epf_free_space() - free the allocated PCI EPF register space
|
|
* @epf: the EPF device from whom to free the memory
|
|
* @addr: the virtual address of the PCI EPF register space
|
|
* @bar: the BAR number corresponding to the register space
|
|
* @type: Identifies if the allocated space is for primary EPC or secondary EPC
|
|
*
|
|
* Invoke to free the allocated PCI EPF register space.
|
|
*/
|
|
void pci_epf_free_space(struct pci_epf *epf, void *addr, enum pci_barno bar,
|
|
enum pci_epc_interface_type type)
|
|
{
|
|
struct device *dev;
|
|
struct pci_epf_bar *epf_bar;
|
|
struct pci_epc *epc;
|
|
|
|
if (!addr)
|
|
return;
|
|
|
|
if (type == PRIMARY_INTERFACE) {
|
|
epc = epf->epc;
|
|
epf_bar = epf->bar;
|
|
} else {
|
|
epc = epf->sec_epc;
|
|
epf_bar = epf->sec_epc_bar;
|
|
}
|
|
|
|
dev = epc->dev.parent;
|
|
dma_free_coherent(dev, epf_bar[bar].size, addr,
|
|
epf_bar[bar].phys_addr);
|
|
|
|
epf_bar[bar].phys_addr = 0;
|
|
epf_bar[bar].addr = NULL;
|
|
epf_bar[bar].size = 0;
|
|
epf_bar[bar].barno = 0;
|
|
epf_bar[bar].flags = 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(pci_epf_free_space);
|
|
|
|
/**
|
|
* pci_epf_alloc_space() - allocate memory for the PCI EPF register space
|
|
* @epf: the EPF device to whom allocate the memory
|
|
* @size: the size of the memory that has to be allocated
|
|
* @bar: the BAR number corresponding to the allocated register space
|
|
* @align: alignment size for the allocation region
|
|
* @type: Identifies if the allocation is for primary EPC or secondary EPC
|
|
*
|
|
* Invoke to allocate memory for the PCI EPF register space.
|
|
*/
|
|
void *pci_epf_alloc_space(struct pci_epf *epf, size_t size, enum pci_barno bar,
|
|
size_t align, enum pci_epc_interface_type type)
|
|
{
|
|
struct pci_epf_bar *epf_bar;
|
|
dma_addr_t phys_addr;
|
|
struct pci_epc *epc;
|
|
struct device *dev;
|
|
void *space;
|
|
|
|
if (size < 128)
|
|
size = 128;
|
|
|
|
if (align)
|
|
size = ALIGN(size, align);
|
|
else
|
|
size = roundup_pow_of_two(size);
|
|
|
|
if (type == PRIMARY_INTERFACE) {
|
|
epc = epf->epc;
|
|
epf_bar = epf->bar;
|
|
} else {
|
|
epc = epf->sec_epc;
|
|
epf_bar = epf->sec_epc_bar;
|
|
}
|
|
|
|
dev = epc->dev.parent;
|
|
space = dma_alloc_coherent(dev, size, &phys_addr, GFP_KERNEL);
|
|
if (!space) {
|
|
dev_err(dev, "failed to allocate mem space\n");
|
|
return NULL;
|
|
}
|
|
|
|
epf_bar[bar].phys_addr = phys_addr;
|
|
epf_bar[bar].addr = space;
|
|
epf_bar[bar].size = size;
|
|
epf_bar[bar].barno = bar;
|
|
epf_bar[bar].flags |= upper_32_bits(size) ?
|
|
PCI_BASE_ADDRESS_MEM_TYPE_64 :
|
|
PCI_BASE_ADDRESS_MEM_TYPE_32;
|
|
|
|
return space;
|
|
}
|
|
EXPORT_SYMBOL_GPL(pci_epf_alloc_space);
|
|
|
|
static void pci_epf_remove_cfs(struct pci_epf_driver *driver)
|
|
{
|
|
struct config_group *group, *tmp;
|
|
|
|
if (!IS_ENABLED(CONFIG_PCI_ENDPOINT_CONFIGFS))
|
|
return;
|
|
|
|
mutex_lock(&pci_epf_mutex);
|
|
list_for_each_entry_safe(group, tmp, &driver->epf_group, group_entry)
|
|
pci_ep_cfs_remove_epf_group(group);
|
|
list_del(&driver->epf_group);
|
|
mutex_unlock(&pci_epf_mutex);
|
|
}
|
|
|
|
/**
|
|
* pci_epf_unregister_driver() - unregister the PCI EPF driver
|
|
* @driver: the PCI EPF driver that has to be unregistered
|
|
*
|
|
* Invoke to unregister the PCI EPF driver.
|
|
*/
|
|
void pci_epf_unregister_driver(struct pci_epf_driver *driver)
|
|
{
|
|
pci_epf_remove_cfs(driver);
|
|
driver_unregister(&driver->driver);
|
|
}
|
|
EXPORT_SYMBOL_GPL(pci_epf_unregister_driver);
|
|
|
|
static int pci_epf_add_cfs(struct pci_epf_driver *driver)
|
|
{
|
|
struct config_group *group;
|
|
const struct pci_epf_device_id *id;
|
|
|
|
if (!IS_ENABLED(CONFIG_PCI_ENDPOINT_CONFIGFS))
|
|
return 0;
|
|
|
|
INIT_LIST_HEAD(&driver->epf_group);
|
|
|
|
id = driver->id_table;
|
|
while (id->name[0]) {
|
|
group = pci_ep_cfs_add_epf_group(id->name);
|
|
if (IS_ERR(group)) {
|
|
pci_epf_remove_cfs(driver);
|
|
return PTR_ERR(group);
|
|
}
|
|
|
|
mutex_lock(&pci_epf_mutex);
|
|
list_add_tail(&group->group_entry, &driver->epf_group);
|
|
mutex_unlock(&pci_epf_mutex);
|
|
id++;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* __pci_epf_register_driver() - register a new PCI EPF driver
|
|
* @driver: structure representing PCI EPF driver
|
|
* @owner: the owner of the module that registers the PCI EPF driver
|
|
*
|
|
* Invoke to register a new PCI EPF driver.
|
|
*/
|
|
int __pci_epf_register_driver(struct pci_epf_driver *driver,
|
|
struct module *owner)
|
|
{
|
|
int ret;
|
|
|
|
if (!driver->ops)
|
|
return -EINVAL;
|
|
|
|
if (!driver->ops->bind || !driver->ops->unbind)
|
|
return -EINVAL;
|
|
|
|
driver->driver.bus = &pci_epf_bus_type;
|
|
driver->driver.owner = owner;
|
|
|
|
ret = driver_register(&driver->driver);
|
|
if (ret)
|
|
return ret;
|
|
|
|
pci_epf_add_cfs(driver);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(__pci_epf_register_driver);
|
|
|
|
/**
|
|
* pci_epf_destroy() - destroy the created PCI EPF device
|
|
* @epf: the PCI EPF device that has to be destroyed.
|
|
*
|
|
* Invoke to destroy the PCI EPF device created by invoking pci_epf_create().
|
|
*/
|
|
void pci_epf_destroy(struct pci_epf *epf)
|
|
{
|
|
device_unregister(&epf->dev);
|
|
}
|
|
EXPORT_SYMBOL_GPL(pci_epf_destroy);
|
|
|
|
/**
|
|
* pci_epf_create() - create a new PCI EPF device
|
|
* @name: the name of the PCI EPF device. This name will be used to bind the
|
|
* EPF device to a EPF driver
|
|
*
|
|
* Invoke to create a new PCI EPF device by providing the name of the function
|
|
* device.
|
|
*/
|
|
struct pci_epf *pci_epf_create(const char *name)
|
|
{
|
|
int ret;
|
|
struct pci_epf *epf;
|
|
struct device *dev;
|
|
int len;
|
|
|
|
epf = kzalloc(sizeof(*epf), GFP_KERNEL);
|
|
if (!epf)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
len = strchrnul(name, '.') - name;
|
|
epf->name = kstrndup(name, len, GFP_KERNEL);
|
|
if (!epf->name) {
|
|
kfree(epf);
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
/* VFs are numbered starting with 1. So set BIT(0) by default */
|
|
epf->vfunction_num_map = 1;
|
|
INIT_LIST_HEAD(&epf->pci_vepf);
|
|
|
|
dev = &epf->dev;
|
|
device_initialize(dev);
|
|
dev->bus = &pci_epf_bus_type;
|
|
dev->type = &pci_epf_type;
|
|
mutex_init(&epf->lock);
|
|
|
|
ret = dev_set_name(dev, "%s", name);
|
|
if (ret) {
|
|
put_device(dev);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
ret = device_add(dev);
|
|
if (ret) {
|
|
put_device(dev);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
return epf;
|
|
}
|
|
EXPORT_SYMBOL_GPL(pci_epf_create);
|
|
|
|
static void pci_epf_dev_release(struct device *dev)
|
|
{
|
|
struct pci_epf *epf = to_pci_epf(dev);
|
|
|
|
kfree(epf->name);
|
|
kfree(epf);
|
|
}
|
|
|
|
static const struct device_type pci_epf_type = {
|
|
.release = pci_epf_dev_release,
|
|
};
|
|
|
|
static int
|
|
pci_epf_match_id(const struct pci_epf_device_id *id, const struct pci_epf *epf)
|
|
{
|
|
while (id->name[0]) {
|
|
if (strcmp(epf->name, id->name) == 0)
|
|
return true;
|
|
id++;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static int pci_epf_device_match(struct device *dev, struct device_driver *drv)
|
|
{
|
|
struct pci_epf *epf = to_pci_epf(dev);
|
|
struct pci_epf_driver *driver = to_pci_epf_driver(drv);
|
|
|
|
if (driver->id_table)
|
|
return pci_epf_match_id(driver->id_table, epf);
|
|
|
|
return !strcmp(epf->name, drv->name);
|
|
}
|
|
|
|
static int pci_epf_device_probe(struct device *dev)
|
|
{
|
|
struct pci_epf *epf = to_pci_epf(dev);
|
|
struct pci_epf_driver *driver = to_pci_epf_driver(dev->driver);
|
|
|
|
if (!driver->probe)
|
|
return -ENODEV;
|
|
|
|
epf->driver = driver;
|
|
|
|
return driver->probe(epf);
|
|
}
|
|
|
|
static void pci_epf_device_remove(struct device *dev)
|
|
{
|
|
struct pci_epf *epf = to_pci_epf(dev);
|
|
struct pci_epf_driver *driver = to_pci_epf_driver(dev->driver);
|
|
|
|
if (driver->remove)
|
|
driver->remove(epf);
|
|
epf->driver = NULL;
|
|
}
|
|
|
|
static struct bus_type pci_epf_bus_type = {
|
|
.name = "pci-epf",
|
|
.match = pci_epf_device_match,
|
|
.probe = pci_epf_device_probe,
|
|
.remove = pci_epf_device_remove,
|
|
};
|
|
|
|
static int __init pci_epf_init(void)
|
|
{
|
|
int ret;
|
|
|
|
ret = bus_register(&pci_epf_bus_type);
|
|
if (ret) {
|
|
pr_err("failed to register pci epf bus --> %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
module_init(pci_epf_init);
|
|
|
|
static void __exit pci_epf_exit(void)
|
|
{
|
|
bus_unregister(&pci_epf_bus_type);
|
|
}
|
|
module_exit(pci_epf_exit);
|
|
|
|
MODULE_DESCRIPTION("PCI EPF Library");
|
|
MODULE_AUTHOR("Kishon Vijay Abraham I <kishon@ti.com>");
|