1706 lines
44 KiB
C
1706 lines
44 KiB
C
/*
|
|
* hugetlbpage-backed filesystem. Based on ramfs.
|
|
*
|
|
* Nadia Yvette Chambers, 2002
|
|
*
|
|
* Copyright (C) 2002 Linus Torvalds.
|
|
* License: GPL
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/thread_info.h>
|
|
#include <asm/current.h>
|
|
#include <linux/falloc.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/mount.h>
|
|
#include <linux/file.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/writeback.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/init.h>
|
|
#include <linux/string.h>
|
|
#include <linux/capability.h>
|
|
#include <linux/ctype.h>
|
|
#include <linux/backing-dev.h>
|
|
#include <linux/hugetlb.h>
|
|
#include <linux/pagevec.h>
|
|
#include <linux/fs_parser.h>
|
|
#include <linux/mman.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/dnotify.h>
|
|
#include <linux/statfs.h>
|
|
#include <linux/security.h>
|
|
#include <linux/magic.h>
|
|
#include <linux/migrate.h>
|
|
#include <linux/uio.h>
|
|
|
|
#include <linux/uaccess.h>
|
|
#include <linux/sched/mm.h>
|
|
|
|
static const struct address_space_operations hugetlbfs_aops;
|
|
const struct file_operations hugetlbfs_file_operations;
|
|
static const struct inode_operations hugetlbfs_dir_inode_operations;
|
|
static const struct inode_operations hugetlbfs_inode_operations;
|
|
|
|
enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
|
|
|
|
struct hugetlbfs_fs_context {
|
|
struct hstate *hstate;
|
|
unsigned long long max_size_opt;
|
|
unsigned long long min_size_opt;
|
|
long max_hpages;
|
|
long nr_inodes;
|
|
long min_hpages;
|
|
enum hugetlbfs_size_type max_val_type;
|
|
enum hugetlbfs_size_type min_val_type;
|
|
kuid_t uid;
|
|
kgid_t gid;
|
|
umode_t mode;
|
|
};
|
|
|
|
int sysctl_hugetlb_shm_group;
|
|
|
|
enum hugetlb_param {
|
|
Opt_gid,
|
|
Opt_min_size,
|
|
Opt_mode,
|
|
Opt_nr_inodes,
|
|
Opt_pagesize,
|
|
Opt_size,
|
|
Opt_uid,
|
|
};
|
|
|
|
static const struct fs_parameter_spec hugetlb_fs_parameters[] = {
|
|
fsparam_u32 ("gid", Opt_gid),
|
|
fsparam_string("min_size", Opt_min_size),
|
|
fsparam_u32oct("mode", Opt_mode),
|
|
fsparam_string("nr_inodes", Opt_nr_inodes),
|
|
fsparam_string("pagesize", Opt_pagesize),
|
|
fsparam_string("size", Opt_size),
|
|
fsparam_u32 ("uid", Opt_uid),
|
|
{}
|
|
};
|
|
|
|
#ifdef CONFIG_NUMA
|
|
static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
|
|
struct inode *inode, pgoff_t index)
|
|
{
|
|
vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy,
|
|
index);
|
|
}
|
|
|
|
static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
|
|
{
|
|
mpol_cond_put(vma->vm_policy);
|
|
}
|
|
#else
|
|
static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
|
|
struct inode *inode, pgoff_t index)
|
|
{
|
|
}
|
|
|
|
static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Mask used when checking the page offset value passed in via system
|
|
* calls. This value will be converted to a loff_t which is signed.
|
|
* Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
|
|
* value. The extra bit (- 1 in the shift value) is to take the sign
|
|
* bit into account.
|
|
*/
|
|
#define PGOFF_LOFFT_MAX \
|
|
(((1UL << (PAGE_SHIFT + 1)) - 1) << (BITS_PER_LONG - (PAGE_SHIFT + 1)))
|
|
|
|
static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
|
|
loff_t len, vma_len;
|
|
int ret;
|
|
struct hstate *h = hstate_file(file);
|
|
|
|
/*
|
|
* vma address alignment (but not the pgoff alignment) has
|
|
* already been checked by prepare_hugepage_range. If you add
|
|
* any error returns here, do so after setting VM_HUGETLB, so
|
|
* is_vm_hugetlb_page tests below unmap_region go the right
|
|
* way when do_mmap unwinds (may be important on powerpc
|
|
* and ia64).
|
|
*/
|
|
vm_flags_set(vma, VM_HUGETLB | VM_DONTEXPAND);
|
|
vma->vm_ops = &hugetlb_vm_ops;
|
|
|
|
ret = seal_check_future_write(info->seals, vma);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* page based offset in vm_pgoff could be sufficiently large to
|
|
* overflow a loff_t when converted to byte offset. This can
|
|
* only happen on architectures where sizeof(loff_t) ==
|
|
* sizeof(unsigned long). So, only check in those instances.
|
|
*/
|
|
if (sizeof(unsigned long) == sizeof(loff_t)) {
|
|
if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* must be huge page aligned */
|
|
if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
|
|
return -EINVAL;
|
|
|
|
vma_len = (loff_t)(vma->vm_end - vma->vm_start);
|
|
len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
|
|
/* check for overflow */
|
|
if (len < vma_len)
|
|
return -EINVAL;
|
|
|
|
inode_lock(inode);
|
|
file_accessed(file);
|
|
|
|
ret = -ENOMEM;
|
|
if (!hugetlb_reserve_pages(inode,
|
|
vma->vm_pgoff >> huge_page_order(h),
|
|
len >> huge_page_shift(h), vma,
|
|
vma->vm_flags))
|
|
goto out;
|
|
|
|
ret = 0;
|
|
if (vma->vm_flags & VM_WRITE && inode->i_size < len)
|
|
i_size_write(inode, len);
|
|
out:
|
|
inode_unlock(inode);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Called under mmap_write_lock(mm).
|
|
*/
|
|
|
|
static unsigned long
|
|
hugetlb_get_unmapped_area_bottomup(struct file *file, unsigned long addr,
|
|
unsigned long len, unsigned long pgoff, unsigned long flags)
|
|
{
|
|
struct hstate *h = hstate_file(file);
|
|
struct vm_unmapped_area_info info;
|
|
|
|
info.flags = 0;
|
|
info.length = len;
|
|
info.low_limit = current->mm->mmap_base;
|
|
info.high_limit = arch_get_mmap_end(addr, len, flags);
|
|
info.align_mask = PAGE_MASK & ~huge_page_mask(h);
|
|
info.align_offset = 0;
|
|
return vm_unmapped_area(&info);
|
|
}
|
|
|
|
static unsigned long
|
|
hugetlb_get_unmapped_area_topdown(struct file *file, unsigned long addr,
|
|
unsigned long len, unsigned long pgoff, unsigned long flags)
|
|
{
|
|
struct hstate *h = hstate_file(file);
|
|
struct vm_unmapped_area_info info;
|
|
|
|
info.flags = VM_UNMAPPED_AREA_TOPDOWN;
|
|
info.length = len;
|
|
info.low_limit = max(PAGE_SIZE, mmap_min_addr);
|
|
info.high_limit = arch_get_mmap_base(addr, current->mm->mmap_base);
|
|
info.align_mask = PAGE_MASK & ~huge_page_mask(h);
|
|
info.align_offset = 0;
|
|
addr = vm_unmapped_area(&info);
|
|
|
|
/*
|
|
* A failed mmap() very likely causes application failure,
|
|
* so fall back to the bottom-up function here. This scenario
|
|
* can happen with large stack limits and large mmap()
|
|
* allocations.
|
|
*/
|
|
if (unlikely(offset_in_page(addr))) {
|
|
VM_BUG_ON(addr != -ENOMEM);
|
|
info.flags = 0;
|
|
info.low_limit = current->mm->mmap_base;
|
|
info.high_limit = arch_get_mmap_end(addr, len, flags);
|
|
addr = vm_unmapped_area(&info);
|
|
}
|
|
|
|
return addr;
|
|
}
|
|
|
|
unsigned long
|
|
generic_hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
|
|
unsigned long len, unsigned long pgoff,
|
|
unsigned long flags)
|
|
{
|
|
struct mm_struct *mm = current->mm;
|
|
struct vm_area_struct *vma;
|
|
struct hstate *h = hstate_file(file);
|
|
const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
|
|
|
|
if (len & ~huge_page_mask(h))
|
|
return -EINVAL;
|
|
if (len > TASK_SIZE)
|
|
return -ENOMEM;
|
|
|
|
if (flags & MAP_FIXED) {
|
|
if (prepare_hugepage_range(file, addr, len))
|
|
return -EINVAL;
|
|
return addr;
|
|
}
|
|
|
|
if (addr) {
|
|
addr = ALIGN(addr, huge_page_size(h));
|
|
vma = find_vma(mm, addr);
|
|
if (mmap_end - len >= addr &&
|
|
(!vma || addr + len <= vm_start_gap(vma)))
|
|
return addr;
|
|
}
|
|
|
|
/*
|
|
* Use mm->get_unmapped_area value as a hint to use topdown routine.
|
|
* If architectures have special needs, they should define their own
|
|
* version of hugetlb_get_unmapped_area.
|
|
*/
|
|
if (mm->get_unmapped_area == arch_get_unmapped_area_topdown)
|
|
return hugetlb_get_unmapped_area_topdown(file, addr, len,
|
|
pgoff, flags);
|
|
return hugetlb_get_unmapped_area_bottomup(file, addr, len,
|
|
pgoff, flags);
|
|
}
|
|
|
|
#ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
|
|
static unsigned long
|
|
hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
|
|
unsigned long len, unsigned long pgoff,
|
|
unsigned long flags)
|
|
{
|
|
return generic_hugetlb_get_unmapped_area(file, addr, len, pgoff, flags);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Support for read() - Find the page attached to f_mapping and copy out the
|
|
* data. This provides functionality similar to filemap_read().
|
|
*/
|
|
static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
|
|
{
|
|
struct file *file = iocb->ki_filp;
|
|
struct hstate *h = hstate_file(file);
|
|
struct address_space *mapping = file->f_mapping;
|
|
struct inode *inode = mapping->host;
|
|
unsigned long index = iocb->ki_pos >> huge_page_shift(h);
|
|
unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
|
|
unsigned long end_index;
|
|
loff_t isize;
|
|
ssize_t retval = 0;
|
|
|
|
while (iov_iter_count(to)) {
|
|
struct page *page;
|
|
size_t nr, copied;
|
|
|
|
/* nr is the maximum number of bytes to copy from this page */
|
|
nr = huge_page_size(h);
|
|
isize = i_size_read(inode);
|
|
if (!isize)
|
|
break;
|
|
end_index = (isize - 1) >> huge_page_shift(h);
|
|
if (index > end_index)
|
|
break;
|
|
if (index == end_index) {
|
|
nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
|
|
if (nr <= offset)
|
|
break;
|
|
}
|
|
nr = nr - offset;
|
|
|
|
/* Find the page */
|
|
page = find_lock_page(mapping, index);
|
|
if (unlikely(page == NULL)) {
|
|
/*
|
|
* We have a HOLE, zero out the user-buffer for the
|
|
* length of the hole or request.
|
|
*/
|
|
copied = iov_iter_zero(nr, to);
|
|
} else {
|
|
unlock_page(page);
|
|
|
|
if (PageHWPoison(page)) {
|
|
put_page(page);
|
|
retval = -EIO;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* We have the page, copy it to user space buffer.
|
|
*/
|
|
copied = copy_page_to_iter(page, offset, nr, to);
|
|
put_page(page);
|
|
}
|
|
offset += copied;
|
|
retval += copied;
|
|
if (copied != nr && iov_iter_count(to)) {
|
|
if (!retval)
|
|
retval = -EFAULT;
|
|
break;
|
|
}
|
|
index += offset >> huge_page_shift(h);
|
|
offset &= ~huge_page_mask(h);
|
|
}
|
|
iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
|
|
return retval;
|
|
}
|
|
|
|
static int hugetlbfs_write_begin(struct file *file,
|
|
struct address_space *mapping,
|
|
loff_t pos, unsigned len,
|
|
struct page **pagep, void **fsdata)
|
|
{
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
|
|
loff_t pos, unsigned len, unsigned copied,
|
|
struct page *page, void *fsdata)
|
|
{
|
|
BUG();
|
|
return -EINVAL;
|
|
}
|
|
|
|
static void hugetlb_delete_from_page_cache(struct folio *folio)
|
|
{
|
|
folio_clear_dirty(folio);
|
|
folio_clear_uptodate(folio);
|
|
filemap_remove_folio(folio);
|
|
}
|
|
|
|
/*
|
|
* Called with i_mmap_rwsem held for inode based vma maps. This makes
|
|
* sure vma (and vm_mm) will not go away. We also hold the hugetlb fault
|
|
* mutex for the page in the mapping. So, we can not race with page being
|
|
* faulted into the vma.
|
|
*/
|
|
static bool hugetlb_vma_maps_page(struct vm_area_struct *vma,
|
|
unsigned long addr, struct page *page)
|
|
{
|
|
pte_t *ptep, pte;
|
|
|
|
ptep = hugetlb_walk(vma, addr, huge_page_size(hstate_vma(vma)));
|
|
if (!ptep)
|
|
return false;
|
|
|
|
pte = huge_ptep_get(ptep);
|
|
if (huge_pte_none(pte) || !pte_present(pte))
|
|
return false;
|
|
|
|
if (pte_page(pte) == page)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Can vma_offset_start/vma_offset_end overflow on 32-bit arches?
|
|
* No, because the interval tree returns us only those vmas
|
|
* which overlap the truncated area starting at pgoff,
|
|
* and no vma on a 32-bit arch can span beyond the 4GB.
|
|
*/
|
|
static unsigned long vma_offset_start(struct vm_area_struct *vma, pgoff_t start)
|
|
{
|
|
unsigned long offset = 0;
|
|
|
|
if (vma->vm_pgoff < start)
|
|
offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
|
|
|
|
return vma->vm_start + offset;
|
|
}
|
|
|
|
static unsigned long vma_offset_end(struct vm_area_struct *vma, pgoff_t end)
|
|
{
|
|
unsigned long t_end;
|
|
|
|
if (!end)
|
|
return vma->vm_end;
|
|
|
|
t_end = ((end - vma->vm_pgoff) << PAGE_SHIFT) + vma->vm_start;
|
|
if (t_end > vma->vm_end)
|
|
t_end = vma->vm_end;
|
|
return t_end;
|
|
}
|
|
|
|
/*
|
|
* Called with hugetlb fault mutex held. Therefore, no more mappings to
|
|
* this folio can be created while executing the routine.
|
|
*/
|
|
static void hugetlb_unmap_file_folio(struct hstate *h,
|
|
struct address_space *mapping,
|
|
struct folio *folio, pgoff_t index)
|
|
{
|
|
struct rb_root_cached *root = &mapping->i_mmap;
|
|
struct hugetlb_vma_lock *vma_lock;
|
|
struct page *page = &folio->page;
|
|
struct vm_area_struct *vma;
|
|
unsigned long v_start;
|
|
unsigned long v_end;
|
|
pgoff_t start, end;
|
|
|
|
start = index * pages_per_huge_page(h);
|
|
end = (index + 1) * pages_per_huge_page(h);
|
|
|
|
i_mmap_lock_write(mapping);
|
|
retry:
|
|
vma_lock = NULL;
|
|
vma_interval_tree_foreach(vma, root, start, end - 1) {
|
|
v_start = vma_offset_start(vma, start);
|
|
v_end = vma_offset_end(vma, end);
|
|
|
|
if (!hugetlb_vma_maps_page(vma, v_start, page))
|
|
continue;
|
|
|
|
if (!hugetlb_vma_trylock_write(vma)) {
|
|
vma_lock = vma->vm_private_data;
|
|
/*
|
|
* If we can not get vma lock, we need to drop
|
|
* immap_sema and take locks in order. First,
|
|
* take a ref on the vma_lock structure so that
|
|
* we can be guaranteed it will not go away when
|
|
* dropping immap_sema.
|
|
*/
|
|
kref_get(&vma_lock->refs);
|
|
break;
|
|
}
|
|
|
|
unmap_hugepage_range(vma, v_start, v_end, NULL,
|
|
ZAP_FLAG_DROP_MARKER);
|
|
hugetlb_vma_unlock_write(vma);
|
|
}
|
|
|
|
i_mmap_unlock_write(mapping);
|
|
|
|
if (vma_lock) {
|
|
/*
|
|
* Wait on vma_lock. We know it is still valid as we have
|
|
* a reference. We must 'open code' vma locking as we do
|
|
* not know if vma_lock is still attached to vma.
|
|
*/
|
|
down_write(&vma_lock->rw_sema);
|
|
i_mmap_lock_write(mapping);
|
|
|
|
vma = vma_lock->vma;
|
|
if (!vma) {
|
|
/*
|
|
* If lock is no longer attached to vma, then just
|
|
* unlock, drop our reference and retry looking for
|
|
* other vmas.
|
|
*/
|
|
up_write(&vma_lock->rw_sema);
|
|
kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
|
|
goto retry;
|
|
}
|
|
|
|
/*
|
|
* vma_lock is still attached to vma. Check to see if vma
|
|
* still maps page and if so, unmap.
|
|
*/
|
|
v_start = vma_offset_start(vma, start);
|
|
v_end = vma_offset_end(vma, end);
|
|
if (hugetlb_vma_maps_page(vma, v_start, page))
|
|
unmap_hugepage_range(vma, v_start, v_end, NULL,
|
|
ZAP_FLAG_DROP_MARKER);
|
|
|
|
kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
|
|
hugetlb_vma_unlock_write(vma);
|
|
|
|
goto retry;
|
|
}
|
|
}
|
|
|
|
static void
|
|
hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end,
|
|
zap_flags_t zap_flags)
|
|
{
|
|
struct vm_area_struct *vma;
|
|
|
|
/*
|
|
* end == 0 indicates that the entire range after start should be
|
|
* unmapped. Note, end is exclusive, whereas the interval tree takes
|
|
* an inclusive "last".
|
|
*/
|
|
vma_interval_tree_foreach(vma, root, start, end ? end - 1 : ULONG_MAX) {
|
|
unsigned long v_start;
|
|
unsigned long v_end;
|
|
|
|
if (!hugetlb_vma_trylock_write(vma))
|
|
continue;
|
|
|
|
v_start = vma_offset_start(vma, start);
|
|
v_end = vma_offset_end(vma, end);
|
|
|
|
unmap_hugepage_range(vma, v_start, v_end, NULL, zap_flags);
|
|
|
|
/*
|
|
* Note that vma lock only exists for shared/non-private
|
|
* vmas. Therefore, lock is not held when calling
|
|
* unmap_hugepage_range for private vmas.
|
|
*/
|
|
hugetlb_vma_unlock_write(vma);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Called with hugetlb fault mutex held.
|
|
* Returns true if page was actually removed, false otherwise.
|
|
*/
|
|
static bool remove_inode_single_folio(struct hstate *h, struct inode *inode,
|
|
struct address_space *mapping,
|
|
struct folio *folio, pgoff_t index,
|
|
bool truncate_op)
|
|
{
|
|
bool ret = false;
|
|
|
|
/*
|
|
* If folio is mapped, it was faulted in after being
|
|
* unmapped in caller. Unmap (again) while holding
|
|
* the fault mutex. The mutex will prevent faults
|
|
* until we finish removing the folio.
|
|
*/
|
|
if (unlikely(folio_mapped(folio)))
|
|
hugetlb_unmap_file_folio(h, mapping, folio, index);
|
|
|
|
folio_lock(folio);
|
|
/*
|
|
* We must remove the folio from page cache before removing
|
|
* the region/ reserve map (hugetlb_unreserve_pages). In
|
|
* rare out of memory conditions, removal of the region/reserve
|
|
* map could fail. Correspondingly, the subpool and global
|
|
* reserve usage count can need to be adjusted.
|
|
*/
|
|
VM_BUG_ON_FOLIO(folio_test_hugetlb_restore_reserve(folio), folio);
|
|
hugetlb_delete_from_page_cache(folio);
|
|
ret = true;
|
|
if (!truncate_op) {
|
|
if (unlikely(hugetlb_unreserve_pages(inode, index,
|
|
index + 1, 1)))
|
|
hugetlb_fix_reserve_counts(inode);
|
|
}
|
|
|
|
folio_unlock(folio);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* remove_inode_hugepages handles two distinct cases: truncation and hole
|
|
* punch. There are subtle differences in operation for each case.
|
|
*
|
|
* truncation is indicated by end of range being LLONG_MAX
|
|
* In this case, we first scan the range and release found pages.
|
|
* After releasing pages, hugetlb_unreserve_pages cleans up region/reserve
|
|
* maps and global counts. Page faults can race with truncation.
|
|
* During faults, hugetlb_no_page() checks i_size before page allocation,
|
|
* and again after obtaining page table lock. It will 'back out'
|
|
* allocations in the truncated range.
|
|
* hole punch is indicated if end is not LLONG_MAX
|
|
* In the hole punch case we scan the range and release found pages.
|
|
* Only when releasing a page is the associated region/reserve map
|
|
* deleted. The region/reserve map for ranges without associated
|
|
* pages are not modified. Page faults can race with hole punch.
|
|
* This is indicated if we find a mapped page.
|
|
* Note: If the passed end of range value is beyond the end of file, but
|
|
* not LLONG_MAX this routine still performs a hole punch operation.
|
|
*/
|
|
static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
|
|
loff_t lend)
|
|
{
|
|
struct hstate *h = hstate_inode(inode);
|
|
struct address_space *mapping = &inode->i_data;
|
|
const pgoff_t start = lstart >> huge_page_shift(h);
|
|
const pgoff_t end = lend >> huge_page_shift(h);
|
|
struct folio_batch fbatch;
|
|
pgoff_t next, index;
|
|
int i, freed = 0;
|
|
bool truncate_op = (lend == LLONG_MAX);
|
|
|
|
folio_batch_init(&fbatch);
|
|
next = start;
|
|
while (filemap_get_folios(mapping, &next, end - 1, &fbatch)) {
|
|
for (i = 0; i < folio_batch_count(&fbatch); ++i) {
|
|
struct folio *folio = fbatch.folios[i];
|
|
u32 hash = 0;
|
|
|
|
index = folio->index;
|
|
hash = hugetlb_fault_mutex_hash(mapping, index);
|
|
mutex_lock(&hugetlb_fault_mutex_table[hash]);
|
|
|
|
/*
|
|
* Remove folio that was part of folio_batch.
|
|
*/
|
|
if (remove_inode_single_folio(h, inode, mapping, folio,
|
|
index, truncate_op))
|
|
freed++;
|
|
|
|
mutex_unlock(&hugetlb_fault_mutex_table[hash]);
|
|
}
|
|
folio_batch_release(&fbatch);
|
|
cond_resched();
|
|
}
|
|
|
|
if (truncate_op)
|
|
(void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed);
|
|
}
|
|
|
|
static void hugetlbfs_evict_inode(struct inode *inode)
|
|
{
|
|
struct resv_map *resv_map;
|
|
|
|
remove_inode_hugepages(inode, 0, LLONG_MAX);
|
|
|
|
/*
|
|
* Get the resv_map from the address space embedded in the inode.
|
|
* This is the address space which points to any resv_map allocated
|
|
* at inode creation time. If this is a device special inode,
|
|
* i_mapping may not point to the original address space.
|
|
*/
|
|
resv_map = (struct resv_map *)(&inode->i_data)->private_data;
|
|
/* Only regular and link inodes have associated reserve maps */
|
|
if (resv_map)
|
|
resv_map_release(&resv_map->refs);
|
|
clear_inode(inode);
|
|
}
|
|
|
|
static void hugetlb_vmtruncate(struct inode *inode, loff_t offset)
|
|
{
|
|
pgoff_t pgoff;
|
|
struct address_space *mapping = inode->i_mapping;
|
|
struct hstate *h = hstate_inode(inode);
|
|
|
|
BUG_ON(offset & ~huge_page_mask(h));
|
|
pgoff = offset >> PAGE_SHIFT;
|
|
|
|
i_size_write(inode, offset);
|
|
i_mmap_lock_write(mapping);
|
|
if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
|
|
hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0,
|
|
ZAP_FLAG_DROP_MARKER);
|
|
i_mmap_unlock_write(mapping);
|
|
remove_inode_hugepages(inode, offset, LLONG_MAX);
|
|
}
|
|
|
|
static void hugetlbfs_zero_partial_page(struct hstate *h,
|
|
struct address_space *mapping,
|
|
loff_t start,
|
|
loff_t end)
|
|
{
|
|
pgoff_t idx = start >> huge_page_shift(h);
|
|
struct folio *folio;
|
|
|
|
folio = filemap_lock_folio(mapping, idx);
|
|
if (!folio)
|
|
return;
|
|
|
|
start = start & ~huge_page_mask(h);
|
|
end = end & ~huge_page_mask(h);
|
|
if (!end)
|
|
end = huge_page_size(h);
|
|
|
|
folio_zero_segment(folio, (size_t)start, (size_t)end);
|
|
|
|
folio_unlock(folio);
|
|
folio_put(folio);
|
|
}
|
|
|
|
static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
|
|
{
|
|
struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
|
|
struct address_space *mapping = inode->i_mapping;
|
|
struct hstate *h = hstate_inode(inode);
|
|
loff_t hpage_size = huge_page_size(h);
|
|
loff_t hole_start, hole_end;
|
|
|
|
/*
|
|
* hole_start and hole_end indicate the full pages within the hole.
|
|
*/
|
|
hole_start = round_up(offset, hpage_size);
|
|
hole_end = round_down(offset + len, hpage_size);
|
|
|
|
inode_lock(inode);
|
|
|
|
/* protected by i_rwsem */
|
|
if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
|
|
inode_unlock(inode);
|
|
return -EPERM;
|
|
}
|
|
|
|
i_mmap_lock_write(mapping);
|
|
|
|
/* If range starts before first full page, zero partial page. */
|
|
if (offset < hole_start)
|
|
hugetlbfs_zero_partial_page(h, mapping,
|
|
offset, min(offset + len, hole_start));
|
|
|
|
/* Unmap users of full pages in the hole. */
|
|
if (hole_end > hole_start) {
|
|
if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
|
|
hugetlb_vmdelete_list(&mapping->i_mmap,
|
|
hole_start >> PAGE_SHIFT,
|
|
hole_end >> PAGE_SHIFT, 0);
|
|
}
|
|
|
|
/* If range extends beyond last full page, zero partial page. */
|
|
if ((offset + len) > hole_end && (offset + len) > hole_start)
|
|
hugetlbfs_zero_partial_page(h, mapping,
|
|
hole_end, offset + len);
|
|
|
|
i_mmap_unlock_write(mapping);
|
|
|
|
/* Remove full pages from the file. */
|
|
if (hole_end > hole_start)
|
|
remove_inode_hugepages(inode, hole_start, hole_end);
|
|
|
|
inode_unlock(inode);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
|
|
loff_t len)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
|
|
struct address_space *mapping = inode->i_mapping;
|
|
struct hstate *h = hstate_inode(inode);
|
|
struct vm_area_struct pseudo_vma;
|
|
struct mm_struct *mm = current->mm;
|
|
loff_t hpage_size = huge_page_size(h);
|
|
unsigned long hpage_shift = huge_page_shift(h);
|
|
pgoff_t start, index, end;
|
|
int error;
|
|
u32 hash;
|
|
|
|
if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
|
|
return -EOPNOTSUPP;
|
|
|
|
if (mode & FALLOC_FL_PUNCH_HOLE)
|
|
return hugetlbfs_punch_hole(inode, offset, len);
|
|
|
|
/*
|
|
* Default preallocate case.
|
|
* For this range, start is rounded down and end is rounded up
|
|
* as well as being converted to page offsets.
|
|
*/
|
|
start = offset >> hpage_shift;
|
|
end = (offset + len + hpage_size - 1) >> hpage_shift;
|
|
|
|
inode_lock(inode);
|
|
|
|
/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
|
|
error = inode_newsize_ok(inode, offset + len);
|
|
if (error)
|
|
goto out;
|
|
|
|
if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
|
|
error = -EPERM;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Initialize a pseudo vma as this is required by the huge page
|
|
* allocation routines. If NUMA is configured, use page index
|
|
* as input to create an allocation policy.
|
|
*/
|
|
vma_init(&pseudo_vma, mm);
|
|
vm_flags_init(&pseudo_vma, VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
|
|
pseudo_vma.vm_file = file;
|
|
|
|
for (index = start; index < end; index++) {
|
|
/*
|
|
* This is supposed to be the vaddr where the page is being
|
|
* faulted in, but we have no vaddr here.
|
|
*/
|
|
struct folio *folio;
|
|
unsigned long addr;
|
|
bool present;
|
|
|
|
cond_resched();
|
|
|
|
/*
|
|
* fallocate(2) manpage permits EINTR; we may have been
|
|
* interrupted because we are using up too much memory.
|
|
*/
|
|
if (signal_pending(current)) {
|
|
error = -EINTR;
|
|
break;
|
|
}
|
|
|
|
/* Set numa allocation policy based on index */
|
|
hugetlb_set_vma_policy(&pseudo_vma, inode, index);
|
|
|
|
/* addr is the offset within the file (zero based) */
|
|
addr = index * hpage_size;
|
|
|
|
/* mutex taken here, fault path and hole punch */
|
|
hash = hugetlb_fault_mutex_hash(mapping, index);
|
|
mutex_lock(&hugetlb_fault_mutex_table[hash]);
|
|
|
|
/* See if already present in mapping to avoid alloc/free */
|
|
rcu_read_lock();
|
|
present = page_cache_next_miss(mapping, index, 1) != index;
|
|
rcu_read_unlock();
|
|
if (present) {
|
|
mutex_unlock(&hugetlb_fault_mutex_table[hash]);
|
|
hugetlb_drop_vma_policy(&pseudo_vma);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Allocate folio without setting the avoid_reserve argument.
|
|
* There certainly are no reserves associated with the
|
|
* pseudo_vma. However, there could be shared mappings with
|
|
* reserves for the file at the inode level. If we fallocate
|
|
* folios in these areas, we need to consume the reserves
|
|
* to keep reservation accounting consistent.
|
|
*/
|
|
folio = alloc_hugetlb_folio(&pseudo_vma, addr, 0);
|
|
hugetlb_drop_vma_policy(&pseudo_vma);
|
|
if (IS_ERR(folio)) {
|
|
mutex_unlock(&hugetlb_fault_mutex_table[hash]);
|
|
error = PTR_ERR(folio);
|
|
goto out;
|
|
}
|
|
clear_huge_page(&folio->page, addr, pages_per_huge_page(h));
|
|
__folio_mark_uptodate(folio);
|
|
error = hugetlb_add_to_page_cache(folio, mapping, index);
|
|
if (unlikely(error)) {
|
|
restore_reserve_on_error(h, &pseudo_vma, addr, folio);
|
|
folio_put(folio);
|
|
mutex_unlock(&hugetlb_fault_mutex_table[hash]);
|
|
goto out;
|
|
}
|
|
|
|
mutex_unlock(&hugetlb_fault_mutex_table[hash]);
|
|
|
|
folio_set_hugetlb_migratable(folio);
|
|
/*
|
|
* folio_unlock because locked by hugetlb_add_to_page_cache()
|
|
* folio_put() due to reference from alloc_hugetlb_folio()
|
|
*/
|
|
folio_unlock(folio);
|
|
folio_put(folio);
|
|
}
|
|
|
|
if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
|
|
i_size_write(inode, offset + len);
|
|
inode->i_ctime = current_time(inode);
|
|
out:
|
|
inode_unlock(inode);
|
|
return error;
|
|
}
|
|
|
|
static int hugetlbfs_setattr(struct mnt_idmap *idmap,
|
|
struct dentry *dentry, struct iattr *attr)
|
|
{
|
|
struct inode *inode = d_inode(dentry);
|
|
struct hstate *h = hstate_inode(inode);
|
|
int error;
|
|
unsigned int ia_valid = attr->ia_valid;
|
|
struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
|
|
|
|
error = setattr_prepare(&nop_mnt_idmap, dentry, attr);
|
|
if (error)
|
|
return error;
|
|
|
|
if (ia_valid & ATTR_SIZE) {
|
|
loff_t oldsize = inode->i_size;
|
|
loff_t newsize = attr->ia_size;
|
|
|
|
if (newsize & ~huge_page_mask(h))
|
|
return -EINVAL;
|
|
/* protected by i_rwsem */
|
|
if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
|
|
(newsize > oldsize && (info->seals & F_SEAL_GROW)))
|
|
return -EPERM;
|
|
hugetlb_vmtruncate(inode, newsize);
|
|
}
|
|
|
|
setattr_copy(&nop_mnt_idmap, inode, attr);
|
|
mark_inode_dirty(inode);
|
|
return 0;
|
|
}
|
|
|
|
static struct inode *hugetlbfs_get_root(struct super_block *sb,
|
|
struct hugetlbfs_fs_context *ctx)
|
|
{
|
|
struct inode *inode;
|
|
|
|
inode = new_inode(sb);
|
|
if (inode) {
|
|
inode->i_ino = get_next_ino();
|
|
inode->i_mode = S_IFDIR | ctx->mode;
|
|
inode->i_uid = ctx->uid;
|
|
inode->i_gid = ctx->gid;
|
|
inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
|
|
inode->i_op = &hugetlbfs_dir_inode_operations;
|
|
inode->i_fop = &simple_dir_operations;
|
|
/* directory inodes start off with i_nlink == 2 (for "." entry) */
|
|
inc_nlink(inode);
|
|
lockdep_annotate_inode_mutex_key(inode);
|
|
}
|
|
return inode;
|
|
}
|
|
|
|
/*
|
|
* Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
|
|
* be taken from reclaim -- unlike regular filesystems. This needs an
|
|
* annotation because huge_pmd_share() does an allocation under hugetlb's
|
|
* i_mmap_rwsem.
|
|
*/
|
|
static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
|
|
|
|
static struct inode *hugetlbfs_get_inode(struct super_block *sb,
|
|
struct inode *dir,
|
|
umode_t mode, dev_t dev)
|
|
{
|
|
struct inode *inode;
|
|
struct resv_map *resv_map = NULL;
|
|
|
|
/*
|
|
* Reserve maps are only needed for inodes that can have associated
|
|
* page allocations.
|
|
*/
|
|
if (S_ISREG(mode) || S_ISLNK(mode)) {
|
|
resv_map = resv_map_alloc();
|
|
if (!resv_map)
|
|
return NULL;
|
|
}
|
|
|
|
inode = new_inode(sb);
|
|
if (inode) {
|
|
struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
|
|
|
|
inode->i_ino = get_next_ino();
|
|
inode_init_owner(&nop_mnt_idmap, inode, dir, mode);
|
|
lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
|
|
&hugetlbfs_i_mmap_rwsem_key);
|
|
inode->i_mapping->a_ops = &hugetlbfs_aops;
|
|
inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
|
|
inode->i_mapping->private_data = resv_map;
|
|
info->seals = F_SEAL_SEAL;
|
|
switch (mode & S_IFMT) {
|
|
default:
|
|
init_special_inode(inode, mode, dev);
|
|
break;
|
|
case S_IFREG:
|
|
inode->i_op = &hugetlbfs_inode_operations;
|
|
inode->i_fop = &hugetlbfs_file_operations;
|
|
break;
|
|
case S_IFDIR:
|
|
inode->i_op = &hugetlbfs_dir_inode_operations;
|
|
inode->i_fop = &simple_dir_operations;
|
|
|
|
/* directory inodes start off with i_nlink == 2 (for "." entry) */
|
|
inc_nlink(inode);
|
|
break;
|
|
case S_IFLNK:
|
|
inode->i_op = &page_symlink_inode_operations;
|
|
inode_nohighmem(inode);
|
|
break;
|
|
}
|
|
lockdep_annotate_inode_mutex_key(inode);
|
|
} else {
|
|
if (resv_map)
|
|
kref_put(&resv_map->refs, resv_map_release);
|
|
}
|
|
|
|
return inode;
|
|
}
|
|
|
|
/*
|
|
* File creation. Allocate an inode, and we're done..
|
|
*/
|
|
static int hugetlbfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
|
|
struct dentry *dentry, umode_t mode, dev_t dev)
|
|
{
|
|
struct inode *inode;
|
|
|
|
inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
|
|
if (!inode)
|
|
return -ENOSPC;
|
|
dir->i_ctime = dir->i_mtime = current_time(dir);
|
|
d_instantiate(dentry, inode);
|
|
dget(dentry);/* Extra count - pin the dentry in core */
|
|
return 0;
|
|
}
|
|
|
|
static int hugetlbfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
|
|
struct dentry *dentry, umode_t mode)
|
|
{
|
|
int retval = hugetlbfs_mknod(&nop_mnt_idmap, dir, dentry,
|
|
mode | S_IFDIR, 0);
|
|
if (!retval)
|
|
inc_nlink(dir);
|
|
return retval;
|
|
}
|
|
|
|
static int hugetlbfs_create(struct mnt_idmap *idmap,
|
|
struct inode *dir, struct dentry *dentry,
|
|
umode_t mode, bool excl)
|
|
{
|
|
return hugetlbfs_mknod(&nop_mnt_idmap, dir, dentry, mode | S_IFREG, 0);
|
|
}
|
|
|
|
static int hugetlbfs_tmpfile(struct mnt_idmap *idmap,
|
|
struct inode *dir, struct file *file,
|
|
umode_t mode)
|
|
{
|
|
struct inode *inode;
|
|
|
|
inode = hugetlbfs_get_inode(dir->i_sb, dir, mode | S_IFREG, 0);
|
|
if (!inode)
|
|
return -ENOSPC;
|
|
dir->i_ctime = dir->i_mtime = current_time(dir);
|
|
d_tmpfile(file, inode);
|
|
return finish_open_simple(file, 0);
|
|
}
|
|
|
|
static int hugetlbfs_symlink(struct mnt_idmap *idmap,
|
|
struct inode *dir, struct dentry *dentry,
|
|
const char *symname)
|
|
{
|
|
struct inode *inode;
|
|
int error = -ENOSPC;
|
|
|
|
inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
|
|
if (inode) {
|
|
int l = strlen(symname)+1;
|
|
error = page_symlink(inode, symname, l);
|
|
if (!error) {
|
|
d_instantiate(dentry, inode);
|
|
dget(dentry);
|
|
} else
|
|
iput(inode);
|
|
}
|
|
dir->i_ctime = dir->i_mtime = current_time(dir);
|
|
|
|
return error;
|
|
}
|
|
|
|
#ifdef CONFIG_MIGRATION
|
|
static int hugetlbfs_migrate_folio(struct address_space *mapping,
|
|
struct folio *dst, struct folio *src,
|
|
enum migrate_mode mode)
|
|
{
|
|
int rc;
|
|
|
|
rc = migrate_huge_page_move_mapping(mapping, dst, src);
|
|
if (rc != MIGRATEPAGE_SUCCESS)
|
|
return rc;
|
|
|
|
if (hugetlb_folio_subpool(src)) {
|
|
hugetlb_set_folio_subpool(dst,
|
|
hugetlb_folio_subpool(src));
|
|
hugetlb_set_folio_subpool(src, NULL);
|
|
}
|
|
|
|
if (mode != MIGRATE_SYNC_NO_COPY)
|
|
folio_migrate_copy(dst, src);
|
|
else
|
|
folio_migrate_flags(dst, src);
|
|
|
|
return MIGRATEPAGE_SUCCESS;
|
|
}
|
|
#else
|
|
#define hugetlbfs_migrate_folio NULL
|
|
#endif
|
|
|
|
static int hugetlbfs_error_remove_page(struct address_space *mapping,
|
|
struct page *page)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Display the mount options in /proc/mounts.
|
|
*/
|
|
static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
|
|
{
|
|
struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
|
|
struct hugepage_subpool *spool = sbinfo->spool;
|
|
unsigned long hpage_size = huge_page_size(sbinfo->hstate);
|
|
unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
|
|
char mod;
|
|
|
|
if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
|
|
seq_printf(m, ",uid=%u",
|
|
from_kuid_munged(&init_user_ns, sbinfo->uid));
|
|
if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
|
|
seq_printf(m, ",gid=%u",
|
|
from_kgid_munged(&init_user_ns, sbinfo->gid));
|
|
if (sbinfo->mode != 0755)
|
|
seq_printf(m, ",mode=%o", sbinfo->mode);
|
|
if (sbinfo->max_inodes != -1)
|
|
seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
|
|
|
|
hpage_size /= 1024;
|
|
mod = 'K';
|
|
if (hpage_size >= 1024) {
|
|
hpage_size /= 1024;
|
|
mod = 'M';
|
|
}
|
|
seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
|
|
if (spool) {
|
|
if (spool->max_hpages != -1)
|
|
seq_printf(m, ",size=%llu",
|
|
(unsigned long long)spool->max_hpages << hpage_shift);
|
|
if (spool->min_hpages != -1)
|
|
seq_printf(m, ",min_size=%llu",
|
|
(unsigned long long)spool->min_hpages << hpage_shift);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
|
|
{
|
|
struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
|
|
struct hstate *h = hstate_inode(d_inode(dentry));
|
|
|
|
buf->f_type = HUGETLBFS_MAGIC;
|
|
buf->f_bsize = huge_page_size(h);
|
|
if (sbinfo) {
|
|
spin_lock(&sbinfo->stat_lock);
|
|
/* If no limits set, just report 0 or -1 for max/free/used
|
|
* blocks, like simple_statfs() */
|
|
if (sbinfo->spool) {
|
|
long free_pages;
|
|
|
|
spin_lock_irq(&sbinfo->spool->lock);
|
|
buf->f_blocks = sbinfo->spool->max_hpages;
|
|
free_pages = sbinfo->spool->max_hpages
|
|
- sbinfo->spool->used_hpages;
|
|
buf->f_bavail = buf->f_bfree = free_pages;
|
|
spin_unlock_irq(&sbinfo->spool->lock);
|
|
buf->f_files = sbinfo->max_inodes;
|
|
buf->f_ffree = sbinfo->free_inodes;
|
|
}
|
|
spin_unlock(&sbinfo->stat_lock);
|
|
}
|
|
buf->f_namelen = NAME_MAX;
|
|
return 0;
|
|
}
|
|
|
|
static void hugetlbfs_put_super(struct super_block *sb)
|
|
{
|
|
struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
|
|
|
|
if (sbi) {
|
|
sb->s_fs_info = NULL;
|
|
|
|
if (sbi->spool)
|
|
hugepage_put_subpool(sbi->spool);
|
|
|
|
kfree(sbi);
|
|
}
|
|
}
|
|
|
|
static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
|
|
{
|
|
if (sbinfo->free_inodes >= 0) {
|
|
spin_lock(&sbinfo->stat_lock);
|
|
if (unlikely(!sbinfo->free_inodes)) {
|
|
spin_unlock(&sbinfo->stat_lock);
|
|
return 0;
|
|
}
|
|
sbinfo->free_inodes--;
|
|
spin_unlock(&sbinfo->stat_lock);
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
|
|
{
|
|
if (sbinfo->free_inodes >= 0) {
|
|
spin_lock(&sbinfo->stat_lock);
|
|
sbinfo->free_inodes++;
|
|
spin_unlock(&sbinfo->stat_lock);
|
|
}
|
|
}
|
|
|
|
|
|
static struct kmem_cache *hugetlbfs_inode_cachep;
|
|
|
|
static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
|
|
{
|
|
struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
|
|
struct hugetlbfs_inode_info *p;
|
|
|
|
if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
|
|
return NULL;
|
|
p = alloc_inode_sb(sb, hugetlbfs_inode_cachep, GFP_KERNEL);
|
|
if (unlikely(!p)) {
|
|
hugetlbfs_inc_free_inodes(sbinfo);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Any time after allocation, hugetlbfs_destroy_inode can be called
|
|
* for the inode. mpol_free_shared_policy is unconditionally called
|
|
* as part of hugetlbfs_destroy_inode. So, initialize policy here
|
|
* in case of a quick call to destroy.
|
|
*
|
|
* Note that the policy is initialized even if we are creating a
|
|
* private inode. This simplifies hugetlbfs_destroy_inode.
|
|
*/
|
|
mpol_shared_policy_init(&p->policy, NULL);
|
|
|
|
return &p->vfs_inode;
|
|
}
|
|
|
|
static void hugetlbfs_free_inode(struct inode *inode)
|
|
{
|
|
kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
|
|
}
|
|
|
|
static void hugetlbfs_destroy_inode(struct inode *inode)
|
|
{
|
|
hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
|
|
mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
|
|
}
|
|
|
|
static const struct address_space_operations hugetlbfs_aops = {
|
|
.write_begin = hugetlbfs_write_begin,
|
|
.write_end = hugetlbfs_write_end,
|
|
.dirty_folio = noop_dirty_folio,
|
|
.migrate_folio = hugetlbfs_migrate_folio,
|
|
.error_remove_page = hugetlbfs_error_remove_page,
|
|
};
|
|
|
|
|
|
static void init_once(void *foo)
|
|
{
|
|
struct hugetlbfs_inode_info *ei = foo;
|
|
|
|
inode_init_once(&ei->vfs_inode);
|
|
}
|
|
|
|
const struct file_operations hugetlbfs_file_operations = {
|
|
.read_iter = hugetlbfs_read_iter,
|
|
.mmap = hugetlbfs_file_mmap,
|
|
.fsync = noop_fsync,
|
|
.get_unmapped_area = hugetlb_get_unmapped_area,
|
|
.llseek = default_llseek,
|
|
.fallocate = hugetlbfs_fallocate,
|
|
};
|
|
|
|
static const struct inode_operations hugetlbfs_dir_inode_operations = {
|
|
.create = hugetlbfs_create,
|
|
.lookup = simple_lookup,
|
|
.link = simple_link,
|
|
.unlink = simple_unlink,
|
|
.symlink = hugetlbfs_symlink,
|
|
.mkdir = hugetlbfs_mkdir,
|
|
.rmdir = simple_rmdir,
|
|
.mknod = hugetlbfs_mknod,
|
|
.rename = simple_rename,
|
|
.setattr = hugetlbfs_setattr,
|
|
.tmpfile = hugetlbfs_tmpfile,
|
|
};
|
|
|
|
static const struct inode_operations hugetlbfs_inode_operations = {
|
|
.setattr = hugetlbfs_setattr,
|
|
};
|
|
|
|
static const struct super_operations hugetlbfs_ops = {
|
|
.alloc_inode = hugetlbfs_alloc_inode,
|
|
.free_inode = hugetlbfs_free_inode,
|
|
.destroy_inode = hugetlbfs_destroy_inode,
|
|
.evict_inode = hugetlbfs_evict_inode,
|
|
.statfs = hugetlbfs_statfs,
|
|
.put_super = hugetlbfs_put_super,
|
|
.show_options = hugetlbfs_show_options,
|
|
};
|
|
|
|
/*
|
|
* Convert size option passed from command line to number of huge pages
|
|
* in the pool specified by hstate. Size option could be in bytes
|
|
* (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
|
|
*/
|
|
static long
|
|
hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
|
|
enum hugetlbfs_size_type val_type)
|
|
{
|
|
if (val_type == NO_SIZE)
|
|
return -1;
|
|
|
|
if (val_type == SIZE_PERCENT) {
|
|
size_opt <<= huge_page_shift(h);
|
|
size_opt *= h->max_huge_pages;
|
|
do_div(size_opt, 100);
|
|
}
|
|
|
|
size_opt >>= huge_page_shift(h);
|
|
return size_opt;
|
|
}
|
|
|
|
/*
|
|
* Parse one mount parameter.
|
|
*/
|
|
static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
|
|
{
|
|
struct hugetlbfs_fs_context *ctx = fc->fs_private;
|
|
struct fs_parse_result result;
|
|
char *rest;
|
|
unsigned long ps;
|
|
int opt;
|
|
|
|
opt = fs_parse(fc, hugetlb_fs_parameters, param, &result);
|
|
if (opt < 0)
|
|
return opt;
|
|
|
|
switch (opt) {
|
|
case Opt_uid:
|
|
ctx->uid = make_kuid(current_user_ns(), result.uint_32);
|
|
if (!uid_valid(ctx->uid))
|
|
goto bad_val;
|
|
return 0;
|
|
|
|
case Opt_gid:
|
|
ctx->gid = make_kgid(current_user_ns(), result.uint_32);
|
|
if (!gid_valid(ctx->gid))
|
|
goto bad_val;
|
|
return 0;
|
|
|
|
case Opt_mode:
|
|
ctx->mode = result.uint_32 & 01777U;
|
|
return 0;
|
|
|
|
case Opt_size:
|
|
/* memparse() will accept a K/M/G without a digit */
|
|
if (!param->string || !isdigit(param->string[0]))
|
|
goto bad_val;
|
|
ctx->max_size_opt = memparse(param->string, &rest);
|
|
ctx->max_val_type = SIZE_STD;
|
|
if (*rest == '%')
|
|
ctx->max_val_type = SIZE_PERCENT;
|
|
return 0;
|
|
|
|
case Opt_nr_inodes:
|
|
/* memparse() will accept a K/M/G without a digit */
|
|
if (!param->string || !isdigit(param->string[0]))
|
|
goto bad_val;
|
|
ctx->nr_inodes = memparse(param->string, &rest);
|
|
return 0;
|
|
|
|
case Opt_pagesize:
|
|
ps = memparse(param->string, &rest);
|
|
ctx->hstate = size_to_hstate(ps);
|
|
if (!ctx->hstate) {
|
|
pr_err("Unsupported page size %lu MB\n", ps / SZ_1M);
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
|
|
case Opt_min_size:
|
|
/* memparse() will accept a K/M/G without a digit */
|
|
if (!param->string || !isdigit(param->string[0]))
|
|
goto bad_val;
|
|
ctx->min_size_opt = memparse(param->string, &rest);
|
|
ctx->min_val_type = SIZE_STD;
|
|
if (*rest == '%')
|
|
ctx->min_val_type = SIZE_PERCENT;
|
|
return 0;
|
|
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
bad_val:
|
|
return invalfc(fc, "Bad value '%s' for mount option '%s'\n",
|
|
param->string, param->key);
|
|
}
|
|
|
|
/*
|
|
* Validate the parsed options.
|
|
*/
|
|
static int hugetlbfs_validate(struct fs_context *fc)
|
|
{
|
|
struct hugetlbfs_fs_context *ctx = fc->fs_private;
|
|
|
|
/*
|
|
* Use huge page pool size (in hstate) to convert the size
|
|
* options to number of huge pages. If NO_SIZE, -1 is returned.
|
|
*/
|
|
ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
|
|
ctx->max_size_opt,
|
|
ctx->max_val_type);
|
|
ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
|
|
ctx->min_size_opt,
|
|
ctx->min_val_type);
|
|
|
|
/*
|
|
* If max_size was specified, then min_size must be smaller
|
|
*/
|
|
if (ctx->max_val_type > NO_SIZE &&
|
|
ctx->min_hpages > ctx->max_hpages) {
|
|
pr_err("Minimum size can not be greater than maximum size\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc)
|
|
{
|
|
struct hugetlbfs_fs_context *ctx = fc->fs_private;
|
|
struct hugetlbfs_sb_info *sbinfo;
|
|
|
|
sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
|
|
if (!sbinfo)
|
|
return -ENOMEM;
|
|
sb->s_fs_info = sbinfo;
|
|
spin_lock_init(&sbinfo->stat_lock);
|
|
sbinfo->hstate = ctx->hstate;
|
|
sbinfo->max_inodes = ctx->nr_inodes;
|
|
sbinfo->free_inodes = ctx->nr_inodes;
|
|
sbinfo->spool = NULL;
|
|
sbinfo->uid = ctx->uid;
|
|
sbinfo->gid = ctx->gid;
|
|
sbinfo->mode = ctx->mode;
|
|
|
|
/*
|
|
* Allocate and initialize subpool if maximum or minimum size is
|
|
* specified. Any needed reservations (for minimum size) are taken
|
|
* when the subpool is created.
|
|
*/
|
|
if (ctx->max_hpages != -1 || ctx->min_hpages != -1) {
|
|
sbinfo->spool = hugepage_new_subpool(ctx->hstate,
|
|
ctx->max_hpages,
|
|
ctx->min_hpages);
|
|
if (!sbinfo->spool)
|
|
goto out_free;
|
|
}
|
|
sb->s_maxbytes = MAX_LFS_FILESIZE;
|
|
sb->s_blocksize = huge_page_size(ctx->hstate);
|
|
sb->s_blocksize_bits = huge_page_shift(ctx->hstate);
|
|
sb->s_magic = HUGETLBFS_MAGIC;
|
|
sb->s_op = &hugetlbfs_ops;
|
|
sb->s_time_gran = 1;
|
|
|
|
/*
|
|
* Due to the special and limited functionality of hugetlbfs, it does
|
|
* not work well as a stacking filesystem.
|
|
*/
|
|
sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH;
|
|
sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx));
|
|
if (!sb->s_root)
|
|
goto out_free;
|
|
return 0;
|
|
out_free:
|
|
kfree(sbinfo->spool);
|
|
kfree(sbinfo);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static int hugetlbfs_get_tree(struct fs_context *fc)
|
|
{
|
|
int err = hugetlbfs_validate(fc);
|
|
if (err)
|
|
return err;
|
|
return get_tree_nodev(fc, hugetlbfs_fill_super);
|
|
}
|
|
|
|
static void hugetlbfs_fs_context_free(struct fs_context *fc)
|
|
{
|
|
kfree(fc->fs_private);
|
|
}
|
|
|
|
static const struct fs_context_operations hugetlbfs_fs_context_ops = {
|
|
.free = hugetlbfs_fs_context_free,
|
|
.parse_param = hugetlbfs_parse_param,
|
|
.get_tree = hugetlbfs_get_tree,
|
|
};
|
|
|
|
static int hugetlbfs_init_fs_context(struct fs_context *fc)
|
|
{
|
|
struct hugetlbfs_fs_context *ctx;
|
|
|
|
ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL);
|
|
if (!ctx)
|
|
return -ENOMEM;
|
|
|
|
ctx->max_hpages = -1; /* No limit on size by default */
|
|
ctx->nr_inodes = -1; /* No limit on number of inodes by default */
|
|
ctx->uid = current_fsuid();
|
|
ctx->gid = current_fsgid();
|
|
ctx->mode = 0755;
|
|
ctx->hstate = &default_hstate;
|
|
ctx->min_hpages = -1; /* No default minimum size */
|
|
ctx->max_val_type = NO_SIZE;
|
|
ctx->min_val_type = NO_SIZE;
|
|
fc->fs_private = ctx;
|
|
fc->ops = &hugetlbfs_fs_context_ops;
|
|
return 0;
|
|
}
|
|
|
|
static struct file_system_type hugetlbfs_fs_type = {
|
|
.name = "hugetlbfs",
|
|
.init_fs_context = hugetlbfs_init_fs_context,
|
|
.parameters = hugetlb_fs_parameters,
|
|
.kill_sb = kill_litter_super,
|
|
};
|
|
|
|
static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
|
|
|
|
static int can_do_hugetlb_shm(void)
|
|
{
|
|
kgid_t shm_group;
|
|
shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
|
|
return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
|
|
}
|
|
|
|
static int get_hstate_idx(int page_size_log)
|
|
{
|
|
struct hstate *h = hstate_sizelog(page_size_log);
|
|
|
|
if (!h)
|
|
return -1;
|
|
return hstate_index(h);
|
|
}
|
|
|
|
/*
|
|
* Note that size should be aligned to proper hugepage size in caller side,
|
|
* otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
|
|
*/
|
|
struct file *hugetlb_file_setup(const char *name, size_t size,
|
|
vm_flags_t acctflag, int creat_flags,
|
|
int page_size_log)
|
|
{
|
|
struct inode *inode;
|
|
struct vfsmount *mnt;
|
|
int hstate_idx;
|
|
struct file *file;
|
|
|
|
hstate_idx = get_hstate_idx(page_size_log);
|
|
if (hstate_idx < 0)
|
|
return ERR_PTR(-ENODEV);
|
|
|
|
mnt = hugetlbfs_vfsmount[hstate_idx];
|
|
if (!mnt)
|
|
return ERR_PTR(-ENOENT);
|
|
|
|
if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
|
|
struct ucounts *ucounts = current_ucounts();
|
|
|
|
if (user_shm_lock(size, ucounts)) {
|
|
pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is obsolete\n",
|
|
current->comm, current->pid);
|
|
user_shm_unlock(size, ucounts);
|
|
}
|
|
return ERR_PTR(-EPERM);
|
|
}
|
|
|
|
file = ERR_PTR(-ENOSPC);
|
|
inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0);
|
|
if (!inode)
|
|
goto out;
|
|
if (creat_flags == HUGETLB_SHMFS_INODE)
|
|
inode->i_flags |= S_PRIVATE;
|
|
|
|
inode->i_size = size;
|
|
clear_nlink(inode);
|
|
|
|
if (!hugetlb_reserve_pages(inode, 0,
|
|
size >> huge_page_shift(hstate_inode(inode)), NULL,
|
|
acctflag))
|
|
file = ERR_PTR(-ENOMEM);
|
|
else
|
|
file = alloc_file_pseudo(inode, mnt, name, O_RDWR,
|
|
&hugetlbfs_file_operations);
|
|
if (!IS_ERR(file))
|
|
return file;
|
|
|
|
iput(inode);
|
|
out:
|
|
return file;
|
|
}
|
|
|
|
static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h)
|
|
{
|
|
struct fs_context *fc;
|
|
struct vfsmount *mnt;
|
|
|
|
fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT);
|
|
if (IS_ERR(fc)) {
|
|
mnt = ERR_CAST(fc);
|
|
} else {
|
|
struct hugetlbfs_fs_context *ctx = fc->fs_private;
|
|
ctx->hstate = h;
|
|
mnt = fc_mount(fc);
|
|
put_fs_context(fc);
|
|
}
|
|
if (IS_ERR(mnt))
|
|
pr_err("Cannot mount internal hugetlbfs for page size %luK",
|
|
huge_page_size(h) / SZ_1K);
|
|
return mnt;
|
|
}
|
|
|
|
static int __init init_hugetlbfs_fs(void)
|
|
{
|
|
struct vfsmount *mnt;
|
|
struct hstate *h;
|
|
int error;
|
|
int i;
|
|
|
|
if (!hugepages_supported()) {
|
|
pr_info("disabling because there are no supported hugepage sizes\n");
|
|
return -ENOTSUPP;
|
|
}
|
|
|
|
error = -ENOMEM;
|
|
hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
|
|
sizeof(struct hugetlbfs_inode_info),
|
|
0, SLAB_ACCOUNT, init_once);
|
|
if (hugetlbfs_inode_cachep == NULL)
|
|
goto out;
|
|
|
|
error = register_filesystem(&hugetlbfs_fs_type);
|
|
if (error)
|
|
goto out_free;
|
|
|
|
/* default hstate mount is required */
|
|
mnt = mount_one_hugetlbfs(&default_hstate);
|
|
if (IS_ERR(mnt)) {
|
|
error = PTR_ERR(mnt);
|
|
goto out_unreg;
|
|
}
|
|
hugetlbfs_vfsmount[default_hstate_idx] = mnt;
|
|
|
|
/* other hstates are optional */
|
|
i = 0;
|
|
for_each_hstate(h) {
|
|
if (i == default_hstate_idx) {
|
|
i++;
|
|
continue;
|
|
}
|
|
|
|
mnt = mount_one_hugetlbfs(h);
|
|
if (IS_ERR(mnt))
|
|
hugetlbfs_vfsmount[i] = NULL;
|
|
else
|
|
hugetlbfs_vfsmount[i] = mnt;
|
|
i++;
|
|
}
|
|
|
|
return 0;
|
|
|
|
out_unreg:
|
|
(void)unregister_filesystem(&hugetlbfs_fs_type);
|
|
out_free:
|
|
kmem_cache_destroy(hugetlbfs_inode_cachep);
|
|
out:
|
|
return error;
|
|
}
|
|
fs_initcall(init_hugetlbfs_fs)
|