1171 lines
35 KiB
C
1171 lines
35 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* linux/fs/jbd2/commit.c
|
|
*
|
|
* Written by Stephen C. Tweedie <sct@redhat.com>, 1998
|
|
*
|
|
* Copyright 1998 Red Hat corp --- All Rights Reserved
|
|
*
|
|
* Journal commit routines for the generic filesystem journaling code;
|
|
* part of the ext2fs journaling system.
|
|
*/
|
|
|
|
#include <linux/time.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/jbd2.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/crc32.h>
|
|
#include <linux/writeback.h>
|
|
#include <linux/backing-dev.h>
|
|
#include <linux/bio.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/bitops.h>
|
|
#include <trace/events/jbd2.h>
|
|
|
|
/*
|
|
* IO end handler for temporary buffer_heads handling writes to the journal.
|
|
*/
|
|
static void journal_end_buffer_io_sync(struct buffer_head *bh, int uptodate)
|
|
{
|
|
struct buffer_head *orig_bh = bh->b_private;
|
|
|
|
BUFFER_TRACE(bh, "");
|
|
if (uptodate)
|
|
set_buffer_uptodate(bh);
|
|
else
|
|
clear_buffer_uptodate(bh);
|
|
if (orig_bh) {
|
|
clear_bit_unlock(BH_Shadow, &orig_bh->b_state);
|
|
smp_mb__after_atomic();
|
|
wake_up_bit(&orig_bh->b_state, BH_Shadow);
|
|
}
|
|
unlock_buffer(bh);
|
|
}
|
|
|
|
/*
|
|
* When an ext4 file is truncated, it is possible that some pages are not
|
|
* successfully freed, because they are attached to a committing transaction.
|
|
* After the transaction commits, these pages are left on the LRU, with no
|
|
* ->mapping, and with attached buffers. These pages are trivially reclaimable
|
|
* by the VM, but their apparent absence upsets the VM accounting, and it makes
|
|
* the numbers in /proc/meminfo look odd.
|
|
*
|
|
* So here, we have a buffer which has just come off the forget list. Look to
|
|
* see if we can strip all buffers from the backing page.
|
|
*
|
|
* Called under lock_journal(), and possibly under journal_datalist_lock. The
|
|
* caller provided us with a ref against the buffer, and we drop that here.
|
|
*/
|
|
static void release_buffer_page(struct buffer_head *bh)
|
|
{
|
|
struct folio *folio;
|
|
|
|
if (buffer_dirty(bh))
|
|
goto nope;
|
|
if (atomic_read(&bh->b_count) != 1)
|
|
goto nope;
|
|
folio = bh->b_folio;
|
|
if (folio->mapping)
|
|
goto nope;
|
|
|
|
/* OK, it's a truncated page */
|
|
if (!folio_trylock(folio))
|
|
goto nope;
|
|
|
|
folio_get(folio);
|
|
__brelse(bh);
|
|
try_to_free_buffers(folio);
|
|
folio_unlock(folio);
|
|
folio_put(folio);
|
|
return;
|
|
|
|
nope:
|
|
__brelse(bh);
|
|
}
|
|
|
|
static void jbd2_commit_block_csum_set(journal_t *j, struct buffer_head *bh)
|
|
{
|
|
struct commit_header *h;
|
|
__u32 csum;
|
|
|
|
if (!jbd2_journal_has_csum_v2or3(j))
|
|
return;
|
|
|
|
h = (struct commit_header *)(bh->b_data);
|
|
h->h_chksum_type = 0;
|
|
h->h_chksum_size = 0;
|
|
h->h_chksum[0] = 0;
|
|
csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
|
|
h->h_chksum[0] = cpu_to_be32(csum);
|
|
}
|
|
|
|
/*
|
|
* Done it all: now submit the commit record. We should have
|
|
* cleaned up our previous buffers by now, so if we are in abort
|
|
* mode we can now just skip the rest of the journal write
|
|
* entirely.
|
|
*
|
|
* Returns 1 if the journal needs to be aborted or 0 on success
|
|
*/
|
|
static int journal_submit_commit_record(journal_t *journal,
|
|
transaction_t *commit_transaction,
|
|
struct buffer_head **cbh,
|
|
__u32 crc32_sum)
|
|
{
|
|
struct commit_header *tmp;
|
|
struct buffer_head *bh;
|
|
struct timespec64 now;
|
|
blk_opf_t write_flags = REQ_OP_WRITE | REQ_SYNC;
|
|
|
|
*cbh = NULL;
|
|
|
|
if (is_journal_aborted(journal))
|
|
return 0;
|
|
|
|
bh = jbd2_journal_get_descriptor_buffer(commit_transaction,
|
|
JBD2_COMMIT_BLOCK);
|
|
if (!bh)
|
|
return 1;
|
|
|
|
tmp = (struct commit_header *)bh->b_data;
|
|
ktime_get_coarse_real_ts64(&now);
|
|
tmp->h_commit_sec = cpu_to_be64(now.tv_sec);
|
|
tmp->h_commit_nsec = cpu_to_be32(now.tv_nsec);
|
|
|
|
if (jbd2_has_feature_checksum(journal)) {
|
|
tmp->h_chksum_type = JBD2_CRC32_CHKSUM;
|
|
tmp->h_chksum_size = JBD2_CRC32_CHKSUM_SIZE;
|
|
tmp->h_chksum[0] = cpu_to_be32(crc32_sum);
|
|
}
|
|
jbd2_commit_block_csum_set(journal, bh);
|
|
|
|
BUFFER_TRACE(bh, "submit commit block");
|
|
lock_buffer(bh);
|
|
clear_buffer_dirty(bh);
|
|
set_buffer_uptodate(bh);
|
|
bh->b_end_io = journal_end_buffer_io_sync;
|
|
|
|
if (journal->j_flags & JBD2_BARRIER &&
|
|
!jbd2_has_feature_async_commit(journal))
|
|
write_flags |= REQ_PREFLUSH | REQ_FUA;
|
|
|
|
submit_bh(write_flags, bh);
|
|
*cbh = bh;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This function along with journal_submit_commit_record
|
|
* allows to write the commit record asynchronously.
|
|
*/
|
|
static int journal_wait_on_commit_record(journal_t *journal,
|
|
struct buffer_head *bh)
|
|
{
|
|
int ret = 0;
|
|
|
|
clear_buffer_dirty(bh);
|
|
wait_on_buffer(bh);
|
|
|
|
if (unlikely(!buffer_uptodate(bh)))
|
|
ret = -EIO;
|
|
put_bh(bh); /* One for getblk() */
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Send all the data buffers related to an inode */
|
|
int jbd2_submit_inode_data(journal_t *journal, struct jbd2_inode *jinode)
|
|
{
|
|
if (!jinode || !(jinode->i_flags & JI_WRITE_DATA))
|
|
return 0;
|
|
|
|
trace_jbd2_submit_inode_data(jinode->i_vfs_inode);
|
|
return journal->j_submit_inode_data_buffers(jinode);
|
|
|
|
}
|
|
EXPORT_SYMBOL(jbd2_submit_inode_data);
|
|
|
|
int jbd2_wait_inode_data(journal_t *journal, struct jbd2_inode *jinode)
|
|
{
|
|
if (!jinode || !(jinode->i_flags & JI_WAIT_DATA) ||
|
|
!jinode->i_vfs_inode || !jinode->i_vfs_inode->i_mapping)
|
|
return 0;
|
|
return filemap_fdatawait_range_keep_errors(
|
|
jinode->i_vfs_inode->i_mapping, jinode->i_dirty_start,
|
|
jinode->i_dirty_end);
|
|
}
|
|
EXPORT_SYMBOL(jbd2_wait_inode_data);
|
|
|
|
/*
|
|
* Submit all the data buffers of inode associated with the transaction to
|
|
* disk.
|
|
*
|
|
* We are in a committing transaction. Therefore no new inode can be added to
|
|
* our inode list. We use JI_COMMIT_RUNNING flag to protect inode we currently
|
|
* operate on from being released while we write out pages.
|
|
*/
|
|
static int journal_submit_data_buffers(journal_t *journal,
|
|
transaction_t *commit_transaction)
|
|
{
|
|
struct jbd2_inode *jinode;
|
|
int err, ret = 0;
|
|
|
|
spin_lock(&journal->j_list_lock);
|
|
list_for_each_entry(jinode, &commit_transaction->t_inode_list, i_list) {
|
|
if (!(jinode->i_flags & JI_WRITE_DATA))
|
|
continue;
|
|
jinode->i_flags |= JI_COMMIT_RUNNING;
|
|
spin_unlock(&journal->j_list_lock);
|
|
/* submit the inode data buffers. */
|
|
trace_jbd2_submit_inode_data(jinode->i_vfs_inode);
|
|
if (journal->j_submit_inode_data_buffers) {
|
|
err = journal->j_submit_inode_data_buffers(jinode);
|
|
if (!ret)
|
|
ret = err;
|
|
}
|
|
spin_lock(&journal->j_list_lock);
|
|
J_ASSERT(jinode->i_transaction == commit_transaction);
|
|
jinode->i_flags &= ~JI_COMMIT_RUNNING;
|
|
smp_mb();
|
|
wake_up_bit(&jinode->i_flags, __JI_COMMIT_RUNNING);
|
|
}
|
|
spin_unlock(&journal->j_list_lock);
|
|
return ret;
|
|
}
|
|
|
|
int jbd2_journal_finish_inode_data_buffers(struct jbd2_inode *jinode)
|
|
{
|
|
struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
|
|
|
|
return filemap_fdatawait_range_keep_errors(mapping,
|
|
jinode->i_dirty_start,
|
|
jinode->i_dirty_end);
|
|
}
|
|
|
|
/*
|
|
* Wait for data submitted for writeout, refile inodes to proper
|
|
* transaction if needed.
|
|
*
|
|
*/
|
|
static int journal_finish_inode_data_buffers(journal_t *journal,
|
|
transaction_t *commit_transaction)
|
|
{
|
|
struct jbd2_inode *jinode, *next_i;
|
|
int err, ret = 0;
|
|
|
|
/* For locking, see the comment in journal_submit_data_buffers() */
|
|
spin_lock(&journal->j_list_lock);
|
|
list_for_each_entry(jinode, &commit_transaction->t_inode_list, i_list) {
|
|
if (!(jinode->i_flags & JI_WAIT_DATA))
|
|
continue;
|
|
jinode->i_flags |= JI_COMMIT_RUNNING;
|
|
spin_unlock(&journal->j_list_lock);
|
|
/* wait for the inode data buffers writeout. */
|
|
if (journal->j_finish_inode_data_buffers) {
|
|
err = journal->j_finish_inode_data_buffers(jinode);
|
|
if (!ret)
|
|
ret = err;
|
|
}
|
|
spin_lock(&journal->j_list_lock);
|
|
jinode->i_flags &= ~JI_COMMIT_RUNNING;
|
|
smp_mb();
|
|
wake_up_bit(&jinode->i_flags, __JI_COMMIT_RUNNING);
|
|
}
|
|
|
|
/* Now refile inode to proper lists */
|
|
list_for_each_entry_safe(jinode, next_i,
|
|
&commit_transaction->t_inode_list, i_list) {
|
|
list_del(&jinode->i_list);
|
|
if (jinode->i_next_transaction) {
|
|
jinode->i_transaction = jinode->i_next_transaction;
|
|
jinode->i_next_transaction = NULL;
|
|
list_add(&jinode->i_list,
|
|
&jinode->i_transaction->t_inode_list);
|
|
} else {
|
|
jinode->i_transaction = NULL;
|
|
jinode->i_dirty_start = 0;
|
|
jinode->i_dirty_end = 0;
|
|
}
|
|
}
|
|
spin_unlock(&journal->j_list_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static __u32 jbd2_checksum_data(__u32 crc32_sum, struct buffer_head *bh)
|
|
{
|
|
struct page *page = bh->b_page;
|
|
char *addr;
|
|
__u32 checksum;
|
|
|
|
addr = kmap_atomic(page);
|
|
checksum = crc32_be(crc32_sum,
|
|
(void *)(addr + offset_in_page(bh->b_data)), bh->b_size);
|
|
kunmap_atomic(addr);
|
|
|
|
return checksum;
|
|
}
|
|
|
|
static void write_tag_block(journal_t *j, journal_block_tag_t *tag,
|
|
unsigned long long block)
|
|
{
|
|
tag->t_blocknr = cpu_to_be32(block & (u32)~0);
|
|
if (jbd2_has_feature_64bit(j))
|
|
tag->t_blocknr_high = cpu_to_be32((block >> 31) >> 1);
|
|
}
|
|
|
|
static void jbd2_block_tag_csum_set(journal_t *j, journal_block_tag_t *tag,
|
|
struct buffer_head *bh, __u32 sequence)
|
|
{
|
|
journal_block_tag3_t *tag3 = (journal_block_tag3_t *)tag;
|
|
struct page *page = bh->b_page;
|
|
__u8 *addr;
|
|
__u32 csum32;
|
|
__be32 seq;
|
|
|
|
if (!jbd2_journal_has_csum_v2or3(j))
|
|
return;
|
|
|
|
seq = cpu_to_be32(sequence);
|
|
addr = kmap_atomic(page);
|
|
csum32 = jbd2_chksum(j, j->j_csum_seed, (__u8 *)&seq, sizeof(seq));
|
|
csum32 = jbd2_chksum(j, csum32, addr + offset_in_page(bh->b_data),
|
|
bh->b_size);
|
|
kunmap_atomic(addr);
|
|
|
|
if (jbd2_has_feature_csum3(j))
|
|
tag3->t_checksum = cpu_to_be32(csum32);
|
|
else
|
|
tag->t_checksum = cpu_to_be16(csum32);
|
|
}
|
|
/*
|
|
* jbd2_journal_commit_transaction
|
|
*
|
|
* The primary function for committing a transaction to the log. This
|
|
* function is called by the journal thread to begin a complete commit.
|
|
*/
|
|
void jbd2_journal_commit_transaction(journal_t *journal)
|
|
{
|
|
struct transaction_stats_s stats;
|
|
transaction_t *commit_transaction;
|
|
struct journal_head *jh;
|
|
struct buffer_head *descriptor;
|
|
struct buffer_head **wbuf = journal->j_wbuf;
|
|
int bufs;
|
|
int flags;
|
|
int err;
|
|
unsigned long long blocknr;
|
|
ktime_t start_time;
|
|
u64 commit_time;
|
|
char *tagp = NULL;
|
|
journal_block_tag_t *tag = NULL;
|
|
int space_left = 0;
|
|
int first_tag = 0;
|
|
int tag_flag;
|
|
int i;
|
|
int tag_bytes = journal_tag_bytes(journal);
|
|
struct buffer_head *cbh = NULL; /* For transactional checksums */
|
|
__u32 crc32_sum = ~0;
|
|
struct blk_plug plug;
|
|
/* Tail of the journal */
|
|
unsigned long first_block;
|
|
tid_t first_tid;
|
|
int update_tail;
|
|
int csum_size = 0;
|
|
LIST_HEAD(io_bufs);
|
|
LIST_HEAD(log_bufs);
|
|
|
|
if (jbd2_journal_has_csum_v2or3(journal))
|
|
csum_size = sizeof(struct jbd2_journal_block_tail);
|
|
|
|
/*
|
|
* First job: lock down the current transaction and wait for
|
|
* all outstanding updates to complete.
|
|
*/
|
|
|
|
/* Do we need to erase the effects of a prior jbd2_journal_flush? */
|
|
if (journal->j_flags & JBD2_FLUSHED) {
|
|
jbd2_debug(3, "super block updated\n");
|
|
mutex_lock_io(&journal->j_checkpoint_mutex);
|
|
/*
|
|
* We hold j_checkpoint_mutex so tail cannot change under us.
|
|
* We don't need any special data guarantees for writing sb
|
|
* since journal is empty and it is ok for write to be
|
|
* flushed only with transaction commit.
|
|
*/
|
|
jbd2_journal_update_sb_log_tail(journal,
|
|
journal->j_tail_sequence,
|
|
journal->j_tail,
|
|
REQ_SYNC);
|
|
mutex_unlock(&journal->j_checkpoint_mutex);
|
|
} else {
|
|
jbd2_debug(3, "superblock not updated\n");
|
|
}
|
|
|
|
J_ASSERT(journal->j_running_transaction != NULL);
|
|
J_ASSERT(journal->j_committing_transaction == NULL);
|
|
|
|
write_lock(&journal->j_state_lock);
|
|
journal->j_flags |= JBD2_FULL_COMMIT_ONGOING;
|
|
while (journal->j_flags & JBD2_FAST_COMMIT_ONGOING) {
|
|
DEFINE_WAIT(wait);
|
|
|
|
prepare_to_wait(&journal->j_fc_wait, &wait,
|
|
TASK_UNINTERRUPTIBLE);
|
|
write_unlock(&journal->j_state_lock);
|
|
schedule();
|
|
write_lock(&journal->j_state_lock);
|
|
finish_wait(&journal->j_fc_wait, &wait);
|
|
/*
|
|
* TODO: by blocking fast commits here, we are increasing
|
|
* fsync() latency slightly. Strictly speaking, we don't need
|
|
* to block fast commits until the transaction enters T_FLUSH
|
|
* state. So an optimization is possible where we block new fast
|
|
* commits here and wait for existing ones to complete
|
|
* just before we enter T_FLUSH. That way, the existing fast
|
|
* commits and this full commit can proceed parallely.
|
|
*/
|
|
}
|
|
write_unlock(&journal->j_state_lock);
|
|
|
|
commit_transaction = journal->j_running_transaction;
|
|
|
|
trace_jbd2_start_commit(journal, commit_transaction);
|
|
jbd2_debug(1, "JBD2: starting commit of transaction %d\n",
|
|
commit_transaction->t_tid);
|
|
|
|
write_lock(&journal->j_state_lock);
|
|
journal->j_fc_off = 0;
|
|
J_ASSERT(commit_transaction->t_state == T_RUNNING);
|
|
commit_transaction->t_state = T_LOCKED;
|
|
|
|
trace_jbd2_commit_locking(journal, commit_transaction);
|
|
stats.run.rs_wait = commit_transaction->t_max_wait;
|
|
stats.run.rs_request_delay = 0;
|
|
stats.run.rs_locked = jiffies;
|
|
if (commit_transaction->t_requested)
|
|
stats.run.rs_request_delay =
|
|
jbd2_time_diff(commit_transaction->t_requested,
|
|
stats.run.rs_locked);
|
|
stats.run.rs_running = jbd2_time_diff(commit_transaction->t_start,
|
|
stats.run.rs_locked);
|
|
|
|
// waits for any t_updates to finish
|
|
jbd2_journal_wait_updates(journal);
|
|
|
|
commit_transaction->t_state = T_SWITCH;
|
|
|
|
J_ASSERT (atomic_read(&commit_transaction->t_outstanding_credits) <=
|
|
journal->j_max_transaction_buffers);
|
|
|
|
/*
|
|
* First thing we are allowed to do is to discard any remaining
|
|
* BJ_Reserved buffers. Note, it is _not_ permissible to assume
|
|
* that there are no such buffers: if a large filesystem
|
|
* operation like a truncate needs to split itself over multiple
|
|
* transactions, then it may try to do a jbd2_journal_restart() while
|
|
* there are still BJ_Reserved buffers outstanding. These must
|
|
* be released cleanly from the current transaction.
|
|
*
|
|
* In this case, the filesystem must still reserve write access
|
|
* again before modifying the buffer in the new transaction, but
|
|
* we do not require it to remember exactly which old buffers it
|
|
* has reserved. This is consistent with the existing behaviour
|
|
* that multiple jbd2_journal_get_write_access() calls to the same
|
|
* buffer are perfectly permissible.
|
|
* We use journal->j_state_lock here to serialize processing of
|
|
* t_reserved_list with eviction of buffers from journal_unmap_buffer().
|
|
*/
|
|
while (commit_transaction->t_reserved_list) {
|
|
jh = commit_transaction->t_reserved_list;
|
|
JBUFFER_TRACE(jh, "reserved, unused: refile");
|
|
/*
|
|
* A jbd2_journal_get_undo_access()+jbd2_journal_release_buffer() may
|
|
* leave undo-committed data.
|
|
*/
|
|
if (jh->b_committed_data) {
|
|
struct buffer_head *bh = jh2bh(jh);
|
|
|
|
spin_lock(&jh->b_state_lock);
|
|
jbd2_free(jh->b_committed_data, bh->b_size);
|
|
jh->b_committed_data = NULL;
|
|
spin_unlock(&jh->b_state_lock);
|
|
}
|
|
jbd2_journal_refile_buffer(journal, jh);
|
|
}
|
|
|
|
write_unlock(&journal->j_state_lock);
|
|
/*
|
|
* Now try to drop any written-back buffers from the journal's
|
|
* checkpoint lists. We do this *before* commit because it potentially
|
|
* frees some memory
|
|
*/
|
|
spin_lock(&journal->j_list_lock);
|
|
__jbd2_journal_clean_checkpoint_list(journal, false);
|
|
spin_unlock(&journal->j_list_lock);
|
|
|
|
jbd2_debug(3, "JBD2: commit phase 1\n");
|
|
|
|
/*
|
|
* Clear revoked flag to reflect there is no revoked buffers
|
|
* in the next transaction which is going to be started.
|
|
*/
|
|
jbd2_clear_buffer_revoked_flags(journal);
|
|
|
|
/*
|
|
* Switch to a new revoke table.
|
|
*/
|
|
jbd2_journal_switch_revoke_table(journal);
|
|
|
|
write_lock(&journal->j_state_lock);
|
|
/*
|
|
* Reserved credits cannot be claimed anymore, free them
|
|
*/
|
|
atomic_sub(atomic_read(&journal->j_reserved_credits),
|
|
&commit_transaction->t_outstanding_credits);
|
|
|
|
trace_jbd2_commit_flushing(journal, commit_transaction);
|
|
stats.run.rs_flushing = jiffies;
|
|
stats.run.rs_locked = jbd2_time_diff(stats.run.rs_locked,
|
|
stats.run.rs_flushing);
|
|
|
|
commit_transaction->t_state = T_FLUSH;
|
|
journal->j_committing_transaction = commit_transaction;
|
|
journal->j_running_transaction = NULL;
|
|
start_time = ktime_get();
|
|
commit_transaction->t_log_start = journal->j_head;
|
|
wake_up_all(&journal->j_wait_transaction_locked);
|
|
write_unlock(&journal->j_state_lock);
|
|
|
|
jbd2_debug(3, "JBD2: commit phase 2a\n");
|
|
|
|
/*
|
|
* Now start flushing things to disk, in the order they appear
|
|
* on the transaction lists. Data blocks go first.
|
|
*/
|
|
err = journal_submit_data_buffers(journal, commit_transaction);
|
|
if (err)
|
|
jbd2_journal_abort(journal, err);
|
|
|
|
blk_start_plug(&plug);
|
|
jbd2_journal_write_revoke_records(commit_transaction, &log_bufs);
|
|
|
|
jbd2_debug(3, "JBD2: commit phase 2b\n");
|
|
|
|
/*
|
|
* Way to go: we have now written out all of the data for a
|
|
* transaction! Now comes the tricky part: we need to write out
|
|
* metadata. Loop over the transaction's entire buffer list:
|
|
*/
|
|
write_lock(&journal->j_state_lock);
|
|
commit_transaction->t_state = T_COMMIT;
|
|
write_unlock(&journal->j_state_lock);
|
|
|
|
trace_jbd2_commit_logging(journal, commit_transaction);
|
|
stats.run.rs_logging = jiffies;
|
|
stats.run.rs_flushing = jbd2_time_diff(stats.run.rs_flushing,
|
|
stats.run.rs_logging);
|
|
stats.run.rs_blocks = commit_transaction->t_nr_buffers;
|
|
stats.run.rs_blocks_logged = 0;
|
|
|
|
J_ASSERT(commit_transaction->t_nr_buffers <=
|
|
atomic_read(&commit_transaction->t_outstanding_credits));
|
|
|
|
err = 0;
|
|
bufs = 0;
|
|
descriptor = NULL;
|
|
while (commit_transaction->t_buffers) {
|
|
|
|
/* Find the next buffer to be journaled... */
|
|
|
|
jh = commit_transaction->t_buffers;
|
|
|
|
/* If we're in abort mode, we just un-journal the buffer and
|
|
release it. */
|
|
|
|
if (is_journal_aborted(journal)) {
|
|
clear_buffer_jbddirty(jh2bh(jh));
|
|
JBUFFER_TRACE(jh, "journal is aborting: refile");
|
|
jbd2_buffer_abort_trigger(jh,
|
|
jh->b_frozen_data ?
|
|
jh->b_frozen_triggers :
|
|
jh->b_triggers);
|
|
jbd2_journal_refile_buffer(journal, jh);
|
|
/* If that was the last one, we need to clean up
|
|
* any descriptor buffers which may have been
|
|
* already allocated, even if we are now
|
|
* aborting. */
|
|
if (!commit_transaction->t_buffers)
|
|
goto start_journal_io;
|
|
continue;
|
|
}
|
|
|
|
/* Make sure we have a descriptor block in which to
|
|
record the metadata buffer. */
|
|
|
|
if (!descriptor) {
|
|
J_ASSERT (bufs == 0);
|
|
|
|
jbd2_debug(4, "JBD2: get descriptor\n");
|
|
|
|
descriptor = jbd2_journal_get_descriptor_buffer(
|
|
commit_transaction,
|
|
JBD2_DESCRIPTOR_BLOCK);
|
|
if (!descriptor) {
|
|
jbd2_journal_abort(journal, -EIO);
|
|
continue;
|
|
}
|
|
|
|
jbd2_debug(4, "JBD2: got buffer %llu (%p)\n",
|
|
(unsigned long long)descriptor->b_blocknr,
|
|
descriptor->b_data);
|
|
tagp = &descriptor->b_data[sizeof(journal_header_t)];
|
|
space_left = descriptor->b_size -
|
|
sizeof(journal_header_t);
|
|
first_tag = 1;
|
|
set_buffer_jwrite(descriptor);
|
|
set_buffer_dirty(descriptor);
|
|
wbuf[bufs++] = descriptor;
|
|
|
|
/* Record it so that we can wait for IO
|
|
completion later */
|
|
BUFFER_TRACE(descriptor, "ph3: file as descriptor");
|
|
jbd2_file_log_bh(&log_bufs, descriptor);
|
|
}
|
|
|
|
/* Where is the buffer to be written? */
|
|
|
|
err = jbd2_journal_next_log_block(journal, &blocknr);
|
|
/* If the block mapping failed, just abandon the buffer
|
|
and repeat this loop: we'll fall into the
|
|
refile-on-abort condition above. */
|
|
if (err) {
|
|
jbd2_journal_abort(journal, err);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* start_this_handle() uses t_outstanding_credits to determine
|
|
* the free space in the log.
|
|
*/
|
|
atomic_dec(&commit_transaction->t_outstanding_credits);
|
|
|
|
/* Bump b_count to prevent truncate from stumbling over
|
|
the shadowed buffer! @@@ This can go if we ever get
|
|
rid of the shadow pairing of buffers. */
|
|
atomic_inc(&jh2bh(jh)->b_count);
|
|
|
|
/*
|
|
* Make a temporary IO buffer with which to write it out
|
|
* (this will requeue the metadata buffer to BJ_Shadow).
|
|
*/
|
|
set_bit(BH_JWrite, &jh2bh(jh)->b_state);
|
|
JBUFFER_TRACE(jh, "ph3: write metadata");
|
|
flags = jbd2_journal_write_metadata_buffer(commit_transaction,
|
|
jh, &wbuf[bufs], blocknr);
|
|
if (flags < 0) {
|
|
jbd2_journal_abort(journal, flags);
|
|
continue;
|
|
}
|
|
jbd2_file_log_bh(&io_bufs, wbuf[bufs]);
|
|
|
|
/* Record the new block's tag in the current descriptor
|
|
buffer */
|
|
|
|
tag_flag = 0;
|
|
if (flags & 1)
|
|
tag_flag |= JBD2_FLAG_ESCAPE;
|
|
if (!first_tag)
|
|
tag_flag |= JBD2_FLAG_SAME_UUID;
|
|
|
|
tag = (journal_block_tag_t *) tagp;
|
|
write_tag_block(journal, tag, jh2bh(jh)->b_blocknr);
|
|
tag->t_flags = cpu_to_be16(tag_flag);
|
|
jbd2_block_tag_csum_set(journal, tag, wbuf[bufs],
|
|
commit_transaction->t_tid);
|
|
tagp += tag_bytes;
|
|
space_left -= tag_bytes;
|
|
bufs++;
|
|
|
|
if (first_tag) {
|
|
memcpy (tagp, journal->j_uuid, 16);
|
|
tagp += 16;
|
|
space_left -= 16;
|
|
first_tag = 0;
|
|
}
|
|
|
|
/* If there's no more to do, or if the descriptor is full,
|
|
let the IO rip! */
|
|
|
|
if (bufs == journal->j_wbufsize ||
|
|
commit_transaction->t_buffers == NULL ||
|
|
space_left < tag_bytes + 16 + csum_size) {
|
|
|
|
jbd2_debug(4, "JBD2: Submit %d IOs\n", bufs);
|
|
|
|
/* Write an end-of-descriptor marker before
|
|
submitting the IOs. "tag" still points to
|
|
the last tag we set up. */
|
|
|
|
tag->t_flags |= cpu_to_be16(JBD2_FLAG_LAST_TAG);
|
|
start_journal_io:
|
|
if (descriptor)
|
|
jbd2_descriptor_block_csum_set(journal,
|
|
descriptor);
|
|
|
|
for (i = 0; i < bufs; i++) {
|
|
struct buffer_head *bh = wbuf[i];
|
|
/*
|
|
* Compute checksum.
|
|
*/
|
|
if (jbd2_has_feature_checksum(journal)) {
|
|
crc32_sum =
|
|
jbd2_checksum_data(crc32_sum, bh);
|
|
}
|
|
|
|
lock_buffer(bh);
|
|
clear_buffer_dirty(bh);
|
|
set_buffer_uptodate(bh);
|
|
bh->b_end_io = journal_end_buffer_io_sync;
|
|
submit_bh(REQ_OP_WRITE | REQ_SYNC, bh);
|
|
}
|
|
cond_resched();
|
|
|
|
/* Force a new descriptor to be generated next
|
|
time round the loop. */
|
|
descriptor = NULL;
|
|
bufs = 0;
|
|
}
|
|
}
|
|
|
|
err = journal_finish_inode_data_buffers(journal, commit_transaction);
|
|
if (err) {
|
|
printk(KERN_WARNING
|
|
"JBD2: Detected IO errors while flushing file data "
|
|
"on %s\n", journal->j_devname);
|
|
if (journal->j_flags & JBD2_ABORT_ON_SYNCDATA_ERR)
|
|
jbd2_journal_abort(journal, err);
|
|
err = 0;
|
|
}
|
|
|
|
/*
|
|
* Get current oldest transaction in the log before we issue flush
|
|
* to the filesystem device. After the flush we can be sure that
|
|
* blocks of all older transactions are checkpointed to persistent
|
|
* storage and we will be safe to update journal start in the
|
|
* superblock with the numbers we get here.
|
|
*/
|
|
update_tail =
|
|
jbd2_journal_get_log_tail(journal, &first_tid, &first_block);
|
|
|
|
write_lock(&journal->j_state_lock);
|
|
if (update_tail) {
|
|
long freed = first_block - journal->j_tail;
|
|
|
|
if (first_block < journal->j_tail)
|
|
freed += journal->j_last - journal->j_first;
|
|
/* Update tail only if we free significant amount of space */
|
|
if (freed < jbd2_journal_get_max_txn_bufs(journal))
|
|
update_tail = 0;
|
|
}
|
|
J_ASSERT(commit_transaction->t_state == T_COMMIT);
|
|
commit_transaction->t_state = T_COMMIT_DFLUSH;
|
|
write_unlock(&journal->j_state_lock);
|
|
|
|
/*
|
|
* If the journal is not located on the file system device,
|
|
* then we must flush the file system device before we issue
|
|
* the commit record
|
|
*/
|
|
if (commit_transaction->t_need_data_flush &&
|
|
(journal->j_fs_dev != journal->j_dev) &&
|
|
(journal->j_flags & JBD2_BARRIER))
|
|
blkdev_issue_flush(journal->j_fs_dev);
|
|
|
|
/* Done it all: now write the commit record asynchronously. */
|
|
if (jbd2_has_feature_async_commit(journal)) {
|
|
err = journal_submit_commit_record(journal, commit_transaction,
|
|
&cbh, crc32_sum);
|
|
if (err)
|
|
jbd2_journal_abort(journal, err);
|
|
}
|
|
|
|
blk_finish_plug(&plug);
|
|
|
|
/* Lo and behold: we have just managed to send a transaction to
|
|
the log. Before we can commit it, wait for the IO so far to
|
|
complete. Control buffers being written are on the
|
|
transaction's t_log_list queue, and metadata buffers are on
|
|
the io_bufs list.
|
|
|
|
Wait for the buffers in reverse order. That way we are
|
|
less likely to be woken up until all IOs have completed, and
|
|
so we incur less scheduling load.
|
|
*/
|
|
|
|
jbd2_debug(3, "JBD2: commit phase 3\n");
|
|
|
|
while (!list_empty(&io_bufs)) {
|
|
struct buffer_head *bh = list_entry(io_bufs.prev,
|
|
struct buffer_head,
|
|
b_assoc_buffers);
|
|
|
|
wait_on_buffer(bh);
|
|
cond_resched();
|
|
|
|
if (unlikely(!buffer_uptodate(bh)))
|
|
err = -EIO;
|
|
jbd2_unfile_log_bh(bh);
|
|
stats.run.rs_blocks_logged++;
|
|
|
|
/*
|
|
* The list contains temporary buffer heads created by
|
|
* jbd2_journal_write_metadata_buffer().
|
|
*/
|
|
BUFFER_TRACE(bh, "dumping temporary bh");
|
|
__brelse(bh);
|
|
J_ASSERT_BH(bh, atomic_read(&bh->b_count) == 0);
|
|
free_buffer_head(bh);
|
|
|
|
/* We also have to refile the corresponding shadowed buffer */
|
|
jh = commit_transaction->t_shadow_list->b_tprev;
|
|
bh = jh2bh(jh);
|
|
clear_buffer_jwrite(bh);
|
|
J_ASSERT_BH(bh, buffer_jbddirty(bh));
|
|
J_ASSERT_BH(bh, !buffer_shadow(bh));
|
|
|
|
/* The metadata is now released for reuse, but we need
|
|
to remember it against this transaction so that when
|
|
we finally commit, we can do any checkpointing
|
|
required. */
|
|
JBUFFER_TRACE(jh, "file as BJ_Forget");
|
|
jbd2_journal_file_buffer(jh, commit_transaction, BJ_Forget);
|
|
JBUFFER_TRACE(jh, "brelse shadowed buffer");
|
|
__brelse(bh);
|
|
}
|
|
|
|
J_ASSERT (commit_transaction->t_shadow_list == NULL);
|
|
|
|
jbd2_debug(3, "JBD2: commit phase 4\n");
|
|
|
|
/* Here we wait for the revoke record and descriptor record buffers */
|
|
while (!list_empty(&log_bufs)) {
|
|
struct buffer_head *bh;
|
|
|
|
bh = list_entry(log_bufs.prev, struct buffer_head, b_assoc_buffers);
|
|
wait_on_buffer(bh);
|
|
cond_resched();
|
|
|
|
if (unlikely(!buffer_uptodate(bh)))
|
|
err = -EIO;
|
|
|
|
BUFFER_TRACE(bh, "ph5: control buffer writeout done: unfile");
|
|
clear_buffer_jwrite(bh);
|
|
jbd2_unfile_log_bh(bh);
|
|
stats.run.rs_blocks_logged++;
|
|
__brelse(bh); /* One for getblk */
|
|
/* AKPM: bforget here */
|
|
}
|
|
|
|
if (err)
|
|
jbd2_journal_abort(journal, err);
|
|
|
|
jbd2_debug(3, "JBD2: commit phase 5\n");
|
|
write_lock(&journal->j_state_lock);
|
|
J_ASSERT(commit_transaction->t_state == T_COMMIT_DFLUSH);
|
|
commit_transaction->t_state = T_COMMIT_JFLUSH;
|
|
write_unlock(&journal->j_state_lock);
|
|
|
|
if (!jbd2_has_feature_async_commit(journal)) {
|
|
err = journal_submit_commit_record(journal, commit_transaction,
|
|
&cbh, crc32_sum);
|
|
if (err)
|
|
jbd2_journal_abort(journal, err);
|
|
}
|
|
if (cbh)
|
|
err = journal_wait_on_commit_record(journal, cbh);
|
|
stats.run.rs_blocks_logged++;
|
|
if (jbd2_has_feature_async_commit(journal) &&
|
|
journal->j_flags & JBD2_BARRIER) {
|
|
blkdev_issue_flush(journal->j_dev);
|
|
}
|
|
|
|
if (err)
|
|
jbd2_journal_abort(journal, err);
|
|
|
|
WARN_ON_ONCE(
|
|
atomic_read(&commit_transaction->t_outstanding_credits) < 0);
|
|
|
|
/*
|
|
* Now disk caches for filesystem device are flushed so we are safe to
|
|
* erase checkpointed transactions from the log by updating journal
|
|
* superblock.
|
|
*/
|
|
if (update_tail)
|
|
jbd2_update_log_tail(journal, first_tid, first_block);
|
|
|
|
/* End of a transaction! Finally, we can do checkpoint
|
|
processing: any buffers committed as a result of this
|
|
transaction can be removed from any checkpoint list it was on
|
|
before. */
|
|
|
|
jbd2_debug(3, "JBD2: commit phase 6\n");
|
|
|
|
J_ASSERT(list_empty(&commit_transaction->t_inode_list));
|
|
J_ASSERT(commit_transaction->t_buffers == NULL);
|
|
J_ASSERT(commit_transaction->t_checkpoint_list == NULL);
|
|
J_ASSERT(commit_transaction->t_shadow_list == NULL);
|
|
|
|
restart_loop:
|
|
/*
|
|
* As there are other places (journal_unmap_buffer()) adding buffers
|
|
* to this list we have to be careful and hold the j_list_lock.
|
|
*/
|
|
spin_lock(&journal->j_list_lock);
|
|
while (commit_transaction->t_forget) {
|
|
transaction_t *cp_transaction;
|
|
struct buffer_head *bh;
|
|
int try_to_free = 0;
|
|
bool drop_ref;
|
|
|
|
jh = commit_transaction->t_forget;
|
|
spin_unlock(&journal->j_list_lock);
|
|
bh = jh2bh(jh);
|
|
/*
|
|
* Get a reference so that bh cannot be freed before we are
|
|
* done with it.
|
|
*/
|
|
get_bh(bh);
|
|
spin_lock(&jh->b_state_lock);
|
|
J_ASSERT_JH(jh, jh->b_transaction == commit_transaction);
|
|
|
|
/*
|
|
* If there is undo-protected committed data against
|
|
* this buffer, then we can remove it now. If it is a
|
|
* buffer needing such protection, the old frozen_data
|
|
* field now points to a committed version of the
|
|
* buffer, so rotate that field to the new committed
|
|
* data.
|
|
*
|
|
* Otherwise, we can just throw away the frozen data now.
|
|
*
|
|
* We also know that the frozen data has already fired
|
|
* its triggers if they exist, so we can clear that too.
|
|
*/
|
|
if (jh->b_committed_data) {
|
|
jbd2_free(jh->b_committed_data, bh->b_size);
|
|
jh->b_committed_data = NULL;
|
|
if (jh->b_frozen_data) {
|
|
jh->b_committed_data = jh->b_frozen_data;
|
|
jh->b_frozen_data = NULL;
|
|
jh->b_frozen_triggers = NULL;
|
|
}
|
|
} else if (jh->b_frozen_data) {
|
|
jbd2_free(jh->b_frozen_data, bh->b_size);
|
|
jh->b_frozen_data = NULL;
|
|
jh->b_frozen_triggers = NULL;
|
|
}
|
|
|
|
spin_lock(&journal->j_list_lock);
|
|
cp_transaction = jh->b_cp_transaction;
|
|
if (cp_transaction) {
|
|
JBUFFER_TRACE(jh, "remove from old cp transaction");
|
|
cp_transaction->t_chp_stats.cs_dropped++;
|
|
__jbd2_journal_remove_checkpoint(jh);
|
|
}
|
|
|
|
/* Only re-checkpoint the buffer_head if it is marked
|
|
* dirty. If the buffer was added to the BJ_Forget list
|
|
* by jbd2_journal_forget, it may no longer be dirty and
|
|
* there's no point in keeping a checkpoint record for
|
|
* it. */
|
|
|
|
/*
|
|
* A buffer which has been freed while still being journaled
|
|
* by a previous transaction, refile the buffer to BJ_Forget of
|
|
* the running transaction. If the just committed transaction
|
|
* contains "add to orphan" operation, we can completely
|
|
* invalidate the buffer now. We are rather through in that
|
|
* since the buffer may be still accessible when blocksize <
|
|
* pagesize and it is attached to the last partial page.
|
|
*/
|
|
if (buffer_freed(bh) && !jh->b_next_transaction) {
|
|
struct address_space *mapping;
|
|
|
|
clear_buffer_freed(bh);
|
|
clear_buffer_jbddirty(bh);
|
|
|
|
/*
|
|
* Block device buffers need to stay mapped all the
|
|
* time, so it is enough to clear buffer_jbddirty and
|
|
* buffer_freed bits. For the file mapping buffers (i.e.
|
|
* journalled data) we need to unmap buffer and clear
|
|
* more bits. We also need to be careful about the check
|
|
* because the data page mapping can get cleared under
|
|
* our hands. Note that if mapping == NULL, we don't
|
|
* need to make buffer unmapped because the page is
|
|
* already detached from the mapping and buffers cannot
|
|
* get reused.
|
|
*/
|
|
mapping = READ_ONCE(bh->b_folio->mapping);
|
|
if (mapping && !sb_is_blkdev_sb(mapping->host->i_sb)) {
|
|
clear_buffer_mapped(bh);
|
|
clear_buffer_new(bh);
|
|
clear_buffer_req(bh);
|
|
bh->b_bdev = NULL;
|
|
}
|
|
}
|
|
|
|
if (buffer_jbddirty(bh)) {
|
|
JBUFFER_TRACE(jh, "add to new checkpointing trans");
|
|
__jbd2_journal_insert_checkpoint(jh, commit_transaction);
|
|
if (is_journal_aborted(journal))
|
|
clear_buffer_jbddirty(bh);
|
|
} else {
|
|
J_ASSERT_BH(bh, !buffer_dirty(bh));
|
|
/*
|
|
* The buffer on BJ_Forget list and not jbddirty means
|
|
* it has been freed by this transaction and hence it
|
|
* could not have been reallocated until this
|
|
* transaction has committed. *BUT* it could be
|
|
* reallocated once we have written all the data to
|
|
* disk and before we process the buffer on BJ_Forget
|
|
* list.
|
|
*/
|
|
if (!jh->b_next_transaction)
|
|
try_to_free = 1;
|
|
}
|
|
JBUFFER_TRACE(jh, "refile or unfile buffer");
|
|
drop_ref = __jbd2_journal_refile_buffer(jh);
|
|
spin_unlock(&jh->b_state_lock);
|
|
if (drop_ref)
|
|
jbd2_journal_put_journal_head(jh);
|
|
if (try_to_free)
|
|
release_buffer_page(bh); /* Drops bh reference */
|
|
else
|
|
__brelse(bh);
|
|
cond_resched_lock(&journal->j_list_lock);
|
|
}
|
|
spin_unlock(&journal->j_list_lock);
|
|
/*
|
|
* This is a bit sleazy. We use j_list_lock to protect transition
|
|
* of a transaction into T_FINISHED state and calling
|
|
* __jbd2_journal_drop_transaction(). Otherwise we could race with
|
|
* other checkpointing code processing the transaction...
|
|
*/
|
|
write_lock(&journal->j_state_lock);
|
|
spin_lock(&journal->j_list_lock);
|
|
/*
|
|
* Now recheck if some buffers did not get attached to the transaction
|
|
* while the lock was dropped...
|
|
*/
|
|
if (commit_transaction->t_forget) {
|
|
spin_unlock(&journal->j_list_lock);
|
|
write_unlock(&journal->j_state_lock);
|
|
goto restart_loop;
|
|
}
|
|
|
|
/* Add the transaction to the checkpoint list
|
|
* __journal_remove_checkpoint() can not destroy transaction
|
|
* under us because it is not marked as T_FINISHED yet */
|
|
if (journal->j_checkpoint_transactions == NULL) {
|
|
journal->j_checkpoint_transactions = commit_transaction;
|
|
commit_transaction->t_cpnext = commit_transaction;
|
|
commit_transaction->t_cpprev = commit_transaction;
|
|
} else {
|
|
commit_transaction->t_cpnext =
|
|
journal->j_checkpoint_transactions;
|
|
commit_transaction->t_cpprev =
|
|
commit_transaction->t_cpnext->t_cpprev;
|
|
commit_transaction->t_cpnext->t_cpprev =
|
|
commit_transaction;
|
|
commit_transaction->t_cpprev->t_cpnext =
|
|
commit_transaction;
|
|
}
|
|
spin_unlock(&journal->j_list_lock);
|
|
|
|
/* Done with this transaction! */
|
|
|
|
jbd2_debug(3, "JBD2: commit phase 7\n");
|
|
|
|
J_ASSERT(commit_transaction->t_state == T_COMMIT_JFLUSH);
|
|
|
|
commit_transaction->t_start = jiffies;
|
|
stats.run.rs_logging = jbd2_time_diff(stats.run.rs_logging,
|
|
commit_transaction->t_start);
|
|
|
|
/*
|
|
* File the transaction statistics
|
|
*/
|
|
stats.ts_tid = commit_transaction->t_tid;
|
|
stats.run.rs_handle_count =
|
|
atomic_read(&commit_transaction->t_handle_count);
|
|
trace_jbd2_run_stats(journal->j_fs_dev->bd_dev,
|
|
commit_transaction->t_tid, &stats.run);
|
|
stats.ts_requested = (commit_transaction->t_requested) ? 1 : 0;
|
|
|
|
commit_transaction->t_state = T_COMMIT_CALLBACK;
|
|
J_ASSERT(commit_transaction == journal->j_committing_transaction);
|
|
journal->j_commit_sequence = commit_transaction->t_tid;
|
|
journal->j_committing_transaction = NULL;
|
|
commit_time = ktime_to_ns(ktime_sub(ktime_get(), start_time));
|
|
|
|
/*
|
|
* weight the commit time higher than the average time so we don't
|
|
* react too strongly to vast changes in the commit time
|
|
*/
|
|
if (likely(journal->j_average_commit_time))
|
|
journal->j_average_commit_time = (commit_time +
|
|
journal->j_average_commit_time*3) / 4;
|
|
else
|
|
journal->j_average_commit_time = commit_time;
|
|
|
|
write_unlock(&journal->j_state_lock);
|
|
|
|
if (journal->j_commit_callback)
|
|
journal->j_commit_callback(journal, commit_transaction);
|
|
if (journal->j_fc_cleanup_callback)
|
|
journal->j_fc_cleanup_callback(journal, 1, commit_transaction->t_tid);
|
|
|
|
trace_jbd2_end_commit(journal, commit_transaction);
|
|
jbd2_debug(1, "JBD2: commit %d complete, head %d\n",
|
|
journal->j_commit_sequence, journal->j_tail_sequence);
|
|
|
|
write_lock(&journal->j_state_lock);
|
|
journal->j_flags &= ~JBD2_FULL_COMMIT_ONGOING;
|
|
journal->j_flags &= ~JBD2_FAST_COMMIT_ONGOING;
|
|
spin_lock(&journal->j_list_lock);
|
|
commit_transaction->t_state = T_FINISHED;
|
|
/* Check if the transaction can be dropped now that we are finished */
|
|
if (commit_transaction->t_checkpoint_list == NULL &&
|
|
commit_transaction->t_checkpoint_io_list == NULL) {
|
|
__jbd2_journal_drop_transaction(journal, commit_transaction);
|
|
jbd2_journal_free_transaction(commit_transaction);
|
|
}
|
|
spin_unlock(&journal->j_list_lock);
|
|
write_unlock(&journal->j_state_lock);
|
|
wake_up(&journal->j_wait_done_commit);
|
|
wake_up(&journal->j_fc_wait);
|
|
|
|
/*
|
|
* Calculate overall stats
|
|
*/
|
|
spin_lock(&journal->j_history_lock);
|
|
journal->j_stats.ts_tid++;
|
|
journal->j_stats.ts_requested += stats.ts_requested;
|
|
journal->j_stats.run.rs_wait += stats.run.rs_wait;
|
|
journal->j_stats.run.rs_request_delay += stats.run.rs_request_delay;
|
|
journal->j_stats.run.rs_running += stats.run.rs_running;
|
|
journal->j_stats.run.rs_locked += stats.run.rs_locked;
|
|
journal->j_stats.run.rs_flushing += stats.run.rs_flushing;
|
|
journal->j_stats.run.rs_logging += stats.run.rs_logging;
|
|
journal->j_stats.run.rs_handle_count += stats.run.rs_handle_count;
|
|
journal->j_stats.run.rs_blocks += stats.run.rs_blocks;
|
|
journal->j_stats.run.rs_blocks_logged += stats.run.rs_blocks_logged;
|
|
spin_unlock(&journal->j_history_lock);
|
|
}
|