linux-zen-server/tools/perf/util/arm-spe.c

1360 lines
33 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Arm Statistical Profiling Extensions (SPE) support
* Copyright (c) 2017-2018, Arm Ltd.
*/
#include <byteswap.h>
#include <endian.h>
#include <errno.h>
#include <inttypes.h>
#include <linux/bitops.h>
#include <linux/kernel.h>
#include <linux/log2.h>
#include <linux/types.h>
#include <linux/zalloc.h>
#include <stdlib.h>
#include <unistd.h>
#include "auxtrace.h"
#include "color.h"
#include "debug.h"
#include "evlist.h"
#include "evsel.h"
#include "machine.h"
#include "session.h"
#include "symbol.h"
#include "thread.h"
#include "thread-stack.h"
#include "tsc.h"
#include "tool.h"
#include "util/synthetic-events.h"
#include "arm-spe.h"
#include "arm-spe-decoder/arm-spe-decoder.h"
#include "arm-spe-decoder/arm-spe-pkt-decoder.h"
#include "../../arch/arm64/include/asm/cputype.h"
#define MAX_TIMESTAMP (~0ULL)
struct arm_spe {
struct auxtrace auxtrace;
struct auxtrace_queues queues;
struct auxtrace_heap heap;
struct itrace_synth_opts synth_opts;
u32 auxtrace_type;
struct perf_session *session;
struct machine *machine;
u32 pmu_type;
u64 midr;
struct perf_tsc_conversion tc;
u8 timeless_decoding;
u8 data_queued;
u64 sample_type;
u8 sample_flc;
u8 sample_llc;
u8 sample_tlb;
u8 sample_branch;
u8 sample_remote_access;
u8 sample_memory;
u8 sample_instructions;
u64 instructions_sample_period;
u64 l1d_miss_id;
u64 l1d_access_id;
u64 llc_miss_id;
u64 llc_access_id;
u64 tlb_miss_id;
u64 tlb_access_id;
u64 branch_miss_id;
u64 remote_access_id;
u64 memory_id;
u64 instructions_id;
u64 kernel_start;
unsigned long num_events;
u8 use_ctx_pkt_for_pid;
};
struct arm_spe_queue {
struct arm_spe *spe;
unsigned int queue_nr;
struct auxtrace_buffer *buffer;
struct auxtrace_buffer *old_buffer;
union perf_event *event_buf;
bool on_heap;
bool done;
pid_t pid;
pid_t tid;
int cpu;
struct arm_spe_decoder *decoder;
u64 time;
u64 timestamp;
struct thread *thread;
u64 period_instructions;
};
static void arm_spe_dump(struct arm_spe *spe __maybe_unused,
unsigned char *buf, size_t len)
{
struct arm_spe_pkt packet;
size_t pos = 0;
int ret, pkt_len, i;
char desc[ARM_SPE_PKT_DESC_MAX];
const char *color = PERF_COLOR_BLUE;
color_fprintf(stdout, color,
". ... ARM SPE data: size %#zx bytes\n",
len);
while (len) {
ret = arm_spe_get_packet(buf, len, &packet);
if (ret > 0)
pkt_len = ret;
else
pkt_len = 1;
printf(".");
color_fprintf(stdout, color, " %08x: ", pos);
for (i = 0; i < pkt_len; i++)
color_fprintf(stdout, color, " %02x", buf[i]);
for (; i < 16; i++)
color_fprintf(stdout, color, " ");
if (ret > 0) {
ret = arm_spe_pkt_desc(&packet, desc,
ARM_SPE_PKT_DESC_MAX);
if (!ret)
color_fprintf(stdout, color, " %s\n", desc);
} else {
color_fprintf(stdout, color, " Bad packet!\n");
}
pos += pkt_len;
buf += pkt_len;
len -= pkt_len;
}
}
static void arm_spe_dump_event(struct arm_spe *spe, unsigned char *buf,
size_t len)
{
printf(".\n");
arm_spe_dump(spe, buf, len);
}
static int arm_spe_get_trace(struct arm_spe_buffer *b, void *data)
{
struct arm_spe_queue *speq = data;
struct auxtrace_buffer *buffer = speq->buffer;
struct auxtrace_buffer *old_buffer = speq->old_buffer;
struct auxtrace_queue *queue;
queue = &speq->spe->queues.queue_array[speq->queue_nr];
buffer = auxtrace_buffer__next(queue, buffer);
/* If no more data, drop the previous auxtrace_buffer and return */
if (!buffer) {
if (old_buffer)
auxtrace_buffer__drop_data(old_buffer);
b->len = 0;
return 0;
}
speq->buffer = buffer;
/* If the aux_buffer doesn't have data associated, try to load it */
if (!buffer->data) {
/* get the file desc associated with the perf data file */
int fd = perf_data__fd(speq->spe->session->data);
buffer->data = auxtrace_buffer__get_data(buffer, fd);
if (!buffer->data)
return -ENOMEM;
}
b->len = buffer->size;
b->buf = buffer->data;
if (b->len) {
if (old_buffer)
auxtrace_buffer__drop_data(old_buffer);
speq->old_buffer = buffer;
} else {
auxtrace_buffer__drop_data(buffer);
return arm_spe_get_trace(b, data);
}
return 0;
}
static struct arm_spe_queue *arm_spe__alloc_queue(struct arm_spe *spe,
unsigned int queue_nr)
{
struct arm_spe_params params = { .get_trace = 0, };
struct arm_spe_queue *speq;
speq = zalloc(sizeof(*speq));
if (!speq)
return NULL;
speq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
if (!speq->event_buf)
goto out_free;
speq->spe = spe;
speq->queue_nr = queue_nr;
speq->pid = -1;
speq->tid = -1;
speq->cpu = -1;
speq->period_instructions = 0;
/* params set */
params.get_trace = arm_spe_get_trace;
params.data = speq;
/* create new decoder */
speq->decoder = arm_spe_decoder_new(&params);
if (!speq->decoder)
goto out_free;
return speq;
out_free:
zfree(&speq->event_buf);
free(speq);
return NULL;
}
static inline u8 arm_spe_cpumode(struct arm_spe *spe, u64 ip)
{
return ip >= spe->kernel_start ?
PERF_RECORD_MISC_KERNEL :
PERF_RECORD_MISC_USER;
}
static void arm_spe_set_pid_tid_cpu(struct arm_spe *spe,
struct auxtrace_queue *queue)
{
struct arm_spe_queue *speq = queue->priv;
pid_t tid;
tid = machine__get_current_tid(spe->machine, speq->cpu);
if (tid != -1) {
speq->tid = tid;
thread__zput(speq->thread);
} else
speq->tid = queue->tid;
if ((!speq->thread) && (speq->tid != -1)) {
speq->thread = machine__find_thread(spe->machine, -1,
speq->tid);
}
if (speq->thread) {
speq->pid = speq->thread->pid_;
if (queue->cpu == -1)
speq->cpu = speq->thread->cpu;
}
}
static int arm_spe_set_tid(struct arm_spe_queue *speq, pid_t tid)
{
struct arm_spe *spe = speq->spe;
int err = machine__set_current_tid(spe->machine, speq->cpu, -1, tid);
if (err)
return err;
arm_spe_set_pid_tid_cpu(spe, &spe->queues.queue_array[speq->queue_nr]);
return 0;
}
static void arm_spe_prep_sample(struct arm_spe *spe,
struct arm_spe_queue *speq,
union perf_event *event,
struct perf_sample *sample)
{
struct arm_spe_record *record = &speq->decoder->record;
if (!spe->timeless_decoding)
sample->time = tsc_to_perf_time(record->timestamp, &spe->tc);
sample->ip = record->from_ip;
sample->cpumode = arm_spe_cpumode(spe, sample->ip);
sample->pid = speq->pid;
sample->tid = speq->tid;
sample->period = 1;
sample->cpu = speq->cpu;
event->sample.header.type = PERF_RECORD_SAMPLE;
event->sample.header.misc = sample->cpumode;
event->sample.header.size = sizeof(struct perf_event_header);
}
static int arm_spe__inject_event(union perf_event *event, struct perf_sample *sample, u64 type)
{
event->header.size = perf_event__sample_event_size(sample, type, 0);
return perf_event__synthesize_sample(event, type, 0, sample);
}
static inline int
arm_spe_deliver_synth_event(struct arm_spe *spe,
struct arm_spe_queue *speq __maybe_unused,
union perf_event *event,
struct perf_sample *sample)
{
int ret;
if (spe->synth_opts.inject) {
ret = arm_spe__inject_event(event, sample, spe->sample_type);
if (ret)
return ret;
}
ret = perf_session__deliver_synth_event(spe->session, event, sample);
if (ret)
pr_err("ARM SPE: failed to deliver event, error %d\n", ret);
return ret;
}
static int arm_spe__synth_mem_sample(struct arm_spe_queue *speq,
u64 spe_events_id, u64 data_src)
{
struct arm_spe *spe = speq->spe;
struct arm_spe_record *record = &speq->decoder->record;
union perf_event *event = speq->event_buf;
struct perf_sample sample = { .ip = 0, };
arm_spe_prep_sample(spe, speq, event, &sample);
sample.id = spe_events_id;
sample.stream_id = spe_events_id;
sample.addr = record->virt_addr;
sample.phys_addr = record->phys_addr;
sample.data_src = data_src;
sample.weight = record->latency;
return arm_spe_deliver_synth_event(spe, speq, event, &sample);
}
static int arm_spe__synth_branch_sample(struct arm_spe_queue *speq,
u64 spe_events_id)
{
struct arm_spe *spe = speq->spe;
struct arm_spe_record *record = &speq->decoder->record;
union perf_event *event = speq->event_buf;
struct perf_sample sample = { .ip = 0, };
arm_spe_prep_sample(spe, speq, event, &sample);
sample.id = spe_events_id;
sample.stream_id = spe_events_id;
sample.addr = record->to_ip;
sample.weight = record->latency;
return arm_spe_deliver_synth_event(spe, speq, event, &sample);
}
static int arm_spe__synth_instruction_sample(struct arm_spe_queue *speq,
u64 spe_events_id, u64 data_src)
{
struct arm_spe *spe = speq->spe;
struct arm_spe_record *record = &speq->decoder->record;
union perf_event *event = speq->event_buf;
struct perf_sample sample = { .ip = 0, };
/*
* Handles perf instruction sampling period.
*/
speq->period_instructions++;
if (speq->period_instructions < spe->instructions_sample_period)
return 0;
speq->period_instructions = 0;
arm_spe_prep_sample(spe, speq, event, &sample);
sample.id = spe_events_id;
sample.stream_id = spe_events_id;
sample.addr = record->virt_addr;
sample.phys_addr = record->phys_addr;
sample.data_src = data_src;
sample.period = spe->instructions_sample_period;
sample.weight = record->latency;
return arm_spe_deliver_synth_event(spe, speq, event, &sample);
}
static const struct midr_range neoverse_spe[] = {
MIDR_ALL_VERSIONS(MIDR_NEOVERSE_N1),
MIDR_ALL_VERSIONS(MIDR_NEOVERSE_N2),
MIDR_ALL_VERSIONS(MIDR_NEOVERSE_V1),
{},
};
static void arm_spe__synth_data_source_neoverse(const struct arm_spe_record *record,
union perf_mem_data_src *data_src)
{
/*
* Even though four levels of cache hierarchy are possible, no known
* production Neoverse systems currently include more than three levels
* so for the time being we assume three exist. If a production system
* is built with four the this function would have to be changed to
* detect the number of levels for reporting.
*/
/*
* We have no data on the hit level or data source for stores in the
* Neoverse SPE records.
*/
if (record->op & ARM_SPE_ST) {
data_src->mem_lvl = PERF_MEM_LVL_NA;
data_src->mem_lvl_num = PERF_MEM_LVLNUM_NA;
data_src->mem_snoop = PERF_MEM_SNOOP_NA;
return;
}
switch (record->source) {
case ARM_SPE_NV_L1D:
data_src->mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_HIT;
data_src->mem_lvl_num = PERF_MEM_LVLNUM_L1;
data_src->mem_snoop = PERF_MEM_SNOOP_NONE;
break;
case ARM_SPE_NV_L2:
data_src->mem_lvl = PERF_MEM_LVL_L2 | PERF_MEM_LVL_HIT;
data_src->mem_lvl_num = PERF_MEM_LVLNUM_L2;
data_src->mem_snoop = PERF_MEM_SNOOP_NONE;
break;
case ARM_SPE_NV_PEER_CORE:
data_src->mem_lvl = PERF_MEM_LVL_L2 | PERF_MEM_LVL_HIT;
data_src->mem_lvl_num = PERF_MEM_LVLNUM_L2;
data_src->mem_snoopx = PERF_MEM_SNOOPX_PEER;
break;
/*
* We don't know if this is L1, L2 but we do know it was a cache-2-cache
* transfer, so set SNOOPX_PEER
*/
case ARM_SPE_NV_LOCAL_CLUSTER:
case ARM_SPE_NV_PEER_CLUSTER:
data_src->mem_lvl = PERF_MEM_LVL_L3 | PERF_MEM_LVL_HIT;
data_src->mem_lvl_num = PERF_MEM_LVLNUM_L3;
data_src->mem_snoopx = PERF_MEM_SNOOPX_PEER;
break;
/*
* System cache is assumed to be L3
*/
case ARM_SPE_NV_SYS_CACHE:
data_src->mem_lvl = PERF_MEM_LVL_L3 | PERF_MEM_LVL_HIT;
data_src->mem_lvl_num = PERF_MEM_LVLNUM_L3;
data_src->mem_snoop = PERF_MEM_SNOOP_HIT;
break;
/*
* We don't know what level it hit in, except it came from the other
* socket
*/
case ARM_SPE_NV_REMOTE:
data_src->mem_lvl = PERF_MEM_LVL_REM_CCE1;
data_src->mem_lvl_num = PERF_MEM_LVLNUM_ANY_CACHE;
data_src->mem_remote = PERF_MEM_REMOTE_REMOTE;
data_src->mem_snoopx = PERF_MEM_SNOOPX_PEER;
break;
case ARM_SPE_NV_DRAM:
data_src->mem_lvl = PERF_MEM_LVL_LOC_RAM | PERF_MEM_LVL_HIT;
data_src->mem_lvl_num = PERF_MEM_LVLNUM_RAM;
data_src->mem_snoop = PERF_MEM_SNOOP_NONE;
break;
default:
break;
}
}
static void arm_spe__synth_data_source_generic(const struct arm_spe_record *record,
union perf_mem_data_src *data_src)
{
if (record->type & (ARM_SPE_LLC_ACCESS | ARM_SPE_LLC_MISS)) {
data_src->mem_lvl = PERF_MEM_LVL_L3;
if (record->type & ARM_SPE_LLC_MISS)
data_src->mem_lvl |= PERF_MEM_LVL_MISS;
else
data_src->mem_lvl |= PERF_MEM_LVL_HIT;
} else if (record->type & (ARM_SPE_L1D_ACCESS | ARM_SPE_L1D_MISS)) {
data_src->mem_lvl = PERF_MEM_LVL_L1;
if (record->type & ARM_SPE_L1D_MISS)
data_src->mem_lvl |= PERF_MEM_LVL_MISS;
else
data_src->mem_lvl |= PERF_MEM_LVL_HIT;
}
if (record->type & ARM_SPE_REMOTE_ACCESS)
data_src->mem_lvl |= PERF_MEM_LVL_REM_CCE1;
}
static u64 arm_spe__synth_data_source(const struct arm_spe_record *record, u64 midr)
{
union perf_mem_data_src data_src = { 0 };
bool is_neoverse = is_midr_in_range_list(midr, neoverse_spe);
if (record->op == ARM_SPE_LD)
data_src.mem_op = PERF_MEM_OP_LOAD;
else if (record->op == ARM_SPE_ST)
data_src.mem_op = PERF_MEM_OP_STORE;
else
return 0;
if (is_neoverse)
arm_spe__synth_data_source_neoverse(record, &data_src);
else
arm_spe__synth_data_source_generic(record, &data_src);
if (record->type & (ARM_SPE_TLB_ACCESS | ARM_SPE_TLB_MISS)) {
data_src.mem_dtlb = PERF_MEM_TLB_WK;
if (record->type & ARM_SPE_TLB_MISS)
data_src.mem_dtlb |= PERF_MEM_TLB_MISS;
else
data_src.mem_dtlb |= PERF_MEM_TLB_HIT;
}
return data_src.val;
}
static int arm_spe_sample(struct arm_spe_queue *speq)
{
const struct arm_spe_record *record = &speq->decoder->record;
struct arm_spe *spe = speq->spe;
u64 data_src;
int err;
data_src = arm_spe__synth_data_source(record, spe->midr);
if (spe->sample_flc) {
if (record->type & ARM_SPE_L1D_MISS) {
err = arm_spe__synth_mem_sample(speq, spe->l1d_miss_id,
data_src);
if (err)
return err;
}
if (record->type & ARM_SPE_L1D_ACCESS) {
err = arm_spe__synth_mem_sample(speq, spe->l1d_access_id,
data_src);
if (err)
return err;
}
}
if (spe->sample_llc) {
if (record->type & ARM_SPE_LLC_MISS) {
err = arm_spe__synth_mem_sample(speq, spe->llc_miss_id,
data_src);
if (err)
return err;
}
if (record->type & ARM_SPE_LLC_ACCESS) {
err = arm_spe__synth_mem_sample(speq, spe->llc_access_id,
data_src);
if (err)
return err;
}
}
if (spe->sample_tlb) {
if (record->type & ARM_SPE_TLB_MISS) {
err = arm_spe__synth_mem_sample(speq, spe->tlb_miss_id,
data_src);
if (err)
return err;
}
if (record->type & ARM_SPE_TLB_ACCESS) {
err = arm_spe__synth_mem_sample(speq, spe->tlb_access_id,
data_src);
if (err)
return err;
}
}
if (spe->sample_branch && (record->type & ARM_SPE_BRANCH_MISS)) {
err = arm_spe__synth_branch_sample(speq, spe->branch_miss_id);
if (err)
return err;
}
if (spe->sample_remote_access &&
(record->type & ARM_SPE_REMOTE_ACCESS)) {
err = arm_spe__synth_mem_sample(speq, spe->remote_access_id,
data_src);
if (err)
return err;
}
/*
* When data_src is zero it means the record is not a memory operation,
* skip to synthesize memory sample for this case.
*/
if (spe->sample_memory && data_src) {
err = arm_spe__synth_mem_sample(speq, spe->memory_id, data_src);
if (err)
return err;
}
if (spe->sample_instructions) {
err = arm_spe__synth_instruction_sample(speq, spe->instructions_id, data_src);
if (err)
return err;
}
return 0;
}
static int arm_spe_run_decoder(struct arm_spe_queue *speq, u64 *timestamp)
{
struct arm_spe *spe = speq->spe;
struct arm_spe_record *record;
int ret;
if (!spe->kernel_start)
spe->kernel_start = machine__kernel_start(spe->machine);
while (1) {
/*
* The usual logic is firstly to decode the packets, and then
* based the record to synthesize sample; but here the flow is
* reversed: it calls arm_spe_sample() for synthesizing samples
* prior to arm_spe_decode().
*
* Two reasons for this code logic:
* 1. Firstly, when setup queue in arm_spe__setup_queue(), it
* has decoded trace data and generated a record, but the record
* is left to generate sample until run to here, so it's correct
* to synthesize sample for the left record.
* 2. After decoding trace data, it needs to compare the record
* timestamp with the coming perf event, if the record timestamp
* is later than the perf event, it needs bail out and pushs the
* record into auxtrace heap, thus the record can be deferred to
* synthesize sample until run to here at the next time; so this
* can correlate samples between Arm SPE trace data and other
* perf events with correct time ordering.
*/
/*
* Update pid/tid info.
*/
record = &speq->decoder->record;
if (!spe->timeless_decoding && record->context_id != (u64)-1) {
ret = arm_spe_set_tid(speq, record->context_id);
if (ret)
return ret;
spe->use_ctx_pkt_for_pid = true;
}
ret = arm_spe_sample(speq);
if (ret)
return ret;
ret = arm_spe_decode(speq->decoder);
if (!ret) {
pr_debug("No data or all data has been processed.\n");
return 1;
}
/*
* Error is detected when decode SPE trace data, continue to
* the next trace data and find out more records.
*/
if (ret < 0)
continue;
record = &speq->decoder->record;
/* Update timestamp for the last record */
if (record->timestamp > speq->timestamp)
speq->timestamp = record->timestamp;
/*
* If the timestamp of the queue is later than timestamp of the
* coming perf event, bail out so can allow the perf event to
* be processed ahead.
*/
if (!spe->timeless_decoding && speq->timestamp >= *timestamp) {
*timestamp = speq->timestamp;
return 0;
}
}
return 0;
}
static int arm_spe__setup_queue(struct arm_spe *spe,
struct auxtrace_queue *queue,
unsigned int queue_nr)
{
struct arm_spe_queue *speq = queue->priv;
struct arm_spe_record *record;
if (list_empty(&queue->head) || speq)
return 0;
speq = arm_spe__alloc_queue(spe, queue_nr);
if (!speq)
return -ENOMEM;
queue->priv = speq;
if (queue->cpu != -1)
speq->cpu = queue->cpu;
if (!speq->on_heap) {
int ret;
if (spe->timeless_decoding)
return 0;
retry:
ret = arm_spe_decode(speq->decoder);
if (!ret)
return 0;
if (ret < 0)
goto retry;
record = &speq->decoder->record;
speq->timestamp = record->timestamp;
ret = auxtrace_heap__add(&spe->heap, queue_nr, speq->timestamp);
if (ret)
return ret;
speq->on_heap = true;
}
return 0;
}
static int arm_spe__setup_queues(struct arm_spe *spe)
{
unsigned int i;
int ret;
for (i = 0; i < spe->queues.nr_queues; i++) {
ret = arm_spe__setup_queue(spe, &spe->queues.queue_array[i], i);
if (ret)
return ret;
}
return 0;
}
static int arm_spe__update_queues(struct arm_spe *spe)
{
if (spe->queues.new_data) {
spe->queues.new_data = false;
return arm_spe__setup_queues(spe);
}
return 0;
}
static bool arm_spe__is_timeless_decoding(struct arm_spe *spe)
{
struct evsel *evsel;
struct evlist *evlist = spe->session->evlist;
bool timeless_decoding = true;
/*
* Circle through the list of event and complain if we find one
* with the time bit set.
*/
evlist__for_each_entry(evlist, evsel) {
if ((evsel->core.attr.sample_type & PERF_SAMPLE_TIME))
timeless_decoding = false;
}
return timeless_decoding;
}
static int arm_spe_process_queues(struct arm_spe *spe, u64 timestamp)
{
unsigned int queue_nr;
u64 ts;
int ret;
while (1) {
struct auxtrace_queue *queue;
struct arm_spe_queue *speq;
if (!spe->heap.heap_cnt)
return 0;
if (spe->heap.heap_array[0].ordinal >= timestamp)
return 0;
queue_nr = spe->heap.heap_array[0].queue_nr;
queue = &spe->queues.queue_array[queue_nr];
speq = queue->priv;
auxtrace_heap__pop(&spe->heap);
if (spe->heap.heap_cnt) {
ts = spe->heap.heap_array[0].ordinal + 1;
if (ts > timestamp)
ts = timestamp;
} else {
ts = timestamp;
}
/*
* A previous context-switch event has set pid/tid in the machine's context, so
* here we need to update the pid/tid in the thread and SPE queue.
*/
if (!spe->use_ctx_pkt_for_pid)
arm_spe_set_pid_tid_cpu(spe, queue);
ret = arm_spe_run_decoder(speq, &ts);
if (ret < 0) {
auxtrace_heap__add(&spe->heap, queue_nr, ts);
return ret;
}
if (!ret) {
ret = auxtrace_heap__add(&spe->heap, queue_nr, ts);
if (ret < 0)
return ret;
} else {
speq->on_heap = false;
}
}
return 0;
}
static int arm_spe_process_timeless_queues(struct arm_spe *spe, pid_t tid,
u64 time_)
{
struct auxtrace_queues *queues = &spe->queues;
unsigned int i;
u64 ts = 0;
for (i = 0; i < queues->nr_queues; i++) {
struct auxtrace_queue *queue = &spe->queues.queue_array[i];
struct arm_spe_queue *speq = queue->priv;
if (speq && (tid == -1 || speq->tid == tid)) {
speq->time = time_;
arm_spe_set_pid_tid_cpu(spe, queue);
arm_spe_run_decoder(speq, &ts);
}
}
return 0;
}
static int arm_spe_context_switch(struct arm_spe *spe, union perf_event *event,
struct perf_sample *sample)
{
pid_t pid, tid;
int cpu;
if (!(event->header.misc & PERF_RECORD_MISC_SWITCH_OUT))
return 0;
pid = event->context_switch.next_prev_pid;
tid = event->context_switch.next_prev_tid;
cpu = sample->cpu;
if (tid == -1)
pr_warning("context_switch event has no tid\n");
return machine__set_current_tid(spe->machine, cpu, pid, tid);
}
static int arm_spe_process_event(struct perf_session *session,
union perf_event *event,
struct perf_sample *sample,
struct perf_tool *tool)
{
int err = 0;
u64 timestamp;
struct arm_spe *spe = container_of(session->auxtrace,
struct arm_spe, auxtrace);
if (dump_trace)
return 0;
if (!tool->ordered_events) {
pr_err("SPE trace requires ordered events\n");
return -EINVAL;
}
if (sample->time && (sample->time != (u64) -1))
timestamp = perf_time_to_tsc(sample->time, &spe->tc);
else
timestamp = 0;
if (timestamp || spe->timeless_decoding) {
err = arm_spe__update_queues(spe);
if (err)
return err;
}
if (spe->timeless_decoding) {
if (event->header.type == PERF_RECORD_EXIT) {
err = arm_spe_process_timeless_queues(spe,
event->fork.tid,
sample->time);
}
} else if (timestamp) {
err = arm_spe_process_queues(spe, timestamp);
if (err)
return err;
if (!spe->use_ctx_pkt_for_pid &&
(event->header.type == PERF_RECORD_SWITCH_CPU_WIDE ||
event->header.type == PERF_RECORD_SWITCH))
err = arm_spe_context_switch(spe, event, sample);
}
return err;
}
static int arm_spe_process_auxtrace_event(struct perf_session *session,
union perf_event *event,
struct perf_tool *tool __maybe_unused)
{
struct arm_spe *spe = container_of(session->auxtrace, struct arm_spe,
auxtrace);
if (!spe->data_queued) {
struct auxtrace_buffer *buffer;
off_t data_offset;
int fd = perf_data__fd(session->data);
int err;
if (perf_data__is_pipe(session->data)) {
data_offset = 0;
} else {
data_offset = lseek(fd, 0, SEEK_CUR);
if (data_offset == -1)
return -errno;
}
err = auxtrace_queues__add_event(&spe->queues, session, event,
data_offset, &buffer);
if (err)
return err;
/* Dump here now we have copied a piped trace out of the pipe */
if (dump_trace) {
if (auxtrace_buffer__get_data(buffer, fd)) {
arm_spe_dump_event(spe, buffer->data,
buffer->size);
auxtrace_buffer__put_data(buffer);
}
}
}
return 0;
}
static int arm_spe_flush(struct perf_session *session __maybe_unused,
struct perf_tool *tool __maybe_unused)
{
struct arm_spe *spe = container_of(session->auxtrace, struct arm_spe,
auxtrace);
int ret;
if (dump_trace)
return 0;
if (!tool->ordered_events)
return -EINVAL;
ret = arm_spe__update_queues(spe);
if (ret < 0)
return ret;
if (spe->timeless_decoding)
return arm_spe_process_timeless_queues(spe, -1,
MAX_TIMESTAMP - 1);
ret = arm_spe_process_queues(spe, MAX_TIMESTAMP);
if (ret)
return ret;
if (!spe->use_ctx_pkt_for_pid)
ui__warning("Arm SPE CONTEXT packets not found in the traces.\n"
"Matching of TIDs to SPE events could be inaccurate.\n");
return 0;
}
static void arm_spe_free_queue(void *priv)
{
struct arm_spe_queue *speq = priv;
if (!speq)
return;
thread__zput(speq->thread);
arm_spe_decoder_free(speq->decoder);
zfree(&speq->event_buf);
free(speq);
}
static void arm_spe_free_events(struct perf_session *session)
{
struct arm_spe *spe = container_of(session->auxtrace, struct arm_spe,
auxtrace);
struct auxtrace_queues *queues = &spe->queues;
unsigned int i;
for (i = 0; i < queues->nr_queues; i++) {
arm_spe_free_queue(queues->queue_array[i].priv);
queues->queue_array[i].priv = NULL;
}
auxtrace_queues__free(queues);
}
static void arm_spe_free(struct perf_session *session)
{
struct arm_spe *spe = container_of(session->auxtrace, struct arm_spe,
auxtrace);
auxtrace_heap__free(&spe->heap);
arm_spe_free_events(session);
session->auxtrace = NULL;
free(spe);
}
static bool arm_spe_evsel_is_auxtrace(struct perf_session *session,
struct evsel *evsel)
{
struct arm_spe *spe = container_of(session->auxtrace, struct arm_spe, auxtrace);
return evsel->core.attr.type == spe->pmu_type;
}
static const char * const arm_spe_info_fmts[] = {
[ARM_SPE_PMU_TYPE] = " PMU Type %"PRId64"\n",
};
static void arm_spe_print_info(__u64 *arr)
{
if (!dump_trace)
return;
fprintf(stdout, arm_spe_info_fmts[ARM_SPE_PMU_TYPE], arr[ARM_SPE_PMU_TYPE]);
}
struct arm_spe_synth {
struct perf_tool dummy_tool;
struct perf_session *session;
};
static int arm_spe_event_synth(struct perf_tool *tool,
union perf_event *event,
struct perf_sample *sample __maybe_unused,
struct machine *machine __maybe_unused)
{
struct arm_spe_synth *arm_spe_synth =
container_of(tool, struct arm_spe_synth, dummy_tool);
return perf_session__deliver_synth_event(arm_spe_synth->session,
event, NULL);
}
static int arm_spe_synth_event(struct perf_session *session,
struct perf_event_attr *attr, u64 id)
{
struct arm_spe_synth arm_spe_synth;
memset(&arm_spe_synth, 0, sizeof(struct arm_spe_synth));
arm_spe_synth.session = session;
return perf_event__synthesize_attr(&arm_spe_synth.dummy_tool, attr, 1,
&id, arm_spe_event_synth);
}
static void arm_spe_set_event_name(struct evlist *evlist, u64 id,
const char *name)
{
struct evsel *evsel;
evlist__for_each_entry(evlist, evsel) {
if (evsel->core.id && evsel->core.id[0] == id) {
if (evsel->name)
zfree(&evsel->name);
evsel->name = strdup(name);
break;
}
}
}
static int
arm_spe_synth_events(struct arm_spe *spe, struct perf_session *session)
{
struct evlist *evlist = session->evlist;
struct evsel *evsel;
struct perf_event_attr attr;
bool found = false;
u64 id;
int err;
evlist__for_each_entry(evlist, evsel) {
if (evsel->core.attr.type == spe->pmu_type) {
found = true;
break;
}
}
if (!found) {
pr_debug("No selected events with SPE trace data\n");
return 0;
}
memset(&attr, 0, sizeof(struct perf_event_attr));
attr.size = sizeof(struct perf_event_attr);
attr.type = PERF_TYPE_HARDWARE;
attr.sample_type = evsel->core.attr.sample_type &
(PERF_SAMPLE_MASK | PERF_SAMPLE_PHYS_ADDR);
attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
PERF_SAMPLE_PERIOD | PERF_SAMPLE_DATA_SRC |
PERF_SAMPLE_WEIGHT | PERF_SAMPLE_ADDR;
if (spe->timeless_decoding)
attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
else
attr.sample_type |= PERF_SAMPLE_TIME;
spe->sample_type = attr.sample_type;
attr.exclude_user = evsel->core.attr.exclude_user;
attr.exclude_kernel = evsel->core.attr.exclude_kernel;
attr.exclude_hv = evsel->core.attr.exclude_hv;
attr.exclude_host = evsel->core.attr.exclude_host;
attr.exclude_guest = evsel->core.attr.exclude_guest;
attr.sample_id_all = evsel->core.attr.sample_id_all;
attr.read_format = evsel->core.attr.read_format;
/* create new id val to be a fixed offset from evsel id */
id = evsel->core.id[0] + 1000000000;
if (!id)
id = 1;
if (spe->synth_opts.flc) {
spe->sample_flc = true;
/* Level 1 data cache miss */
err = arm_spe_synth_event(session, &attr, id);
if (err)
return err;
spe->l1d_miss_id = id;
arm_spe_set_event_name(evlist, id, "l1d-miss");
id += 1;
/* Level 1 data cache access */
err = arm_spe_synth_event(session, &attr, id);
if (err)
return err;
spe->l1d_access_id = id;
arm_spe_set_event_name(evlist, id, "l1d-access");
id += 1;
}
if (spe->synth_opts.llc) {
spe->sample_llc = true;
/* Last level cache miss */
err = arm_spe_synth_event(session, &attr, id);
if (err)
return err;
spe->llc_miss_id = id;
arm_spe_set_event_name(evlist, id, "llc-miss");
id += 1;
/* Last level cache access */
err = arm_spe_synth_event(session, &attr, id);
if (err)
return err;
spe->llc_access_id = id;
arm_spe_set_event_name(evlist, id, "llc-access");
id += 1;
}
if (spe->synth_opts.tlb) {
spe->sample_tlb = true;
/* TLB miss */
err = arm_spe_synth_event(session, &attr, id);
if (err)
return err;
spe->tlb_miss_id = id;
arm_spe_set_event_name(evlist, id, "tlb-miss");
id += 1;
/* TLB access */
err = arm_spe_synth_event(session, &attr, id);
if (err)
return err;
spe->tlb_access_id = id;
arm_spe_set_event_name(evlist, id, "tlb-access");
id += 1;
}
if (spe->synth_opts.branches) {
spe->sample_branch = true;
/* Branch miss */
err = arm_spe_synth_event(session, &attr, id);
if (err)
return err;
spe->branch_miss_id = id;
arm_spe_set_event_name(evlist, id, "branch-miss");
id += 1;
}
if (spe->synth_opts.remote_access) {
spe->sample_remote_access = true;
/* Remote access */
err = arm_spe_synth_event(session, &attr, id);
if (err)
return err;
spe->remote_access_id = id;
arm_spe_set_event_name(evlist, id, "remote-access");
id += 1;
}
if (spe->synth_opts.mem) {
spe->sample_memory = true;
err = arm_spe_synth_event(session, &attr, id);
if (err)
return err;
spe->memory_id = id;
arm_spe_set_event_name(evlist, id, "memory");
id += 1;
}
if (spe->synth_opts.instructions) {
if (spe->synth_opts.period_type != PERF_ITRACE_PERIOD_INSTRUCTIONS) {
pr_warning("Only instruction-based sampling period is currently supported by Arm SPE.\n");
goto synth_instructions_out;
}
if (spe->synth_opts.period > 1)
pr_warning("Arm SPE has a hardware-based sample period.\n"
"Additional instruction events will be discarded by --itrace\n");
spe->sample_instructions = true;
attr.config = PERF_COUNT_HW_INSTRUCTIONS;
attr.sample_period = spe->synth_opts.period;
spe->instructions_sample_period = attr.sample_period;
err = arm_spe_synth_event(session, &attr, id);
if (err)
return err;
spe->instructions_id = id;
arm_spe_set_event_name(evlist, id, "instructions");
}
synth_instructions_out:
return 0;
}
int arm_spe_process_auxtrace_info(union perf_event *event,
struct perf_session *session)
{
struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
size_t min_sz = sizeof(u64) * ARM_SPE_AUXTRACE_PRIV_MAX;
struct perf_record_time_conv *tc = &session->time_conv;
const char *cpuid = perf_env__cpuid(session->evlist->env);
u64 midr = strtol(cpuid, NULL, 16);
struct arm_spe *spe;
int err;
if (auxtrace_info->header.size < sizeof(struct perf_record_auxtrace_info) +
min_sz)
return -EINVAL;
spe = zalloc(sizeof(struct arm_spe));
if (!spe)
return -ENOMEM;
err = auxtrace_queues__init(&spe->queues);
if (err)
goto err_free;
spe->session = session;
spe->machine = &session->machines.host; /* No kvm support */
spe->auxtrace_type = auxtrace_info->type;
spe->pmu_type = auxtrace_info->priv[ARM_SPE_PMU_TYPE];
spe->midr = midr;
spe->timeless_decoding = arm_spe__is_timeless_decoding(spe);
/*
* The synthesized event PERF_RECORD_TIME_CONV has been handled ahead
* and the parameters for hardware clock are stored in the session
* context. Passes these parameters to the struct perf_tsc_conversion
* in "spe->tc", which is used for later conversion between clock
* counter and timestamp.
*
* For backward compatibility, copies the fields starting from
* "time_cycles" only if they are contained in the event.
*/
spe->tc.time_shift = tc->time_shift;
spe->tc.time_mult = tc->time_mult;
spe->tc.time_zero = tc->time_zero;
if (event_contains(*tc, time_cycles)) {
spe->tc.time_cycles = tc->time_cycles;
spe->tc.time_mask = tc->time_mask;
spe->tc.cap_user_time_zero = tc->cap_user_time_zero;
spe->tc.cap_user_time_short = tc->cap_user_time_short;
}
spe->auxtrace.process_event = arm_spe_process_event;
spe->auxtrace.process_auxtrace_event = arm_spe_process_auxtrace_event;
spe->auxtrace.flush_events = arm_spe_flush;
spe->auxtrace.free_events = arm_spe_free_events;
spe->auxtrace.free = arm_spe_free;
spe->auxtrace.evsel_is_auxtrace = arm_spe_evsel_is_auxtrace;
session->auxtrace = &spe->auxtrace;
arm_spe_print_info(&auxtrace_info->priv[0]);
if (dump_trace)
return 0;
if (session->itrace_synth_opts && session->itrace_synth_opts->set)
spe->synth_opts = *session->itrace_synth_opts;
else
itrace_synth_opts__set_default(&spe->synth_opts, false);
err = arm_spe_synth_events(spe, session);
if (err)
goto err_free_queues;
err = auxtrace_queues__process_index(&spe->queues, session);
if (err)
goto err_free_queues;
if (spe->queues.populated)
spe->data_queued = true;
return 0;
err_free_queues:
auxtrace_queues__free(&spe->queues);
session->auxtrace = NULL;
err_free:
free(spe);
return err;
}