linux-zen-server/tools/testing/memblock/tests/alloc_api.c

885 lines
22 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
#include "alloc_api.h"
static int alloc_test_flags = TEST_F_NONE;
static inline const char * const get_memblock_alloc_name(int flags)
{
if (flags & TEST_F_RAW)
return "memblock_alloc_raw";
return "memblock_alloc";
}
static inline void *run_memblock_alloc(phys_addr_t size, phys_addr_t align)
{
if (alloc_test_flags & TEST_F_RAW)
return memblock_alloc_raw(size, align);
return memblock_alloc(size, align);
}
/*
* A simple test that tries to allocate a small memory region.
* Expect to allocate an aligned region near the end of the available memory.
*/
static int alloc_top_down_simple_check(void)
{
struct memblock_region *rgn = &memblock.reserved.regions[0];
void *allocated_ptr = NULL;
phys_addr_t size = SZ_2;
phys_addr_t expected_start;
PREFIX_PUSH();
setup_memblock();
expected_start = memblock_end_of_DRAM() - SMP_CACHE_BYTES;
allocated_ptr = run_memblock_alloc(size, SMP_CACHE_BYTES);
ASSERT_NE(allocated_ptr, NULL);
assert_mem_content(allocated_ptr, size, alloc_test_flags);
ASSERT_EQ(rgn->size, size);
ASSERT_EQ(rgn->base, expected_start);
ASSERT_EQ(memblock.reserved.cnt, 1);
ASSERT_EQ(memblock.reserved.total_size, size);
test_pass_pop();
return 0;
}
/*
* A test that tries to allocate memory next to a reserved region that starts at
* the misaligned address. Expect to create two separate entries, with the new
* entry aligned to the provided alignment:
*
* +
* | +--------+ +--------|
* | | rgn2 | | rgn1 |
* +------------+--------+---------+--------+
* ^
* |
* Aligned address boundary
*
* The allocation direction is top-down and region arrays are sorted from lower
* to higher addresses, so the new region will be the first entry in
* memory.reserved array. The previously reserved region does not get modified.
* Region counter and total size get updated.
*/
static int alloc_top_down_disjoint_check(void)
{
/* After allocation, this will point to the "old" region */
struct memblock_region *rgn1 = &memblock.reserved.regions[1];
struct memblock_region *rgn2 = &memblock.reserved.regions[0];
struct region r1;
void *allocated_ptr = NULL;
phys_addr_t r2_size = SZ_16;
/* Use custom alignment */
phys_addr_t alignment = SMP_CACHE_BYTES * 2;
phys_addr_t total_size;
phys_addr_t expected_start;
PREFIX_PUSH();
setup_memblock();
r1.base = memblock_end_of_DRAM() - SZ_2;
r1.size = SZ_2;
total_size = r1.size + r2_size;
expected_start = memblock_end_of_DRAM() - alignment;
memblock_reserve(r1.base, r1.size);
allocated_ptr = run_memblock_alloc(r2_size, alignment);
ASSERT_NE(allocated_ptr, NULL);
assert_mem_content(allocated_ptr, r2_size, alloc_test_flags);
ASSERT_EQ(rgn1->size, r1.size);
ASSERT_EQ(rgn1->base, r1.base);
ASSERT_EQ(rgn2->size, r2_size);
ASSERT_EQ(rgn2->base, expected_start);
ASSERT_EQ(memblock.reserved.cnt, 2);
ASSERT_EQ(memblock.reserved.total_size, total_size);
test_pass_pop();
return 0;
}
/*
* A test that tries to allocate memory when there is enough space at the end
* of the previously reserved block (i.e. first fit):
*
* | +--------+--------------|
* | | r1 | r2 |
* +--------------+--------+--------------+
*
* Expect a merge of both regions. Only the region size gets updated.
*/
static int alloc_top_down_before_check(void)
{
struct memblock_region *rgn = &memblock.reserved.regions[0];
void *allocated_ptr = NULL;
/*
* The first region ends at the aligned address to test region merging
*/
phys_addr_t r1_size = SMP_CACHE_BYTES;
phys_addr_t r2_size = SZ_512;
phys_addr_t total_size = r1_size + r2_size;
PREFIX_PUSH();
setup_memblock();
memblock_reserve(memblock_end_of_DRAM() - total_size, r1_size);
allocated_ptr = run_memblock_alloc(r2_size, SMP_CACHE_BYTES);
ASSERT_NE(allocated_ptr, NULL);
assert_mem_content(allocated_ptr, r2_size, alloc_test_flags);
ASSERT_EQ(rgn->size, total_size);
ASSERT_EQ(rgn->base, memblock_end_of_DRAM() - total_size);
ASSERT_EQ(memblock.reserved.cnt, 1);
ASSERT_EQ(memblock.reserved.total_size, total_size);
test_pass_pop();
return 0;
}
/*
* A test that tries to allocate memory when there is not enough space at the
* end of the previously reserved block (i.e. second fit):
*
* | +-----------+------+ |
* | | r2 | r1 | |
* +------------+-----------+------+-----+
*
* Expect a merge of both regions. Both the base address and size of the region
* get updated.
*/
static int alloc_top_down_after_check(void)
{
struct memblock_region *rgn = &memblock.reserved.regions[0];
struct region r1;
void *allocated_ptr = NULL;
phys_addr_t r2_size = SZ_512;
phys_addr_t total_size;
PREFIX_PUSH();
setup_memblock();
/*
* The first region starts at the aligned address to test region merging
*/
r1.base = memblock_end_of_DRAM() - SMP_CACHE_BYTES;
r1.size = SZ_8;
total_size = r1.size + r2_size;
memblock_reserve(r1.base, r1.size);
allocated_ptr = run_memblock_alloc(r2_size, SMP_CACHE_BYTES);
ASSERT_NE(allocated_ptr, NULL);
assert_mem_content(allocated_ptr, r2_size, alloc_test_flags);
ASSERT_EQ(rgn->size, total_size);
ASSERT_EQ(rgn->base, r1.base - r2_size);
ASSERT_EQ(memblock.reserved.cnt, 1);
ASSERT_EQ(memblock.reserved.total_size, total_size);
test_pass_pop();
return 0;
}
/*
* A test that tries to allocate memory when there are two reserved regions with
* a gap too small to fit the new region:
*
* | +--------+----------+ +------|
* | | r3 | r2 | | r1 |
* +-------+--------+----------+---+------+
*
* Expect to allocate a region before the one that starts at the lower address,
* and merge them into one. The region counter and total size fields get
* updated.
*/
static int alloc_top_down_second_fit_check(void)
{
struct memblock_region *rgn = &memblock.reserved.regions[0];
struct region r1, r2;
void *allocated_ptr = NULL;
phys_addr_t r3_size = SZ_1K;
phys_addr_t total_size;
PREFIX_PUSH();
setup_memblock();
r1.base = memblock_end_of_DRAM() - SZ_512;
r1.size = SZ_512;
r2.base = r1.base - SZ_512;
r2.size = SZ_256;
total_size = r1.size + r2.size + r3_size;
memblock_reserve(r1.base, r1.size);
memblock_reserve(r2.base, r2.size);
allocated_ptr = run_memblock_alloc(r3_size, SMP_CACHE_BYTES);
ASSERT_NE(allocated_ptr, NULL);
assert_mem_content(allocated_ptr, r3_size, alloc_test_flags);
ASSERT_EQ(rgn->size, r2.size + r3_size);
ASSERT_EQ(rgn->base, r2.base - r3_size);
ASSERT_EQ(memblock.reserved.cnt, 2);
ASSERT_EQ(memblock.reserved.total_size, total_size);
test_pass_pop();
return 0;
}
/*
* A test that tries to allocate memory when there are two reserved regions with
* a gap big enough to accommodate the new region:
*
* | +--------+--------+--------+ |
* | | r2 | r3 | r1 | |
* +-----+--------+--------+--------+-----+
*
* Expect to merge all of them, creating one big entry in memblock.reserved
* array. The region counter and total size fields get updated.
*/
static int alloc_in_between_generic_check(void)
{
struct memblock_region *rgn = &memblock.reserved.regions[0];
struct region r1, r2;
void *allocated_ptr = NULL;
phys_addr_t gap_size = SMP_CACHE_BYTES;
phys_addr_t r3_size = SZ_64;
/*
* Calculate regions size so there's just enough space for the new entry
*/
phys_addr_t rgn_size = (MEM_SIZE - (2 * gap_size + r3_size)) / 2;
phys_addr_t total_size;
PREFIX_PUSH();
setup_memblock();
r1.size = rgn_size;
r1.base = memblock_end_of_DRAM() - (gap_size + rgn_size);
r2.size = rgn_size;
r2.base = memblock_start_of_DRAM() + gap_size;
total_size = r1.size + r2.size + r3_size;
memblock_reserve(r1.base, r1.size);
memblock_reserve(r2.base, r2.size);
allocated_ptr = run_memblock_alloc(r3_size, SMP_CACHE_BYTES);
ASSERT_NE(allocated_ptr, NULL);
assert_mem_content(allocated_ptr, r3_size, alloc_test_flags);
ASSERT_EQ(rgn->size, total_size);
ASSERT_EQ(rgn->base, r1.base - r2.size - r3_size);
ASSERT_EQ(memblock.reserved.cnt, 1);
ASSERT_EQ(memblock.reserved.total_size, total_size);
test_pass_pop();
return 0;
}
/*
* A test that tries to allocate memory when the memory is filled with reserved
* regions with memory gaps too small to fit the new region:
*
* +-------+
* | new |
* +--+----+
* | +-----+ +-----+ +-----+ |
* | | res | | res | | res | |
* +----+-----+----+-----+----+-----+----+
*
* Expect no allocation to happen.
*/
static int alloc_small_gaps_generic_check(void)
{
void *allocated_ptr = NULL;
phys_addr_t region_size = SZ_1K;
phys_addr_t gap_size = SZ_256;
phys_addr_t region_end;
PREFIX_PUSH();
setup_memblock();
region_end = memblock_start_of_DRAM();
while (region_end < memblock_end_of_DRAM()) {
memblock_reserve(region_end + gap_size, region_size);
region_end += gap_size + region_size;
}
allocated_ptr = run_memblock_alloc(region_size, SMP_CACHE_BYTES);
ASSERT_EQ(allocated_ptr, NULL);
test_pass_pop();
return 0;
}
/*
* A test that tries to allocate memory when all memory is reserved.
* Expect no allocation to happen.
*/
static int alloc_all_reserved_generic_check(void)
{
void *allocated_ptr = NULL;
PREFIX_PUSH();
setup_memblock();
/* Simulate full memory */
memblock_reserve(memblock_start_of_DRAM(), MEM_SIZE);
allocated_ptr = run_memblock_alloc(SZ_256, SMP_CACHE_BYTES);
ASSERT_EQ(allocated_ptr, NULL);
test_pass_pop();
return 0;
}
/*
* A test that tries to allocate memory when the memory is almost full,
* with not enough space left for the new region:
*
* +-------+
* | new |
* +-------+
* |-----------------------------+ |
* | reserved | |
* +-----------------------------+---+
*
* Expect no allocation to happen.
*/
static int alloc_no_space_generic_check(void)
{
void *allocated_ptr = NULL;
phys_addr_t available_size = SZ_256;
phys_addr_t reserved_size = MEM_SIZE - available_size;
PREFIX_PUSH();
setup_memblock();
/* Simulate almost-full memory */
memblock_reserve(memblock_start_of_DRAM(), reserved_size);
allocated_ptr = run_memblock_alloc(SZ_1K, SMP_CACHE_BYTES);
ASSERT_EQ(allocated_ptr, NULL);
test_pass_pop();
return 0;
}
/*
* A test that tries to allocate memory when the memory is almost full,
* but there is just enough space left:
*
* |---------------------------+---------|
* | reserved | new |
* +---------------------------+---------+
*
* Expect to allocate memory and merge all the regions. The total size field
* gets updated.
*/
static int alloc_limited_space_generic_check(void)
{
struct memblock_region *rgn = &memblock.reserved.regions[0];
void *allocated_ptr = NULL;
phys_addr_t available_size = SZ_256;
phys_addr_t reserved_size = MEM_SIZE - available_size;
PREFIX_PUSH();
setup_memblock();
/* Simulate almost-full memory */
memblock_reserve(memblock_start_of_DRAM(), reserved_size);
allocated_ptr = run_memblock_alloc(available_size, SMP_CACHE_BYTES);
ASSERT_NE(allocated_ptr, NULL);
assert_mem_content(allocated_ptr, available_size, alloc_test_flags);
ASSERT_EQ(rgn->size, MEM_SIZE);
ASSERT_EQ(rgn->base, memblock_start_of_DRAM());
ASSERT_EQ(memblock.reserved.cnt, 1);
ASSERT_EQ(memblock.reserved.total_size, MEM_SIZE);
test_pass_pop();
return 0;
}
/*
* A test that tries to allocate memory when there is no available memory
* registered (i.e. memblock.memory has only a dummy entry).
* Expect no allocation to happen.
*/
static int alloc_no_memory_generic_check(void)
{
struct memblock_region *rgn = &memblock.reserved.regions[0];
void *allocated_ptr = NULL;
PREFIX_PUSH();
reset_memblock_regions();
allocated_ptr = run_memblock_alloc(SZ_1K, SMP_CACHE_BYTES);
ASSERT_EQ(allocated_ptr, NULL);
ASSERT_EQ(rgn->size, 0);
ASSERT_EQ(rgn->base, 0);
ASSERT_EQ(memblock.reserved.total_size, 0);
test_pass_pop();
return 0;
}
/*
* A test that tries to allocate a region that is larger than the total size of
* available memory (memblock.memory):
*
* +-----------------------------------+
* | new |
* +-----------------------------------+
* | |
* | |
* +---------------------------------+
*
* Expect no allocation to happen.
*/
static int alloc_too_large_generic_check(void)
{
struct memblock_region *rgn = &memblock.reserved.regions[0];
void *allocated_ptr = NULL;
PREFIX_PUSH();
setup_memblock();
allocated_ptr = run_memblock_alloc(MEM_SIZE + SZ_2, SMP_CACHE_BYTES);
ASSERT_EQ(allocated_ptr, NULL);
ASSERT_EQ(rgn->size, 0);
ASSERT_EQ(rgn->base, 0);
ASSERT_EQ(memblock.reserved.total_size, 0);
test_pass_pop();
return 0;
}
/*
* A simple test that tries to allocate a small memory region.
* Expect to allocate an aligned region at the beginning of the available
* memory.
*/
static int alloc_bottom_up_simple_check(void)
{
struct memblock_region *rgn = &memblock.reserved.regions[0];
void *allocated_ptr = NULL;
PREFIX_PUSH();
setup_memblock();
allocated_ptr = run_memblock_alloc(SZ_2, SMP_CACHE_BYTES);
ASSERT_NE(allocated_ptr, NULL);
assert_mem_content(allocated_ptr, SZ_2, alloc_test_flags);
ASSERT_EQ(rgn->size, SZ_2);
ASSERT_EQ(rgn->base, memblock_start_of_DRAM());
ASSERT_EQ(memblock.reserved.cnt, 1);
ASSERT_EQ(memblock.reserved.total_size, SZ_2);
test_pass_pop();
return 0;
}
/*
* A test that tries to allocate memory next to a reserved region that starts at
* the misaligned address. Expect to create two separate entries, with the new
* entry aligned to the provided alignment:
*
* +
* | +----------+ +----------+ |
* | | rgn1 | | rgn2 | |
* +----+----------+---+----------+-----+
* ^
* |
* Aligned address boundary
*
* The allocation direction is bottom-up, so the new region will be the second
* entry in memory.reserved array. The previously reserved region does not get
* modified. Region counter and total size get updated.
*/
static int alloc_bottom_up_disjoint_check(void)
{
struct memblock_region *rgn1 = &memblock.reserved.regions[0];
struct memblock_region *rgn2 = &memblock.reserved.regions[1];
struct region r1;
void *allocated_ptr = NULL;
phys_addr_t r2_size = SZ_16;
/* Use custom alignment */
phys_addr_t alignment = SMP_CACHE_BYTES * 2;
phys_addr_t total_size;
phys_addr_t expected_start;
PREFIX_PUSH();
setup_memblock();
r1.base = memblock_start_of_DRAM() + SZ_2;
r1.size = SZ_2;
total_size = r1.size + r2_size;
expected_start = memblock_start_of_DRAM() + alignment;
memblock_reserve(r1.base, r1.size);
allocated_ptr = run_memblock_alloc(r2_size, alignment);
ASSERT_NE(allocated_ptr, NULL);
assert_mem_content(allocated_ptr, r2_size, alloc_test_flags);
ASSERT_EQ(rgn1->size, r1.size);
ASSERT_EQ(rgn1->base, r1.base);
ASSERT_EQ(rgn2->size, r2_size);
ASSERT_EQ(rgn2->base, expected_start);
ASSERT_EQ(memblock.reserved.cnt, 2);
ASSERT_EQ(memblock.reserved.total_size, total_size);
test_pass_pop();
return 0;
}
/*
* A test that tries to allocate memory when there is enough space at
* the beginning of the previously reserved block (i.e. first fit):
*
* |------------------+--------+ |
* | r1 | r2 | |
* +------------------+--------+---------+
*
* Expect a merge of both regions. Only the region size gets updated.
*/
static int alloc_bottom_up_before_check(void)
{
struct memblock_region *rgn = &memblock.reserved.regions[0];
void *allocated_ptr = NULL;
phys_addr_t r1_size = SZ_512;
phys_addr_t r2_size = SZ_128;
phys_addr_t total_size = r1_size + r2_size;
PREFIX_PUSH();
setup_memblock();
memblock_reserve(memblock_start_of_DRAM() + r1_size, r2_size);
allocated_ptr = run_memblock_alloc(r1_size, SMP_CACHE_BYTES);
ASSERT_NE(allocated_ptr, NULL);
assert_mem_content(allocated_ptr, r1_size, alloc_test_flags);
ASSERT_EQ(rgn->size, total_size);
ASSERT_EQ(rgn->base, memblock_start_of_DRAM());
ASSERT_EQ(memblock.reserved.cnt, 1);
ASSERT_EQ(memblock.reserved.total_size, total_size);
test_pass_pop();
return 0;
}
/*
* A test that tries to allocate memory when there is not enough space at
* the beginning of the previously reserved block (i.e. second fit):
*
* | +--------+--------------+ |
* | | r1 | r2 | |
* +----+--------+--------------+---------+
*
* Expect a merge of both regions. Only the region size gets updated.
*/
static int alloc_bottom_up_after_check(void)
{
struct memblock_region *rgn = &memblock.reserved.regions[0];
struct region r1;
void *allocated_ptr = NULL;
phys_addr_t r2_size = SZ_512;
phys_addr_t total_size;
PREFIX_PUSH();
setup_memblock();
/*
* The first region starts at the aligned address to test region merging
*/
r1.base = memblock_start_of_DRAM() + SMP_CACHE_BYTES;
r1.size = SZ_64;
total_size = r1.size + r2_size;
memblock_reserve(r1.base, r1.size);
allocated_ptr = run_memblock_alloc(r2_size, SMP_CACHE_BYTES);
ASSERT_NE(allocated_ptr, NULL);
assert_mem_content(allocated_ptr, r2_size, alloc_test_flags);
ASSERT_EQ(rgn->size, total_size);
ASSERT_EQ(rgn->base, r1.base);
ASSERT_EQ(memblock.reserved.cnt, 1);
ASSERT_EQ(memblock.reserved.total_size, total_size);
test_pass_pop();
return 0;
}
/*
* A test that tries to allocate memory when there are two reserved regions, the
* first one starting at the beginning of the available memory, with a gap too
* small to fit the new region:
*
* |------------+ +--------+--------+ |
* | r1 | | r2 | r3 | |
* +------------+-----+--------+--------+--+
*
* Expect to allocate after the second region, which starts at the higher
* address, and merge them into one. The region counter and total size fields
* get updated.
*/
static int alloc_bottom_up_second_fit_check(void)
{
struct memblock_region *rgn = &memblock.reserved.regions[1];
struct region r1, r2;
void *allocated_ptr = NULL;
phys_addr_t r3_size = SZ_1K;
phys_addr_t total_size;
PREFIX_PUSH();
setup_memblock();
r1.base = memblock_start_of_DRAM();
r1.size = SZ_512;
r2.base = r1.base + r1.size + SZ_512;
r2.size = SZ_256;
total_size = r1.size + r2.size + r3_size;
memblock_reserve(r1.base, r1.size);
memblock_reserve(r2.base, r2.size);
allocated_ptr = run_memblock_alloc(r3_size, SMP_CACHE_BYTES);
ASSERT_NE(allocated_ptr, NULL);
assert_mem_content(allocated_ptr, r3_size, alloc_test_flags);
ASSERT_EQ(rgn->size, r2.size + r3_size);
ASSERT_EQ(rgn->base, r2.base);
ASSERT_EQ(memblock.reserved.cnt, 2);
ASSERT_EQ(memblock.reserved.total_size, total_size);
test_pass_pop();
return 0;
}
/* Test case wrappers */
static int alloc_simple_check(void)
{
test_print("\tRunning %s...\n", __func__);
memblock_set_bottom_up(false);
alloc_top_down_simple_check();
memblock_set_bottom_up(true);
alloc_bottom_up_simple_check();
return 0;
}
static int alloc_disjoint_check(void)
{
test_print("\tRunning %s...\n", __func__);
memblock_set_bottom_up(false);
alloc_top_down_disjoint_check();
memblock_set_bottom_up(true);
alloc_bottom_up_disjoint_check();
return 0;
}
static int alloc_before_check(void)
{
test_print("\tRunning %s...\n", __func__);
memblock_set_bottom_up(false);
alloc_top_down_before_check();
memblock_set_bottom_up(true);
alloc_bottom_up_before_check();
return 0;
}
static int alloc_after_check(void)
{
test_print("\tRunning %s...\n", __func__);
memblock_set_bottom_up(false);
alloc_top_down_after_check();
memblock_set_bottom_up(true);
alloc_bottom_up_after_check();
return 0;
}
static int alloc_in_between_check(void)
{
test_print("\tRunning %s...\n", __func__);
run_top_down(alloc_in_between_generic_check);
run_bottom_up(alloc_in_between_generic_check);
return 0;
}
static int alloc_second_fit_check(void)
{
test_print("\tRunning %s...\n", __func__);
memblock_set_bottom_up(false);
alloc_top_down_second_fit_check();
memblock_set_bottom_up(true);
alloc_bottom_up_second_fit_check();
return 0;
}
static int alloc_small_gaps_check(void)
{
test_print("\tRunning %s...\n", __func__);
run_top_down(alloc_small_gaps_generic_check);
run_bottom_up(alloc_small_gaps_generic_check);
return 0;
}
static int alloc_all_reserved_check(void)
{
test_print("\tRunning %s...\n", __func__);
run_top_down(alloc_all_reserved_generic_check);
run_bottom_up(alloc_all_reserved_generic_check);
return 0;
}
static int alloc_no_space_check(void)
{
test_print("\tRunning %s...\n", __func__);
run_top_down(alloc_no_space_generic_check);
run_bottom_up(alloc_no_space_generic_check);
return 0;
}
static int alloc_limited_space_check(void)
{
test_print("\tRunning %s...\n", __func__);
run_top_down(alloc_limited_space_generic_check);
run_bottom_up(alloc_limited_space_generic_check);
return 0;
}
static int alloc_no_memory_check(void)
{
test_print("\tRunning %s...\n", __func__);
run_top_down(alloc_no_memory_generic_check);
run_bottom_up(alloc_no_memory_generic_check);
return 0;
}
static int alloc_too_large_check(void)
{
test_print("\tRunning %s...\n", __func__);
run_top_down(alloc_too_large_generic_check);
run_bottom_up(alloc_too_large_generic_check);
return 0;
}
static int memblock_alloc_checks_internal(int flags)
{
const char *func = get_memblock_alloc_name(flags);
alloc_test_flags = flags;
prefix_reset();
prefix_push(func);
test_print("Running %s tests...\n", func);
reset_memblock_attributes();
dummy_physical_memory_init();
alloc_simple_check();
alloc_disjoint_check();
alloc_before_check();
alloc_after_check();
alloc_second_fit_check();
alloc_small_gaps_check();
alloc_in_between_check();
alloc_all_reserved_check();
alloc_no_space_check();
alloc_limited_space_check();
alloc_no_memory_check();
alloc_too_large_check();
dummy_physical_memory_cleanup();
prefix_pop();
return 0;
}
int memblock_alloc_checks(void)
{
memblock_alloc_checks_internal(TEST_F_NONE);
memblock_alloc_checks_internal(TEST_F_RAW);
return 0;
}