linux-zen-server/tools/testing/selftests/kvm/x86_64/hyperv_tlb_flush.c

681 lines
21 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Hyper-V HvFlushVirtualAddress{List,Space}{,Ex} tests
*
* Copyright (C) 2022, Red Hat, Inc.
*
*/
#define _GNU_SOURCE /* for program_invocation_short_name */
#include <asm/barrier.h>
#include <pthread.h>
#include <inttypes.h>
#include "kvm_util.h"
#include "processor.h"
#include "hyperv.h"
#include "test_util.h"
#include "vmx.h"
#define WORKER_VCPU_ID_1 2
#define WORKER_VCPU_ID_2 65
#define NTRY 100
#define NTEST_PAGES 2
struct hv_vpset {
u64 format;
u64 valid_bank_mask;
u64 bank_contents[];
};
enum HV_GENERIC_SET_FORMAT {
HV_GENERIC_SET_SPARSE_4K,
HV_GENERIC_SET_ALL,
};
#define HV_FLUSH_ALL_PROCESSORS BIT(0)
#define HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES BIT(1)
#define HV_FLUSH_NON_GLOBAL_MAPPINGS_ONLY BIT(2)
#define HV_FLUSH_USE_EXTENDED_RANGE_FORMAT BIT(3)
/* HvFlushVirtualAddressSpace, HvFlushVirtualAddressList hypercalls */
struct hv_tlb_flush {
u64 address_space;
u64 flags;
u64 processor_mask;
u64 gva_list[];
} __packed;
/* HvFlushVirtualAddressSpaceEx, HvFlushVirtualAddressListEx hypercalls */
struct hv_tlb_flush_ex {
u64 address_space;
u64 flags;
struct hv_vpset hv_vp_set;
u64 gva_list[];
} __packed;
/*
* Pass the following info to 'workers' and 'sender'
* - Hypercall page's GVA
* - Hypercall page's GPA
* - Test pages GVA
* - GVAs of the test pages' PTEs
*/
struct test_data {
vm_vaddr_t hcall_gva;
vm_paddr_t hcall_gpa;
vm_vaddr_t test_pages;
vm_vaddr_t test_pages_pte[NTEST_PAGES];
};
/* 'Worker' vCPU code checking the contents of the test page */
static void worker_guest_code(vm_vaddr_t test_data)
{
struct test_data *data = (struct test_data *)test_data;
u32 vcpu_id = rdmsr(HV_X64_MSR_VP_INDEX);
void *exp_page = (void *)data->test_pages + PAGE_SIZE * NTEST_PAGES;
u64 *this_cpu = (u64 *)(exp_page + vcpu_id * sizeof(u64));
u64 expected, val;
x2apic_enable();
wrmsr(HV_X64_MSR_GUEST_OS_ID, HYPERV_LINUX_OS_ID);
for (;;) {
cpu_relax();
expected = READ_ONCE(*this_cpu);
/*
* Make sure the value in the test page is read after reading
* the expectation for the first time. Pairs with wmb() in
* prepare_to_test().
*/
rmb();
val = READ_ONCE(*(u64 *)data->test_pages);
/*
* Make sure the value in the test page is read after before
* reading the expectation for the second time. Pairs with wmb()
* post_test().
*/
rmb();
/*
* '0' indicates the sender is between iterations, wait until
* the sender is ready for this vCPU to start checking again.
*/
if (!expected)
continue;
/*
* Re-read the per-vCPU byte to ensure the sender didn't move
* onto a new iteration.
*/
if (expected != READ_ONCE(*this_cpu))
continue;
GUEST_ASSERT(val == expected);
}
}
/*
* Write per-CPU info indicating what each 'worker' CPU is supposed to see in
* test page. '0' means don't check.
*/
static void set_expected_val(void *addr, u64 val, int vcpu_id)
{
void *exp_page = addr + PAGE_SIZE * NTEST_PAGES;
*(u64 *)(exp_page + vcpu_id * sizeof(u64)) = val;
}
/*
* Update PTEs swapping two test pages.
* TODO: use swap()/xchg() when these are provided.
*/
static void swap_two_test_pages(vm_paddr_t pte_gva1, vm_paddr_t pte_gva2)
{
uint64_t tmp = *(uint64_t *)pte_gva1;
*(uint64_t *)pte_gva1 = *(uint64_t *)pte_gva2;
*(uint64_t *)pte_gva2 = tmp;
}
/*
* TODO: replace the silly NOP loop with a proper udelay() implementation.
*/
static inline void do_delay(void)
{
int i;
for (i = 0; i < 1000000; i++)
asm volatile("nop");
}
/*
* Prepare to test: 'disable' workers by setting the expectation to '0',
* clear hypercall input page and then swap two test pages.
*/
static inline void prepare_to_test(struct test_data *data)
{
/* Clear hypercall input page */
memset((void *)data->hcall_gva, 0, PAGE_SIZE);
/* 'Disable' workers */
set_expected_val((void *)data->test_pages, 0x0, WORKER_VCPU_ID_1);
set_expected_val((void *)data->test_pages, 0x0, WORKER_VCPU_ID_2);
/* Make sure workers are 'disabled' before we swap PTEs. */
wmb();
/* Make sure workers have enough time to notice */
do_delay();
/* Swap test page mappings */
swap_two_test_pages(data->test_pages_pte[0], data->test_pages_pte[1]);
}
/*
* Finalize the test: check hypercall resule set the expected val for
* 'worker' CPUs and give them some time to test.
*/
static inline void post_test(struct test_data *data, u64 exp1, u64 exp2)
{
/* Make sure we change the expectation after swapping PTEs */
wmb();
/* Set the expectation for workers, '0' means don't test */
set_expected_val((void *)data->test_pages, exp1, WORKER_VCPU_ID_1);
set_expected_val((void *)data->test_pages, exp2, WORKER_VCPU_ID_2);
/* Make sure workers have enough time to test */
do_delay();
}
#define TESTVAL1 0x0101010101010101
#define TESTVAL2 0x0202020202020202
/* Main vCPU doing the test */
static void sender_guest_code(vm_vaddr_t test_data)
{
struct test_data *data = (struct test_data *)test_data;
struct hv_tlb_flush *flush = (struct hv_tlb_flush *)data->hcall_gva;
struct hv_tlb_flush_ex *flush_ex = (struct hv_tlb_flush_ex *)data->hcall_gva;
vm_paddr_t hcall_gpa = data->hcall_gpa;
int i, stage = 1;
wrmsr(HV_X64_MSR_GUEST_OS_ID, HYPERV_LINUX_OS_ID);
wrmsr(HV_X64_MSR_HYPERCALL, data->hcall_gpa);
/* "Slow" hypercalls */
GUEST_SYNC(stage++);
/* HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE for WORKER_VCPU_ID_1 */
for (i = 0; i < NTRY; i++) {
prepare_to_test(data);
flush->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES;
flush->processor_mask = BIT(WORKER_VCPU_ID_1);
hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE, hcall_gpa,
hcall_gpa + PAGE_SIZE);
post_test(data, i % 2 ? TESTVAL1 : TESTVAL2, 0x0);
}
GUEST_SYNC(stage++);
/* HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST for WORKER_VCPU_ID_1 */
for (i = 0; i < NTRY; i++) {
prepare_to_test(data);
flush->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES;
flush->processor_mask = BIT(WORKER_VCPU_ID_1);
flush->gva_list[0] = (u64)data->test_pages;
hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST |
(1UL << HV_HYPERCALL_REP_COMP_OFFSET),
hcall_gpa, hcall_gpa + PAGE_SIZE);
post_test(data, i % 2 ? TESTVAL1 : TESTVAL2, 0x0);
}
GUEST_SYNC(stage++);
/* HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE for HV_FLUSH_ALL_PROCESSORS */
for (i = 0; i < NTRY; i++) {
prepare_to_test(data);
flush->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES |
HV_FLUSH_ALL_PROCESSORS;
flush->processor_mask = 0;
hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE, hcall_gpa,
hcall_gpa + PAGE_SIZE);
post_test(data, i % 2 ? TESTVAL1 : TESTVAL2, i % 2 ? TESTVAL1 : TESTVAL2);
}
GUEST_SYNC(stage++);
/* HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST for HV_FLUSH_ALL_PROCESSORS */
for (i = 0; i < NTRY; i++) {
prepare_to_test(data);
flush->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES |
HV_FLUSH_ALL_PROCESSORS;
flush->gva_list[0] = (u64)data->test_pages;
hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST |
(1UL << HV_HYPERCALL_REP_COMP_OFFSET),
hcall_gpa, hcall_gpa + PAGE_SIZE);
post_test(data, i % 2 ? TESTVAL1 : TESTVAL2,
i % 2 ? TESTVAL1 : TESTVAL2);
}
GUEST_SYNC(stage++);
/* HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX for WORKER_VCPU_ID_2 */
for (i = 0; i < NTRY; i++) {
prepare_to_test(data);
flush_ex->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES;
flush_ex->hv_vp_set.format = HV_GENERIC_SET_SPARSE_4K;
flush_ex->hv_vp_set.valid_bank_mask = BIT_ULL(WORKER_VCPU_ID_2 / 64);
flush_ex->hv_vp_set.bank_contents[0] = BIT_ULL(WORKER_VCPU_ID_2 % 64);
hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX |
(1 << HV_HYPERCALL_VARHEAD_OFFSET),
hcall_gpa, hcall_gpa + PAGE_SIZE);
post_test(data, 0x0, i % 2 ? TESTVAL1 : TESTVAL2);
}
GUEST_SYNC(stage++);
/* HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX for WORKER_VCPU_ID_2 */
for (i = 0; i < NTRY; i++) {
prepare_to_test(data);
flush_ex->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES;
flush_ex->hv_vp_set.format = HV_GENERIC_SET_SPARSE_4K;
flush_ex->hv_vp_set.valid_bank_mask = BIT_ULL(WORKER_VCPU_ID_2 / 64);
flush_ex->hv_vp_set.bank_contents[0] = BIT_ULL(WORKER_VCPU_ID_2 % 64);
/* bank_contents and gva_list occupy the same space, thus [1] */
flush_ex->gva_list[1] = (u64)data->test_pages;
hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX |
(1 << HV_HYPERCALL_VARHEAD_OFFSET) |
(1UL << HV_HYPERCALL_REP_COMP_OFFSET),
hcall_gpa, hcall_gpa + PAGE_SIZE);
post_test(data, 0x0, i % 2 ? TESTVAL1 : TESTVAL2);
}
GUEST_SYNC(stage++);
/* HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX for both vCPUs */
for (i = 0; i < NTRY; i++) {
prepare_to_test(data);
flush_ex->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES;
flush_ex->hv_vp_set.format = HV_GENERIC_SET_SPARSE_4K;
flush_ex->hv_vp_set.valid_bank_mask = BIT_ULL(WORKER_VCPU_ID_2 / 64) |
BIT_ULL(WORKER_VCPU_ID_1 / 64);
flush_ex->hv_vp_set.bank_contents[0] = BIT_ULL(WORKER_VCPU_ID_1 % 64);
flush_ex->hv_vp_set.bank_contents[1] = BIT_ULL(WORKER_VCPU_ID_2 % 64);
hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX |
(2 << HV_HYPERCALL_VARHEAD_OFFSET),
hcall_gpa, hcall_gpa + PAGE_SIZE);
post_test(data, i % 2 ? TESTVAL1 : TESTVAL2,
i % 2 ? TESTVAL1 : TESTVAL2);
}
GUEST_SYNC(stage++);
/* HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX for both vCPUs */
for (i = 0; i < NTRY; i++) {
prepare_to_test(data);
flush_ex->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES;
flush_ex->hv_vp_set.format = HV_GENERIC_SET_SPARSE_4K;
flush_ex->hv_vp_set.valid_bank_mask = BIT_ULL(WORKER_VCPU_ID_1 / 64) |
BIT_ULL(WORKER_VCPU_ID_2 / 64);
flush_ex->hv_vp_set.bank_contents[0] = BIT_ULL(WORKER_VCPU_ID_1 % 64);
flush_ex->hv_vp_set.bank_contents[1] = BIT_ULL(WORKER_VCPU_ID_2 % 64);
/* bank_contents and gva_list occupy the same space, thus [2] */
flush_ex->gva_list[2] = (u64)data->test_pages;
hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX |
(2 << HV_HYPERCALL_VARHEAD_OFFSET) |
(1UL << HV_HYPERCALL_REP_COMP_OFFSET),
hcall_gpa, hcall_gpa + PAGE_SIZE);
post_test(data, i % 2 ? TESTVAL1 : TESTVAL2,
i % 2 ? TESTVAL1 : TESTVAL2);
}
GUEST_SYNC(stage++);
/* HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX for HV_GENERIC_SET_ALL */
for (i = 0; i < NTRY; i++) {
prepare_to_test(data);
flush_ex->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES;
flush_ex->hv_vp_set.format = HV_GENERIC_SET_ALL;
hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX,
hcall_gpa, hcall_gpa + PAGE_SIZE);
post_test(data, i % 2 ? TESTVAL1 : TESTVAL2,
i % 2 ? TESTVAL1 : TESTVAL2);
}
GUEST_SYNC(stage++);
/* HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX for HV_GENERIC_SET_ALL */
for (i = 0; i < NTRY; i++) {
prepare_to_test(data);
flush_ex->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES;
flush_ex->hv_vp_set.format = HV_GENERIC_SET_ALL;
flush_ex->gva_list[0] = (u64)data->test_pages;
hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX |
(1UL << HV_HYPERCALL_REP_COMP_OFFSET),
hcall_gpa, hcall_gpa + PAGE_SIZE);
post_test(data, i % 2 ? TESTVAL1 : TESTVAL2,
i % 2 ? TESTVAL1 : TESTVAL2);
}
/* "Fast" hypercalls */
GUEST_SYNC(stage++);
/* HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE for WORKER_VCPU_ID_1 */
for (i = 0; i < NTRY; i++) {
prepare_to_test(data);
flush->processor_mask = BIT(WORKER_VCPU_ID_1);
hyperv_write_xmm_input(&flush->processor_mask, 1);
hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE |
HV_HYPERCALL_FAST_BIT, 0x0,
HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES);
post_test(data, i % 2 ? TESTVAL1 : TESTVAL2, 0x0);
}
GUEST_SYNC(stage++);
/* HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST for WORKER_VCPU_ID_1 */
for (i = 0; i < NTRY; i++) {
prepare_to_test(data);
flush->processor_mask = BIT(WORKER_VCPU_ID_1);
flush->gva_list[0] = (u64)data->test_pages;
hyperv_write_xmm_input(&flush->processor_mask, 1);
hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST |
HV_HYPERCALL_FAST_BIT |
(1UL << HV_HYPERCALL_REP_COMP_OFFSET),
0x0, HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES);
post_test(data, i % 2 ? TESTVAL1 : TESTVAL2, 0x0);
}
GUEST_SYNC(stage++);
/* HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE for HV_FLUSH_ALL_PROCESSORS */
for (i = 0; i < NTRY; i++) {
prepare_to_test(data);
hyperv_write_xmm_input(&flush->processor_mask, 1);
hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE |
HV_HYPERCALL_FAST_BIT, 0x0,
HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES |
HV_FLUSH_ALL_PROCESSORS);
post_test(data, i % 2 ? TESTVAL1 : TESTVAL2,
i % 2 ? TESTVAL1 : TESTVAL2);
}
GUEST_SYNC(stage++);
/* HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST for HV_FLUSH_ALL_PROCESSORS */
for (i = 0; i < NTRY; i++) {
prepare_to_test(data);
flush->gva_list[0] = (u64)data->test_pages;
hyperv_write_xmm_input(&flush->processor_mask, 1);
hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST |
HV_HYPERCALL_FAST_BIT |
(1UL << HV_HYPERCALL_REP_COMP_OFFSET), 0x0,
HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES |
HV_FLUSH_ALL_PROCESSORS);
post_test(data, i % 2 ? TESTVAL1 : TESTVAL2,
i % 2 ? TESTVAL1 : TESTVAL2);
}
GUEST_SYNC(stage++);
/* HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX for WORKER_VCPU_ID_2 */
for (i = 0; i < NTRY; i++) {
prepare_to_test(data);
flush_ex->hv_vp_set.format = HV_GENERIC_SET_SPARSE_4K;
flush_ex->hv_vp_set.valid_bank_mask = BIT_ULL(WORKER_VCPU_ID_2 / 64);
flush_ex->hv_vp_set.bank_contents[0] = BIT_ULL(WORKER_VCPU_ID_2 % 64);
hyperv_write_xmm_input(&flush_ex->hv_vp_set, 2);
hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX |
HV_HYPERCALL_FAST_BIT |
(1 << HV_HYPERCALL_VARHEAD_OFFSET),
0x0, HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES);
post_test(data, 0x0, i % 2 ? TESTVAL1 : TESTVAL2);
}
GUEST_SYNC(stage++);
/* HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX for WORKER_VCPU_ID_2 */
for (i = 0; i < NTRY; i++) {
prepare_to_test(data);
flush_ex->hv_vp_set.format = HV_GENERIC_SET_SPARSE_4K;
flush_ex->hv_vp_set.valid_bank_mask = BIT_ULL(WORKER_VCPU_ID_2 / 64);
flush_ex->hv_vp_set.bank_contents[0] = BIT_ULL(WORKER_VCPU_ID_2 % 64);
/* bank_contents and gva_list occupy the same space, thus [1] */
flush_ex->gva_list[1] = (u64)data->test_pages;
hyperv_write_xmm_input(&flush_ex->hv_vp_set, 2);
hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX |
HV_HYPERCALL_FAST_BIT |
(1 << HV_HYPERCALL_VARHEAD_OFFSET) |
(1UL << HV_HYPERCALL_REP_COMP_OFFSET),
0x0, HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES);
post_test(data, 0x0, i % 2 ? TESTVAL1 : TESTVAL2);
}
GUEST_SYNC(stage++);
/* HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX for both vCPUs */
for (i = 0; i < NTRY; i++) {
prepare_to_test(data);
flush_ex->hv_vp_set.format = HV_GENERIC_SET_SPARSE_4K;
flush_ex->hv_vp_set.valid_bank_mask = BIT_ULL(WORKER_VCPU_ID_2 / 64) |
BIT_ULL(WORKER_VCPU_ID_1 / 64);
flush_ex->hv_vp_set.bank_contents[0] = BIT_ULL(WORKER_VCPU_ID_1 % 64);
flush_ex->hv_vp_set.bank_contents[1] = BIT_ULL(WORKER_VCPU_ID_2 % 64);
hyperv_write_xmm_input(&flush_ex->hv_vp_set, 2);
hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX |
HV_HYPERCALL_FAST_BIT |
(2 << HV_HYPERCALL_VARHEAD_OFFSET),
0x0, HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES);
post_test(data, i % 2 ? TESTVAL1 :
TESTVAL2, i % 2 ? TESTVAL1 : TESTVAL2);
}
GUEST_SYNC(stage++);
/* HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX for both vCPUs */
for (i = 0; i < NTRY; i++) {
prepare_to_test(data);
flush_ex->hv_vp_set.format = HV_GENERIC_SET_SPARSE_4K;
flush_ex->hv_vp_set.valid_bank_mask = BIT_ULL(WORKER_VCPU_ID_1 / 64) |
BIT_ULL(WORKER_VCPU_ID_2 / 64);
flush_ex->hv_vp_set.bank_contents[0] = BIT_ULL(WORKER_VCPU_ID_1 % 64);
flush_ex->hv_vp_set.bank_contents[1] = BIT_ULL(WORKER_VCPU_ID_2 % 64);
/* bank_contents and gva_list occupy the same space, thus [2] */
flush_ex->gva_list[2] = (u64)data->test_pages;
hyperv_write_xmm_input(&flush_ex->hv_vp_set, 3);
hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX |
HV_HYPERCALL_FAST_BIT |
(2 << HV_HYPERCALL_VARHEAD_OFFSET) |
(1UL << HV_HYPERCALL_REP_COMP_OFFSET),
0x0, HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES);
post_test(data, i % 2 ? TESTVAL1 : TESTVAL2,
i % 2 ? TESTVAL1 : TESTVAL2);
}
GUEST_SYNC(stage++);
/* HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX for HV_GENERIC_SET_ALL */
for (i = 0; i < NTRY; i++) {
prepare_to_test(data);
flush_ex->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES;
flush_ex->hv_vp_set.format = HV_GENERIC_SET_ALL;
hyperv_write_xmm_input(&flush_ex->hv_vp_set, 2);
hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX |
HV_HYPERCALL_FAST_BIT,
0x0, HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES);
post_test(data, i % 2 ? TESTVAL1 : TESTVAL2,
i % 2 ? TESTVAL1 : TESTVAL2);
}
GUEST_SYNC(stage++);
/* HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX for HV_GENERIC_SET_ALL */
for (i = 0; i < NTRY; i++) {
prepare_to_test(data);
flush_ex->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES;
flush_ex->hv_vp_set.format = HV_GENERIC_SET_ALL;
flush_ex->gva_list[0] = (u64)data->test_pages;
hyperv_write_xmm_input(&flush_ex->hv_vp_set, 2);
hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX |
HV_HYPERCALL_FAST_BIT |
(1UL << HV_HYPERCALL_REP_COMP_OFFSET),
0x0, HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES);
post_test(data, i % 2 ? TESTVAL1 : TESTVAL2,
i % 2 ? TESTVAL1 : TESTVAL2);
}
GUEST_DONE();
}
static void *vcpu_thread(void *arg)
{
struct kvm_vcpu *vcpu = (struct kvm_vcpu *)arg;
struct ucall uc;
int old;
int r;
r = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old);
TEST_ASSERT(!r, "pthread_setcanceltype failed on vcpu_id=%u with errno=%d",
vcpu->id, r);
vcpu_run(vcpu);
TEST_ASSERT_KVM_EXIT_REASON(vcpu, KVM_EXIT_IO);
switch (get_ucall(vcpu, &uc)) {
case UCALL_ABORT:
REPORT_GUEST_ASSERT(uc);
/* NOT REACHED */
default:
TEST_FAIL("Unexpected ucall %lu, vCPU %d", uc.cmd, vcpu->id);
}
return NULL;
}
static void cancel_join_vcpu_thread(pthread_t thread, struct kvm_vcpu *vcpu)
{
void *retval;
int r;
r = pthread_cancel(thread);
TEST_ASSERT(!r, "pthread_cancel on vcpu_id=%d failed with errno=%d",
vcpu->id, r);
r = pthread_join(thread, &retval);
TEST_ASSERT(!r, "pthread_join on vcpu_id=%d failed with errno=%d",
vcpu->id, r);
TEST_ASSERT(retval == PTHREAD_CANCELED,
"expected retval=%p, got %p", PTHREAD_CANCELED,
retval);
}
int main(int argc, char *argv[])
{
struct kvm_vm *vm;
struct kvm_vcpu *vcpu[3];
pthread_t threads[2];
vm_vaddr_t test_data_page, gva;
vm_paddr_t gpa;
uint64_t *pte;
struct test_data *data;
struct ucall uc;
int stage = 1, r, i;
vm = vm_create_with_one_vcpu(&vcpu[0], sender_guest_code);
/* Test data page */
test_data_page = vm_vaddr_alloc_page(vm);
data = (struct test_data *)addr_gva2hva(vm, test_data_page);
/* Hypercall input/output */
data->hcall_gva = vm_vaddr_alloc_pages(vm, 2);
data->hcall_gpa = addr_gva2gpa(vm, data->hcall_gva);
memset(addr_gva2hva(vm, data->hcall_gva), 0x0, 2 * PAGE_SIZE);
/*
* Test pages: the first one is filled with '0x01's, the second with '0x02's
* and the test will swap their mappings. The third page keeps the indication
* about the current state of mappings.
*/
data->test_pages = vm_vaddr_alloc_pages(vm, NTEST_PAGES + 1);
for (i = 0; i < NTEST_PAGES; i++)
memset(addr_gva2hva(vm, data->test_pages + PAGE_SIZE * i),
(u8)(i + 1), PAGE_SIZE);
set_expected_val(addr_gva2hva(vm, data->test_pages), 0x0, WORKER_VCPU_ID_1);
set_expected_val(addr_gva2hva(vm, data->test_pages), 0x0, WORKER_VCPU_ID_2);
/*
* Get PTE pointers for test pages and map them inside the guest.
* Use separate page for each PTE for simplicity.
*/
gva = vm_vaddr_unused_gap(vm, NTEST_PAGES * PAGE_SIZE, KVM_UTIL_MIN_VADDR);
for (i = 0; i < NTEST_PAGES; i++) {
pte = vm_get_page_table_entry(vm, data->test_pages + i * PAGE_SIZE);
gpa = addr_hva2gpa(vm, pte);
__virt_pg_map(vm, gva + PAGE_SIZE * i, gpa & PAGE_MASK, PG_LEVEL_4K);
data->test_pages_pte[i] = gva + (gpa & ~PAGE_MASK);
}
/*
* Sender vCPU which performs the test: swaps test pages, sets expectation
* for 'workers' and issues TLB flush hypercalls.
*/
vcpu_args_set(vcpu[0], 1, test_data_page);
vcpu_set_hv_cpuid(vcpu[0]);
/* Create worker vCPUs which check the contents of the test pages */
vcpu[1] = vm_vcpu_add(vm, WORKER_VCPU_ID_1, worker_guest_code);
vcpu_args_set(vcpu[1], 1, test_data_page);
vcpu_set_msr(vcpu[1], HV_X64_MSR_VP_INDEX, WORKER_VCPU_ID_1);
vcpu_set_hv_cpuid(vcpu[1]);
vcpu[2] = vm_vcpu_add(vm, WORKER_VCPU_ID_2, worker_guest_code);
vcpu_args_set(vcpu[2], 1, test_data_page);
vcpu_set_msr(vcpu[2], HV_X64_MSR_VP_INDEX, WORKER_VCPU_ID_2);
vcpu_set_hv_cpuid(vcpu[2]);
r = pthread_create(&threads[0], NULL, vcpu_thread, vcpu[1]);
TEST_ASSERT(!r, "pthread_create() failed");
r = pthread_create(&threads[1], NULL, vcpu_thread, vcpu[2]);
TEST_ASSERT(!r, "pthread_create() failed");
while (true) {
vcpu_run(vcpu[0]);
TEST_ASSERT_KVM_EXIT_REASON(vcpu[0], KVM_EXIT_IO);
switch (get_ucall(vcpu[0], &uc)) {
case UCALL_SYNC:
TEST_ASSERT(uc.args[1] == stage,
"Unexpected stage: %ld (%d expected)\n",
uc.args[1], stage);
break;
case UCALL_ABORT:
REPORT_GUEST_ASSERT(uc);
/* NOT REACHED */
case UCALL_DONE:
goto done;
default:
TEST_FAIL("Unknown ucall %lu", uc.cmd);
}
stage++;
}
done:
cancel_join_vcpu_thread(threads[0], vcpu[1]);
cancel_join_vcpu_thread(threads[1], vcpu[2]);
kvm_vm_free(vm);
return 0;
}