linux-zen-server/Documentation/devicetree/bindings/interconnect/mediatek,cci.yaml

143 lines
4.2 KiB
YAML

# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
%YAML 1.2
---
$id: http://devicetree.org/schemas/interconnect/mediatek,cci.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#
title: MediaTek Cache Coherent Interconnect (CCI) frequency and voltage scaling
maintainers:
- Jia-Wei Chang <jia-wei.chang@mediatek.com>
- Johnson Wang <johnson.wang@mediatek.com>
description: |
MediaTek Cache Coherent Interconnect (CCI) is a hardware engine used by
MT8183 and MT8186 SoCs to scale the frequency and adjust the voltage in
hardware. It can also optimize the voltage to reduce the power consumption.
properties:
compatible:
enum:
- mediatek,mt8183-cci
- mediatek,mt8186-cci
clocks:
items:
- description:
The multiplexer for clock input of the bus.
- description:
A parent of "bus" clock which is used as an intermediate clock source
when the original clock source (PLL) is under transition and not
stable yet.
clock-names:
items:
- const: cci
- const: intermediate
operating-points-v2: true
opp-table:
type: object
proc-supply:
description:
Phandle of the regulator for CCI that provides the supply voltage.
sram-supply:
description:
Phandle of the regulator for sram of CCI that provides the supply
voltage. When it is present, the implementation needs to do
"voltage tracking" to step by step scale up/down Vproc and Vsram to fit
SoC specific needs. When absent, the voltage scaling flow is handled by
hardware, hence no software "voltage tracking" is needed.
required:
- compatible
- clocks
- clock-names
- operating-points-v2
- proc-supply
additionalProperties: false
examples:
- |
#include <dt-bindings/clock/mt8183-clk.h>
cci: cci {
compatible = "mediatek,mt8183-cci";
clocks = <&mcucfg CLK_MCU_BUS_SEL>,
<&topckgen CLK_TOP_ARMPLL_DIV_PLL1>;
clock-names = "cci", "intermediate";
operating-points-v2 = <&cci_opp>;
proc-supply = <&mt6358_vproc12_reg>;
};
cci_opp: opp-table-cci {
compatible = "operating-points-v2";
opp-shared;
opp2_00: opp-273000000 {
opp-hz = /bits/ 64 <273000000>;
opp-microvolt = <650000>;
};
opp2_01: opp-338000000 {
opp-hz = /bits/ 64 <338000000>;
opp-microvolt = <687500>;
};
opp2_02: opp-403000000 {
opp-hz = /bits/ 64 <403000000>;
opp-microvolt = <718750>;
};
opp2_03: opp-463000000 {
opp-hz = /bits/ 64 <463000000>;
opp-microvolt = <756250>;
};
opp2_04: opp-546000000 {
opp-hz = /bits/ 64 <546000000>;
opp-microvolt = <800000>;
};
opp2_05: opp-624000000 {
opp-hz = /bits/ 64 <624000000>;
opp-microvolt = <818750>;
};
opp2_06: opp-689000000 {
opp-hz = /bits/ 64 <689000000>;
opp-microvolt = <850000>;
};
opp2_07: opp-767000000 {
opp-hz = /bits/ 64 <767000000>;
opp-microvolt = <868750>;
};
opp2_08: opp-845000000 {
opp-hz = /bits/ 64 <845000000>;
opp-microvolt = <893750>;
};
opp2_09: opp-871000000 {
opp-hz = /bits/ 64 <871000000>;
opp-microvolt = <906250>;
};
opp2_10: opp-923000000 {
opp-hz = /bits/ 64 <923000000>;
opp-microvolt = <931250>;
};
opp2_11: opp-962000000 {
opp-hz = /bits/ 64 <962000000>;
opp-microvolt = <943750>;
};
opp2_12: opp-1027000000 {
opp-hz = /bits/ 64 <1027000000>;
opp-microvolt = <975000>;
};
opp2_13: opp-1092000000 {
opp-hz = /bits/ 64 <1092000000>;
opp-microvolt = <1000000>;
};
opp2_14: opp-1144000000 {
opp-hz = /bits/ 64 <1144000000>;
opp-microvolt = <1025000>;
};
opp2_15: opp-1196000000 {
opp-hz = /bits/ 64 <1196000000>;
opp-microvolt = <1050000>;
};
};