linux-zen-server/arch/powerpc/platforms/powernv/pci.h

346 lines
10 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
#ifndef __POWERNV_PCI_H
#define __POWERNV_PCI_H
#include <linux/compiler.h> /* for __printf */
#include <linux/iommu.h>
#include <asm/iommu.h>
#include <asm/msi_bitmap.h>
struct pci_dn;
enum pnv_phb_type {
PNV_PHB_IODA1,
PNV_PHB_IODA2,
PNV_PHB_NPU_OCAPI,
};
/* Precise PHB model for error management */
enum pnv_phb_model {
PNV_PHB_MODEL_UNKNOWN,
PNV_PHB_MODEL_P7IOC,
PNV_PHB_MODEL_PHB3,
};
#define PNV_PCI_DIAG_BUF_SIZE 8192
#define PNV_IODA_PE_DEV (1 << 0) /* PE has single PCI device */
#define PNV_IODA_PE_BUS (1 << 1) /* PE has primary PCI bus */
#define PNV_IODA_PE_BUS_ALL (1 << 2) /* PE has subordinate buses */
#define PNV_IODA_PE_MASTER (1 << 3) /* Master PE in compound case */
#define PNV_IODA_PE_SLAVE (1 << 4) /* Slave PE in compound case */
#define PNV_IODA_PE_VF (1 << 5) /* PE for one VF */
/*
* A brief note on PNV_IODA_PE_BUS_ALL
*
* This is needed because of the behaviour of PCIe-to-PCI bridges. The PHB uses
* the Requester ID field of the PCIe request header to determine the device
* (and PE) that initiated a DMA. In legacy PCI individual memory read/write
* requests aren't tagged with the RID. To work around this the PCIe-to-PCI
* bridge will use (secondary_bus_no << 8) | 0x00 as the RID on the PCIe side.
*
* PCIe-to-X bridges have a similar issue even though PCI-X requests also have
* a RID in the transaction header. The PCIe-to-X bridge is permitted to "take
* ownership" of a transaction by a PCI-X device when forwarding it to the PCIe
* side of the bridge.
*
* To work around these problems we use the BUS_ALL flag since every subordinate
* bus of the bridge should go into the same PE.
*/
/* Indicates operations are frozen for a PE: MMIO in PESTA & DMA in PESTB. */
#define PNV_IODA_STOPPED_STATE 0x8000000000000000
/* Data associated with a PE, including IOMMU tracking etc.. */
struct pnv_phb;
struct pnv_ioda_pe {
unsigned long flags;
struct pnv_phb *phb;
int device_count;
/* A PE can be associated with a single device or an
* entire bus (& children). In the former case, pdev
* is populated, in the later case, pbus is.
*/
#ifdef CONFIG_PCI_IOV
struct pci_dev *parent_dev;
#endif
struct pci_dev *pdev;
struct pci_bus *pbus;
/* Effective RID (device RID for a device PE and base bus
* RID with devfn 0 for a bus PE)
*/
unsigned int rid;
/* PE number */
unsigned int pe_number;
/* "Base" iommu table, ie, 4K TCEs, 32-bit DMA */
struct iommu_table_group table_group;
/* 64-bit TCE bypass region */
bool tce_bypass_enabled;
uint64_t tce_bypass_base;
/*
* Used to track whether we've done DMA setup for this PE or not. We
* want to defer allocating TCE tables, etc until we've added a
* non-bridge device to the PE.
*/
bool dma_setup_done;
/* MSIs. MVE index is identical for 32 and 64 bit MSI
* and -1 if not supported. (It's actually identical to the
* PE number)
*/
int mve_number;
/* PEs in compound case */
struct pnv_ioda_pe *master;
struct list_head slaves;
/* Link in list of PE#s */
struct list_head list;
};
#define PNV_PHB_FLAG_EEH (1 << 0)
struct pnv_phb {
struct pci_controller *hose;
enum pnv_phb_type type;
enum pnv_phb_model model;
u64 hub_id;
u64 opal_id;
int flags;
void __iomem *regs;
u64 regs_phys;
spinlock_t lock;
#ifdef CONFIG_DEBUG_FS
int has_dbgfs;
struct dentry *dbgfs;
#endif
unsigned int msi_base;
struct msi_bitmap msi_bmp;
int (*init_m64)(struct pnv_phb *phb);
int (*get_pe_state)(struct pnv_phb *phb, int pe_no);
void (*freeze_pe)(struct pnv_phb *phb, int pe_no);
int (*unfreeze_pe)(struct pnv_phb *phb, int pe_no, int opt);
struct {
/* Global bridge info */
unsigned int total_pe_num;
unsigned int reserved_pe_idx;
unsigned int root_pe_idx;
/* 32-bit MMIO window */
unsigned int m32_size;
unsigned int m32_segsize;
unsigned int m32_pci_base;
/* 64-bit MMIO window */
unsigned int m64_bar_idx;
unsigned long m64_size;
unsigned long m64_segsize;
unsigned long m64_base;
#define MAX_M64_BARS 64
unsigned long m64_bar_alloc;
/* IO ports */
unsigned int io_size;
unsigned int io_segsize;
unsigned int io_pci_base;
/* PE allocation */
struct mutex pe_alloc_mutex;
unsigned long *pe_alloc;
struct pnv_ioda_pe *pe_array;
/* M32 & IO segment maps */
unsigned int *m64_segmap;
unsigned int *m32_segmap;
unsigned int *io_segmap;
/* DMA32 segment maps - IODA1 only */
unsigned int dma32_count;
unsigned int *dma32_segmap;
/* IRQ chip */
int irq_chip_init;
struct irq_chip irq_chip;
/* Sorted list of used PE's based
* on the sequence of creation
*/
struct list_head pe_list;
struct mutex pe_list_mutex;
/* Reverse map of PEs, indexed by {bus, devfn} */
unsigned int pe_rmap[0x10000];
} ioda;
/* PHB and hub diagnostics */
unsigned int diag_data_size;
u8 *diag_data;
};
/* IODA PE management */
static inline bool pnv_pci_is_m64(struct pnv_phb *phb, struct resource *r)
{
/*
* WARNING: We cannot rely on the resource flags. The Linux PCI
* allocation code sometimes decides to put a 64-bit prefetchable
* BAR in the 32-bit window, so we have to compare the addresses.
*
* For simplicity we only test resource start.
*/
return (r->start >= phb->ioda.m64_base &&
r->start < (phb->ioda.m64_base + phb->ioda.m64_size));
}
static inline bool pnv_pci_is_m64_flags(unsigned long resource_flags)
{
unsigned long flags = (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
return (resource_flags & flags) == flags;
}
int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe);
int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe);
void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe);
void pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe *pe);
struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb, int count);
void pnv_ioda_free_pe(struct pnv_ioda_pe *pe);
#ifdef CONFIG_PCI_IOV
/*
* For SR-IOV we want to put each VF's MMIO resource in to a separate PE.
* This requires a bit of acrobatics with the MMIO -> PE configuration
* and this structure is used to keep track of it all.
*/
struct pnv_iov_data {
/* number of VFs enabled */
u16 num_vfs;
/* pointer to the array of VF PEs. num_vfs long*/
struct pnv_ioda_pe *vf_pe_arr;
/* Did we map the VF BAR with single-PE IODA BARs? */
bool m64_single_mode[PCI_SRIOV_NUM_BARS];
/*
* True if we're using any segmented windows. In that case we need
* shift the start of the IOV resource the segment corresponding to
* the allocated PE.
*/
bool need_shift;
/*
* Bit mask used to track which m64 windows are used to map the
* SR-IOV BARs for this device.
*/
DECLARE_BITMAP(used_m64_bar_mask, MAX_M64_BARS);
/*
* If we map the SR-IOV BARs with a segmented window then
* parts of that window will be "claimed" by other PEs.
*
* "holes" here is used to reserve the leading portion
* of the window that is used by other (non VF) PEs.
*/
struct resource holes[PCI_SRIOV_NUM_BARS];
};
static inline struct pnv_iov_data *pnv_iov_get(struct pci_dev *pdev)
{
return pdev->dev.archdata.iov_data;
}
void pnv_pci_ioda_fixup_iov(struct pci_dev *pdev);
resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev, int resno);
int pnv_pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs);
int pnv_pcibios_sriov_disable(struct pci_dev *pdev);
#endif /* CONFIG_PCI_IOV */
extern struct pci_ops pnv_pci_ops;
void pnv_pci_dump_phb_diag_data(struct pci_controller *hose,
unsigned char *log_buff);
int pnv_pci_cfg_read(struct pci_dn *pdn,
int where, int size, u32 *val);
int pnv_pci_cfg_write(struct pci_dn *pdn,
int where, int size, u32 val);
extern struct iommu_table *pnv_pci_table_alloc(int nid);
extern void pnv_pci_init_ioda_hub(struct device_node *np);
extern void pnv_pci_init_ioda2_phb(struct device_node *np);
extern void pnv_pci_init_npu2_opencapi_phb(struct device_node *np);
extern void pnv_pci_reset_secondary_bus(struct pci_dev *dev);
extern int pnv_eeh_phb_reset(struct pci_controller *hose, int option);
extern struct pnv_ioda_pe *pnv_pci_bdfn_to_pe(struct pnv_phb *phb, u16 bdfn);
extern struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev);
extern void pnv_set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq);
extern unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift,
__u64 window_size, __u32 levels);
extern int pnv_eeh_post_init(void);
__printf(3, 4)
extern void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
const char *fmt, ...);
#define pe_err(pe, fmt, ...) \
pe_level_printk(pe, KERN_ERR, fmt, ##__VA_ARGS__)
#define pe_warn(pe, fmt, ...) \
pe_level_printk(pe, KERN_WARNING, fmt, ##__VA_ARGS__)
#define pe_info(pe, fmt, ...) \
pe_level_printk(pe, KERN_INFO, fmt, ##__VA_ARGS__)
/* pci-ioda-tce.c */
#define POWERNV_IOMMU_DEFAULT_LEVELS 2
#define POWERNV_IOMMU_MAX_LEVELS 5
extern int pnv_tce_build(struct iommu_table *tbl, long index, long npages,
unsigned long uaddr, enum dma_data_direction direction,
unsigned long attrs);
extern void pnv_tce_free(struct iommu_table *tbl, long index, long npages);
extern int pnv_tce_xchg(struct iommu_table *tbl, long index,
unsigned long *hpa, enum dma_data_direction *direction);
extern __be64 *pnv_tce_useraddrptr(struct iommu_table *tbl, long index,
bool alloc);
extern unsigned long pnv_tce_get(struct iommu_table *tbl, long index);
extern long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
__u32 page_shift, __u64 window_size, __u32 levels,
bool alloc_userspace_copy, struct iommu_table *tbl);
extern void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl);
extern long pnv_pci_link_table_and_group(int node, int num,
struct iommu_table *tbl,
struct iommu_table_group *table_group);
extern void pnv_pci_unlink_table_and_group(struct iommu_table *tbl,
struct iommu_table_group *table_group);
extern void pnv_pci_setup_iommu_table(struct iommu_table *tbl,
void *tce_mem, u64 tce_size,
u64 dma_offset, unsigned int page_shift);
extern unsigned long pnv_ioda_parse_tce_sizes(struct pnv_phb *phb);
static inline struct pnv_phb *pci_bus_to_pnvhb(struct pci_bus *bus)
{
struct pci_controller *hose = bus->sysdata;
if (hose)
return hose->private_data;
return NULL;
}
#endif /* __POWERNV_PCI_H */