1305 lines
33 KiB
C
1305 lines
33 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* SMP related functions
|
|
*
|
|
* Copyright IBM Corp. 1999, 2012
|
|
* Author(s): Denis Joseph Barrow,
|
|
* Martin Schwidefsky <schwidefsky@de.ibm.com>,
|
|
*
|
|
* based on other smp stuff by
|
|
* (c) 1995 Alan Cox, CymruNET Ltd <alan@cymru.net>
|
|
* (c) 1998 Ingo Molnar
|
|
*
|
|
* The code outside of smp.c uses logical cpu numbers, only smp.c does
|
|
* the translation of logical to physical cpu ids. All new code that
|
|
* operates on physical cpu numbers needs to go into smp.c.
|
|
*/
|
|
|
|
#define KMSG_COMPONENT "cpu"
|
|
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
|
|
|
|
#include <linux/workqueue.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/export.h>
|
|
#include <linux/init.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/err.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/kernel_stat.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/irqflags.h>
|
|
#include <linux/irq_work.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/sched/hotplug.h>
|
|
#include <linux/sched/task_stack.h>
|
|
#include <linux/crash_dump.h>
|
|
#include <linux/kprobes.h>
|
|
#include <asm/asm-offsets.h>
|
|
#include <asm/diag.h>
|
|
#include <asm/switch_to.h>
|
|
#include <asm/facility.h>
|
|
#include <asm/ipl.h>
|
|
#include <asm/setup.h>
|
|
#include <asm/irq.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/vtimer.h>
|
|
#include <asm/abs_lowcore.h>
|
|
#include <asm/sclp.h>
|
|
#include <asm/debug.h>
|
|
#include <asm/os_info.h>
|
|
#include <asm/sigp.h>
|
|
#include <asm/idle.h>
|
|
#include <asm/nmi.h>
|
|
#include <asm/stacktrace.h>
|
|
#include <asm/topology.h>
|
|
#include <asm/vdso.h>
|
|
#include <asm/maccess.h>
|
|
#include "entry.h"
|
|
|
|
enum {
|
|
ec_schedule = 0,
|
|
ec_call_function_single,
|
|
ec_stop_cpu,
|
|
ec_mcck_pending,
|
|
ec_irq_work,
|
|
};
|
|
|
|
enum {
|
|
CPU_STATE_STANDBY,
|
|
CPU_STATE_CONFIGURED,
|
|
};
|
|
|
|
static DEFINE_PER_CPU(struct cpu *, cpu_device);
|
|
|
|
struct pcpu {
|
|
unsigned long ec_mask; /* bit mask for ec_xxx functions */
|
|
unsigned long ec_clk; /* sigp timestamp for ec_xxx */
|
|
signed char state; /* physical cpu state */
|
|
signed char polarization; /* physical polarization */
|
|
u16 address; /* physical cpu address */
|
|
};
|
|
|
|
static u8 boot_core_type;
|
|
static struct pcpu pcpu_devices[NR_CPUS];
|
|
|
|
unsigned int smp_cpu_mt_shift;
|
|
EXPORT_SYMBOL(smp_cpu_mt_shift);
|
|
|
|
unsigned int smp_cpu_mtid;
|
|
EXPORT_SYMBOL(smp_cpu_mtid);
|
|
|
|
#ifdef CONFIG_CRASH_DUMP
|
|
__vector128 __initdata boot_cpu_vector_save_area[__NUM_VXRS];
|
|
#endif
|
|
|
|
static unsigned int smp_max_threads __initdata = -1U;
|
|
cpumask_t cpu_setup_mask;
|
|
|
|
static int __init early_nosmt(char *s)
|
|
{
|
|
smp_max_threads = 1;
|
|
return 0;
|
|
}
|
|
early_param("nosmt", early_nosmt);
|
|
|
|
static int __init early_smt(char *s)
|
|
{
|
|
get_option(&s, &smp_max_threads);
|
|
return 0;
|
|
}
|
|
early_param("smt", early_smt);
|
|
|
|
/*
|
|
* The smp_cpu_state_mutex must be held when changing the state or polarization
|
|
* member of a pcpu data structure within the pcpu_devices arreay.
|
|
*/
|
|
DEFINE_MUTEX(smp_cpu_state_mutex);
|
|
|
|
/*
|
|
* Signal processor helper functions.
|
|
*/
|
|
static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm)
|
|
{
|
|
int cc;
|
|
|
|
while (1) {
|
|
cc = __pcpu_sigp(addr, order, parm, NULL);
|
|
if (cc != SIGP_CC_BUSY)
|
|
return cc;
|
|
cpu_relax();
|
|
}
|
|
}
|
|
|
|
static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
|
|
{
|
|
int cc, retry;
|
|
|
|
for (retry = 0; ; retry++) {
|
|
cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
|
|
if (cc != SIGP_CC_BUSY)
|
|
break;
|
|
if (retry >= 3)
|
|
udelay(10);
|
|
}
|
|
return cc;
|
|
}
|
|
|
|
static inline int pcpu_stopped(struct pcpu *pcpu)
|
|
{
|
|
u32 status;
|
|
|
|
if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
|
|
0, &status) != SIGP_CC_STATUS_STORED)
|
|
return 0;
|
|
return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
|
|
}
|
|
|
|
static inline int pcpu_running(struct pcpu *pcpu)
|
|
{
|
|
if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
|
|
0, NULL) != SIGP_CC_STATUS_STORED)
|
|
return 1;
|
|
/* Status stored condition code is equivalent to cpu not running. */
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Find struct pcpu by cpu address.
|
|
*/
|
|
static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
|
|
{
|
|
int cpu;
|
|
|
|
for_each_cpu(cpu, mask)
|
|
if (pcpu_devices[cpu].address == address)
|
|
return pcpu_devices + cpu;
|
|
return NULL;
|
|
}
|
|
|
|
static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
|
|
{
|
|
int order;
|
|
|
|
if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
|
|
return;
|
|
order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
|
|
pcpu->ec_clk = get_tod_clock_fast();
|
|
pcpu_sigp_retry(pcpu, order, 0);
|
|
}
|
|
|
|
static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
|
|
{
|
|
unsigned long async_stack, nodat_stack, mcck_stack;
|
|
struct lowcore *lc;
|
|
|
|
lc = (struct lowcore *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
|
|
nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
|
|
async_stack = stack_alloc();
|
|
mcck_stack = stack_alloc();
|
|
if (!lc || !nodat_stack || !async_stack || !mcck_stack)
|
|
goto out;
|
|
memcpy(lc, &S390_lowcore, 512);
|
|
memset((char *) lc + 512, 0, sizeof(*lc) - 512);
|
|
lc->async_stack = async_stack + STACK_INIT_OFFSET;
|
|
lc->nodat_stack = nodat_stack + STACK_INIT_OFFSET;
|
|
lc->mcck_stack = mcck_stack + STACK_INIT_OFFSET;
|
|
lc->cpu_nr = cpu;
|
|
lc->spinlock_lockval = arch_spin_lockval(cpu);
|
|
lc->spinlock_index = 0;
|
|
lc->return_lpswe = gen_lpswe(__LC_RETURN_PSW);
|
|
lc->return_mcck_lpswe = gen_lpswe(__LC_RETURN_MCCK_PSW);
|
|
lc->preempt_count = PREEMPT_DISABLED;
|
|
if (nmi_alloc_mcesa(&lc->mcesad))
|
|
goto out;
|
|
if (abs_lowcore_map(cpu, lc, true))
|
|
goto out_mcesa;
|
|
lowcore_ptr[cpu] = lc;
|
|
pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, __pa(lc));
|
|
return 0;
|
|
|
|
out_mcesa:
|
|
nmi_free_mcesa(&lc->mcesad);
|
|
out:
|
|
stack_free(mcck_stack);
|
|
stack_free(async_stack);
|
|
free_pages(nodat_stack, THREAD_SIZE_ORDER);
|
|
free_pages((unsigned long) lc, LC_ORDER);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static void pcpu_free_lowcore(struct pcpu *pcpu)
|
|
{
|
|
unsigned long async_stack, nodat_stack, mcck_stack;
|
|
struct lowcore *lc;
|
|
int cpu;
|
|
|
|
cpu = pcpu - pcpu_devices;
|
|
lc = lowcore_ptr[cpu];
|
|
nodat_stack = lc->nodat_stack - STACK_INIT_OFFSET;
|
|
async_stack = lc->async_stack - STACK_INIT_OFFSET;
|
|
mcck_stack = lc->mcck_stack - STACK_INIT_OFFSET;
|
|
pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
|
|
lowcore_ptr[cpu] = NULL;
|
|
abs_lowcore_unmap(cpu);
|
|
nmi_free_mcesa(&lc->mcesad);
|
|
stack_free(async_stack);
|
|
stack_free(mcck_stack);
|
|
free_pages(nodat_stack, THREAD_SIZE_ORDER);
|
|
free_pages((unsigned long) lc, LC_ORDER);
|
|
}
|
|
|
|
static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
|
|
{
|
|
struct lowcore *lc = lowcore_ptr[cpu];
|
|
|
|
cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
|
|
cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
|
|
lc->cpu_nr = cpu;
|
|
lc->restart_flags = RESTART_FLAG_CTLREGS;
|
|
lc->spinlock_lockval = arch_spin_lockval(cpu);
|
|
lc->spinlock_index = 0;
|
|
lc->percpu_offset = __per_cpu_offset[cpu];
|
|
lc->kernel_asce = S390_lowcore.kernel_asce;
|
|
lc->user_asce = s390_invalid_asce;
|
|
lc->machine_flags = S390_lowcore.machine_flags;
|
|
lc->user_timer = lc->system_timer =
|
|
lc->steal_timer = lc->avg_steal_timer = 0;
|
|
__ctl_store(lc->cregs_save_area, 0, 15);
|
|
lc->cregs_save_area[1] = lc->kernel_asce;
|
|
lc->cregs_save_area[7] = lc->user_asce;
|
|
save_access_regs((unsigned int *) lc->access_regs_save_area);
|
|
arch_spin_lock_setup(cpu);
|
|
}
|
|
|
|
static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
|
|
{
|
|
struct lowcore *lc;
|
|
int cpu;
|
|
|
|
cpu = pcpu - pcpu_devices;
|
|
lc = lowcore_ptr[cpu];
|
|
lc->kernel_stack = (unsigned long) task_stack_page(tsk)
|
|
+ THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
|
|
lc->current_task = (unsigned long) tsk;
|
|
lc->lpp = LPP_MAGIC;
|
|
lc->current_pid = tsk->pid;
|
|
lc->user_timer = tsk->thread.user_timer;
|
|
lc->guest_timer = tsk->thread.guest_timer;
|
|
lc->system_timer = tsk->thread.system_timer;
|
|
lc->hardirq_timer = tsk->thread.hardirq_timer;
|
|
lc->softirq_timer = tsk->thread.softirq_timer;
|
|
lc->steal_timer = 0;
|
|
}
|
|
|
|
static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
|
|
{
|
|
struct lowcore *lc;
|
|
int cpu;
|
|
|
|
cpu = pcpu - pcpu_devices;
|
|
lc = lowcore_ptr[cpu];
|
|
lc->restart_stack = lc->kernel_stack;
|
|
lc->restart_fn = (unsigned long) func;
|
|
lc->restart_data = (unsigned long) data;
|
|
lc->restart_source = -1U;
|
|
pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
|
|
}
|
|
|
|
typedef void (pcpu_delegate_fn)(void *);
|
|
|
|
/*
|
|
* Call function via PSW restart on pcpu and stop the current cpu.
|
|
*/
|
|
static void __pcpu_delegate(pcpu_delegate_fn *func, void *data)
|
|
{
|
|
func(data); /* should not return */
|
|
}
|
|
|
|
static void pcpu_delegate(struct pcpu *pcpu,
|
|
pcpu_delegate_fn *func,
|
|
void *data, unsigned long stack)
|
|
{
|
|
struct lowcore *lc, *abs_lc;
|
|
unsigned int source_cpu;
|
|
|
|
lc = lowcore_ptr[pcpu - pcpu_devices];
|
|
source_cpu = stap();
|
|
|
|
if (pcpu->address == source_cpu) {
|
|
call_on_stack(2, stack, void, __pcpu_delegate,
|
|
pcpu_delegate_fn *, func, void *, data);
|
|
}
|
|
/* Stop target cpu (if func returns this stops the current cpu). */
|
|
pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
|
|
pcpu_sigp_retry(pcpu, SIGP_CPU_RESET, 0);
|
|
/* Restart func on the target cpu and stop the current cpu. */
|
|
if (lc) {
|
|
lc->restart_stack = stack;
|
|
lc->restart_fn = (unsigned long)func;
|
|
lc->restart_data = (unsigned long)data;
|
|
lc->restart_source = source_cpu;
|
|
} else {
|
|
abs_lc = get_abs_lowcore();
|
|
abs_lc->restart_stack = stack;
|
|
abs_lc->restart_fn = (unsigned long)func;
|
|
abs_lc->restart_data = (unsigned long)data;
|
|
abs_lc->restart_source = source_cpu;
|
|
put_abs_lowcore(abs_lc);
|
|
}
|
|
__bpon();
|
|
asm volatile(
|
|
"0: sigp 0,%0,%2 # sigp restart to target cpu\n"
|
|
" brc 2,0b # busy, try again\n"
|
|
"1: sigp 0,%1,%3 # sigp stop to current cpu\n"
|
|
" brc 2,1b # busy, try again\n"
|
|
: : "d" (pcpu->address), "d" (source_cpu),
|
|
"K" (SIGP_RESTART), "K" (SIGP_STOP)
|
|
: "0", "1", "cc");
|
|
for (;;) ;
|
|
}
|
|
|
|
/*
|
|
* Enable additional logical cpus for multi-threading.
|
|
*/
|
|
static int pcpu_set_smt(unsigned int mtid)
|
|
{
|
|
int cc;
|
|
|
|
if (smp_cpu_mtid == mtid)
|
|
return 0;
|
|
cc = __pcpu_sigp(0, SIGP_SET_MULTI_THREADING, mtid, NULL);
|
|
if (cc == 0) {
|
|
smp_cpu_mtid = mtid;
|
|
smp_cpu_mt_shift = 0;
|
|
while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
|
|
smp_cpu_mt_shift++;
|
|
pcpu_devices[0].address = stap();
|
|
}
|
|
return cc;
|
|
}
|
|
|
|
/*
|
|
* Call function on an online CPU.
|
|
*/
|
|
void smp_call_online_cpu(void (*func)(void *), void *data)
|
|
{
|
|
struct pcpu *pcpu;
|
|
|
|
/* Use the current cpu if it is online. */
|
|
pcpu = pcpu_find_address(cpu_online_mask, stap());
|
|
if (!pcpu)
|
|
/* Use the first online cpu. */
|
|
pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
|
|
pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
|
|
}
|
|
|
|
/*
|
|
* Call function on the ipl CPU.
|
|
*/
|
|
void smp_call_ipl_cpu(void (*func)(void *), void *data)
|
|
{
|
|
struct lowcore *lc = lowcore_ptr[0];
|
|
|
|
if (pcpu_devices[0].address == stap())
|
|
lc = &S390_lowcore;
|
|
|
|
pcpu_delegate(&pcpu_devices[0], func, data,
|
|
lc->nodat_stack);
|
|
}
|
|
|
|
int smp_find_processor_id(u16 address)
|
|
{
|
|
int cpu;
|
|
|
|
for_each_present_cpu(cpu)
|
|
if (pcpu_devices[cpu].address == address)
|
|
return cpu;
|
|
return -1;
|
|
}
|
|
|
|
void schedule_mcck_handler(void)
|
|
{
|
|
pcpu_ec_call(pcpu_devices + smp_processor_id(), ec_mcck_pending);
|
|
}
|
|
|
|
bool notrace arch_vcpu_is_preempted(int cpu)
|
|
{
|
|
if (test_cpu_flag_of(CIF_ENABLED_WAIT, cpu))
|
|
return false;
|
|
if (pcpu_running(pcpu_devices + cpu))
|
|
return false;
|
|
return true;
|
|
}
|
|
EXPORT_SYMBOL(arch_vcpu_is_preempted);
|
|
|
|
void notrace smp_yield_cpu(int cpu)
|
|
{
|
|
if (!MACHINE_HAS_DIAG9C)
|
|
return;
|
|
diag_stat_inc_norecursion(DIAG_STAT_X09C);
|
|
asm volatile("diag %0,0,0x9c"
|
|
: : "d" (pcpu_devices[cpu].address));
|
|
}
|
|
EXPORT_SYMBOL_GPL(smp_yield_cpu);
|
|
|
|
/*
|
|
* Send cpus emergency shutdown signal. This gives the cpus the
|
|
* opportunity to complete outstanding interrupts.
|
|
*/
|
|
void notrace smp_emergency_stop(void)
|
|
{
|
|
static arch_spinlock_t lock = __ARCH_SPIN_LOCK_UNLOCKED;
|
|
static cpumask_t cpumask;
|
|
u64 end;
|
|
int cpu;
|
|
|
|
arch_spin_lock(&lock);
|
|
cpumask_copy(&cpumask, cpu_online_mask);
|
|
cpumask_clear_cpu(smp_processor_id(), &cpumask);
|
|
|
|
end = get_tod_clock() + (1000000UL << 12);
|
|
for_each_cpu(cpu, &cpumask) {
|
|
struct pcpu *pcpu = pcpu_devices + cpu;
|
|
set_bit(ec_stop_cpu, &pcpu->ec_mask);
|
|
while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
|
|
0, NULL) == SIGP_CC_BUSY &&
|
|
get_tod_clock() < end)
|
|
cpu_relax();
|
|
}
|
|
while (get_tod_clock() < end) {
|
|
for_each_cpu(cpu, &cpumask)
|
|
if (pcpu_stopped(pcpu_devices + cpu))
|
|
cpumask_clear_cpu(cpu, &cpumask);
|
|
if (cpumask_empty(&cpumask))
|
|
break;
|
|
cpu_relax();
|
|
}
|
|
arch_spin_unlock(&lock);
|
|
}
|
|
NOKPROBE_SYMBOL(smp_emergency_stop);
|
|
|
|
/*
|
|
* Stop all cpus but the current one.
|
|
*/
|
|
void smp_send_stop(void)
|
|
{
|
|
int cpu;
|
|
|
|
/* Disable all interrupts/machine checks */
|
|
__load_psw_mask(PSW_KERNEL_BITS);
|
|
trace_hardirqs_off();
|
|
|
|
debug_set_critical();
|
|
|
|
if (oops_in_progress)
|
|
smp_emergency_stop();
|
|
|
|
/* stop all processors */
|
|
for_each_online_cpu(cpu) {
|
|
if (cpu == smp_processor_id())
|
|
continue;
|
|
pcpu_sigp_retry(pcpu_devices + cpu, SIGP_STOP, 0);
|
|
while (!pcpu_stopped(pcpu_devices + cpu))
|
|
cpu_relax();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This is the main routine where commands issued by other
|
|
* cpus are handled.
|
|
*/
|
|
static void smp_handle_ext_call(void)
|
|
{
|
|
unsigned long bits;
|
|
|
|
/* handle bit signal external calls */
|
|
bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
|
|
if (test_bit(ec_stop_cpu, &bits))
|
|
smp_stop_cpu();
|
|
if (test_bit(ec_schedule, &bits))
|
|
scheduler_ipi();
|
|
if (test_bit(ec_call_function_single, &bits))
|
|
generic_smp_call_function_single_interrupt();
|
|
if (test_bit(ec_mcck_pending, &bits))
|
|
s390_handle_mcck();
|
|
if (test_bit(ec_irq_work, &bits))
|
|
irq_work_run();
|
|
}
|
|
|
|
static void do_ext_call_interrupt(struct ext_code ext_code,
|
|
unsigned int param32, unsigned long param64)
|
|
{
|
|
inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
|
|
smp_handle_ext_call();
|
|
}
|
|
|
|
void arch_send_call_function_ipi_mask(const struct cpumask *mask)
|
|
{
|
|
int cpu;
|
|
|
|
for_each_cpu(cpu, mask)
|
|
pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
|
|
}
|
|
|
|
void arch_send_call_function_single_ipi(int cpu)
|
|
{
|
|
pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
|
|
}
|
|
|
|
/*
|
|
* this function sends a 'reschedule' IPI to another CPU.
|
|
* it goes straight through and wastes no time serializing
|
|
* anything. Worst case is that we lose a reschedule ...
|
|
*/
|
|
void smp_send_reschedule(int cpu)
|
|
{
|
|
pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
|
|
}
|
|
|
|
#ifdef CONFIG_IRQ_WORK
|
|
void arch_irq_work_raise(void)
|
|
{
|
|
pcpu_ec_call(pcpu_devices + smp_processor_id(), ec_irq_work);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* parameter area for the set/clear control bit callbacks
|
|
*/
|
|
struct ec_creg_mask_parms {
|
|
unsigned long orval;
|
|
unsigned long andval;
|
|
int cr;
|
|
};
|
|
|
|
/*
|
|
* callback for setting/clearing control bits
|
|
*/
|
|
static void smp_ctl_bit_callback(void *info)
|
|
{
|
|
struct ec_creg_mask_parms *pp = info;
|
|
unsigned long cregs[16];
|
|
|
|
__ctl_store(cregs, 0, 15);
|
|
cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
|
|
__ctl_load(cregs, 0, 15);
|
|
}
|
|
|
|
static DEFINE_SPINLOCK(ctl_lock);
|
|
|
|
void smp_ctl_set_clear_bit(int cr, int bit, bool set)
|
|
{
|
|
struct ec_creg_mask_parms parms = { .cr = cr, };
|
|
struct lowcore *abs_lc;
|
|
u64 ctlreg;
|
|
|
|
if (set) {
|
|
parms.orval = 1UL << bit;
|
|
parms.andval = -1UL;
|
|
} else {
|
|
parms.orval = 0;
|
|
parms.andval = ~(1UL << bit);
|
|
}
|
|
spin_lock(&ctl_lock);
|
|
abs_lc = get_abs_lowcore();
|
|
ctlreg = abs_lc->cregs_save_area[cr];
|
|
ctlreg = (ctlreg & parms.andval) | parms.orval;
|
|
abs_lc->cregs_save_area[cr] = ctlreg;
|
|
put_abs_lowcore(abs_lc);
|
|
spin_unlock(&ctl_lock);
|
|
on_each_cpu(smp_ctl_bit_callback, &parms, 1);
|
|
}
|
|
EXPORT_SYMBOL(smp_ctl_set_clear_bit);
|
|
|
|
#ifdef CONFIG_CRASH_DUMP
|
|
|
|
int smp_store_status(int cpu)
|
|
{
|
|
struct lowcore *lc;
|
|
struct pcpu *pcpu;
|
|
unsigned long pa;
|
|
|
|
pcpu = pcpu_devices + cpu;
|
|
lc = lowcore_ptr[cpu];
|
|
pa = __pa(&lc->floating_pt_save_area);
|
|
if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_STATUS_AT_ADDRESS,
|
|
pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
|
|
return -EIO;
|
|
if (!MACHINE_HAS_VX && !MACHINE_HAS_GS)
|
|
return 0;
|
|
pa = lc->mcesad & MCESA_ORIGIN_MASK;
|
|
if (MACHINE_HAS_GS)
|
|
pa |= lc->mcesad & MCESA_LC_MASK;
|
|
if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
|
|
pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
|
|
return -EIO;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Collect CPU state of the previous, crashed system.
|
|
* There are four cases:
|
|
* 1) standard zfcp/nvme dump
|
|
* condition: OLDMEM_BASE == NULL && is_ipl_type_dump() == true
|
|
* The state for all CPUs except the boot CPU needs to be collected
|
|
* with sigp stop-and-store-status. The boot CPU state is located in
|
|
* the absolute lowcore of the memory stored in the HSA. The zcore code
|
|
* will copy the boot CPU state from the HSA.
|
|
* 2) stand-alone kdump for SCSI/NVMe (zfcp/nvme dump with swapped memory)
|
|
* condition: OLDMEM_BASE != NULL && is_ipl_type_dump() == true
|
|
* The state for all CPUs except the boot CPU needs to be collected
|
|
* with sigp stop-and-store-status. The firmware or the boot-loader
|
|
* stored the registers of the boot CPU in the absolute lowcore in the
|
|
* memory of the old system.
|
|
* 3) kdump and the old kernel did not store the CPU state,
|
|
* or stand-alone kdump for DASD
|
|
* condition: OLDMEM_BASE != NULL && !is_kdump_kernel()
|
|
* The state for all CPUs except the boot CPU needs to be collected
|
|
* with sigp stop-and-store-status. The kexec code or the boot-loader
|
|
* stored the registers of the boot CPU in the memory of the old system.
|
|
* 4) kdump and the old kernel stored the CPU state
|
|
* condition: OLDMEM_BASE != NULL && is_kdump_kernel()
|
|
* This case does not exist for s390 anymore, setup_arch explicitly
|
|
* deactivates the elfcorehdr= kernel parameter
|
|
*/
|
|
static bool dump_available(void)
|
|
{
|
|
return oldmem_data.start || is_ipl_type_dump();
|
|
}
|
|
|
|
void __init smp_save_dump_ipl_cpu(void)
|
|
{
|
|
struct save_area *sa;
|
|
void *regs;
|
|
|
|
if (!dump_available())
|
|
return;
|
|
sa = save_area_alloc(true);
|
|
regs = memblock_alloc(512, 8);
|
|
if (!sa || !regs)
|
|
panic("could not allocate memory for boot CPU save area\n");
|
|
copy_oldmem_kernel(regs, __LC_FPREGS_SAVE_AREA, 512);
|
|
save_area_add_regs(sa, regs);
|
|
memblock_free(regs, 512);
|
|
if (MACHINE_HAS_VX)
|
|
save_area_add_vxrs(sa, boot_cpu_vector_save_area);
|
|
}
|
|
|
|
void __init smp_save_dump_secondary_cpus(void)
|
|
{
|
|
int addr, boot_cpu_addr, max_cpu_addr;
|
|
struct save_area *sa;
|
|
void *page;
|
|
|
|
if (!dump_available())
|
|
return;
|
|
/* Allocate a page as dumping area for the store status sigps */
|
|
page = memblock_alloc_low(PAGE_SIZE, PAGE_SIZE);
|
|
if (!page)
|
|
panic("ERROR: Failed to allocate %lx bytes below %lx\n",
|
|
PAGE_SIZE, 1UL << 31);
|
|
|
|
/* Set multi-threading state to the previous system. */
|
|
pcpu_set_smt(sclp.mtid_prev);
|
|
boot_cpu_addr = stap();
|
|
max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
|
|
for (addr = 0; addr <= max_cpu_addr; addr++) {
|
|
if (addr == boot_cpu_addr)
|
|
continue;
|
|
if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0) ==
|
|
SIGP_CC_NOT_OPERATIONAL)
|
|
continue;
|
|
sa = save_area_alloc(false);
|
|
if (!sa)
|
|
panic("could not allocate memory for save area\n");
|
|
__pcpu_sigp_relax(addr, SIGP_STORE_STATUS_AT_ADDRESS, __pa(page));
|
|
save_area_add_regs(sa, page);
|
|
if (MACHINE_HAS_VX) {
|
|
__pcpu_sigp_relax(addr, SIGP_STORE_ADDITIONAL_STATUS, __pa(page));
|
|
save_area_add_vxrs(sa, page);
|
|
}
|
|
}
|
|
memblock_free(page, PAGE_SIZE);
|
|
diag_amode31_ops.diag308_reset();
|
|
pcpu_set_smt(0);
|
|
}
|
|
#endif /* CONFIG_CRASH_DUMP */
|
|
|
|
void smp_cpu_set_polarization(int cpu, int val)
|
|
{
|
|
pcpu_devices[cpu].polarization = val;
|
|
}
|
|
|
|
int smp_cpu_get_polarization(int cpu)
|
|
{
|
|
return pcpu_devices[cpu].polarization;
|
|
}
|
|
|
|
int smp_cpu_get_cpu_address(int cpu)
|
|
{
|
|
return pcpu_devices[cpu].address;
|
|
}
|
|
|
|
static void __ref smp_get_core_info(struct sclp_core_info *info, int early)
|
|
{
|
|
static int use_sigp_detection;
|
|
int address;
|
|
|
|
if (use_sigp_detection || sclp_get_core_info(info, early)) {
|
|
use_sigp_detection = 1;
|
|
for (address = 0;
|
|
address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
|
|
address += (1U << smp_cpu_mt_shift)) {
|
|
if (__pcpu_sigp_relax(address, SIGP_SENSE, 0) ==
|
|
SIGP_CC_NOT_OPERATIONAL)
|
|
continue;
|
|
info->core[info->configured].core_id =
|
|
address >> smp_cpu_mt_shift;
|
|
info->configured++;
|
|
}
|
|
info->combined = info->configured;
|
|
}
|
|
}
|
|
|
|
static int smp_add_present_cpu(int cpu);
|
|
|
|
static int smp_add_core(struct sclp_core_entry *core, cpumask_t *avail,
|
|
bool configured, bool early)
|
|
{
|
|
struct pcpu *pcpu;
|
|
int cpu, nr, i;
|
|
u16 address;
|
|
|
|
nr = 0;
|
|
if (sclp.has_core_type && core->type != boot_core_type)
|
|
return nr;
|
|
cpu = cpumask_first(avail);
|
|
address = core->core_id << smp_cpu_mt_shift;
|
|
for (i = 0; (i <= smp_cpu_mtid) && (cpu < nr_cpu_ids); i++) {
|
|
if (pcpu_find_address(cpu_present_mask, address + i))
|
|
continue;
|
|
pcpu = pcpu_devices + cpu;
|
|
pcpu->address = address + i;
|
|
if (configured)
|
|
pcpu->state = CPU_STATE_CONFIGURED;
|
|
else
|
|
pcpu->state = CPU_STATE_STANDBY;
|
|
smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
|
|
set_cpu_present(cpu, true);
|
|
if (!early && smp_add_present_cpu(cpu) != 0)
|
|
set_cpu_present(cpu, false);
|
|
else
|
|
nr++;
|
|
cpumask_clear_cpu(cpu, avail);
|
|
cpu = cpumask_next(cpu, avail);
|
|
}
|
|
return nr;
|
|
}
|
|
|
|
static int __smp_rescan_cpus(struct sclp_core_info *info, bool early)
|
|
{
|
|
struct sclp_core_entry *core;
|
|
static cpumask_t avail;
|
|
bool configured;
|
|
u16 core_id;
|
|
int nr, i;
|
|
|
|
cpus_read_lock();
|
|
mutex_lock(&smp_cpu_state_mutex);
|
|
nr = 0;
|
|
cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
|
|
/*
|
|
* Add IPL core first (which got logical CPU number 0) to make sure
|
|
* that all SMT threads get subsequent logical CPU numbers.
|
|
*/
|
|
if (early) {
|
|
core_id = pcpu_devices[0].address >> smp_cpu_mt_shift;
|
|
for (i = 0; i < info->configured; i++) {
|
|
core = &info->core[i];
|
|
if (core->core_id == core_id) {
|
|
nr += smp_add_core(core, &avail, true, early);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
for (i = 0; i < info->combined; i++) {
|
|
configured = i < info->configured;
|
|
nr += smp_add_core(&info->core[i], &avail, configured, early);
|
|
}
|
|
mutex_unlock(&smp_cpu_state_mutex);
|
|
cpus_read_unlock();
|
|
return nr;
|
|
}
|
|
|
|
void __init smp_detect_cpus(void)
|
|
{
|
|
unsigned int cpu, mtid, c_cpus, s_cpus;
|
|
struct sclp_core_info *info;
|
|
u16 address;
|
|
|
|
/* Get CPU information */
|
|
info = memblock_alloc(sizeof(*info), 8);
|
|
if (!info)
|
|
panic("%s: Failed to allocate %zu bytes align=0x%x\n",
|
|
__func__, sizeof(*info), 8);
|
|
smp_get_core_info(info, 1);
|
|
/* Find boot CPU type */
|
|
if (sclp.has_core_type) {
|
|
address = stap();
|
|
for (cpu = 0; cpu < info->combined; cpu++)
|
|
if (info->core[cpu].core_id == address) {
|
|
/* The boot cpu dictates the cpu type. */
|
|
boot_core_type = info->core[cpu].type;
|
|
break;
|
|
}
|
|
if (cpu >= info->combined)
|
|
panic("Could not find boot CPU type");
|
|
}
|
|
|
|
/* Set multi-threading state for the current system */
|
|
mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
|
|
mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
|
|
pcpu_set_smt(mtid);
|
|
|
|
/* Print number of CPUs */
|
|
c_cpus = s_cpus = 0;
|
|
for (cpu = 0; cpu < info->combined; cpu++) {
|
|
if (sclp.has_core_type &&
|
|
info->core[cpu].type != boot_core_type)
|
|
continue;
|
|
if (cpu < info->configured)
|
|
c_cpus += smp_cpu_mtid + 1;
|
|
else
|
|
s_cpus += smp_cpu_mtid + 1;
|
|
}
|
|
pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
|
|
|
|
/* Add CPUs present at boot */
|
|
__smp_rescan_cpus(info, true);
|
|
memblock_free(info, sizeof(*info));
|
|
}
|
|
|
|
/*
|
|
* Activate a secondary processor.
|
|
*/
|
|
static void smp_start_secondary(void *cpuvoid)
|
|
{
|
|
int cpu = raw_smp_processor_id();
|
|
|
|
S390_lowcore.last_update_clock = get_tod_clock();
|
|
S390_lowcore.restart_stack = (unsigned long)restart_stack;
|
|
S390_lowcore.restart_fn = (unsigned long)do_restart;
|
|
S390_lowcore.restart_data = 0;
|
|
S390_lowcore.restart_source = -1U;
|
|
S390_lowcore.restart_flags = 0;
|
|
restore_access_regs(S390_lowcore.access_regs_save_area);
|
|
cpu_init();
|
|
rcu_cpu_starting(cpu);
|
|
init_cpu_timer();
|
|
vtime_init();
|
|
vdso_getcpu_init();
|
|
pfault_init();
|
|
cpumask_set_cpu(cpu, &cpu_setup_mask);
|
|
update_cpu_masks();
|
|
notify_cpu_starting(cpu);
|
|
if (topology_cpu_dedicated(cpu))
|
|
set_cpu_flag(CIF_DEDICATED_CPU);
|
|
else
|
|
clear_cpu_flag(CIF_DEDICATED_CPU);
|
|
set_cpu_online(cpu, true);
|
|
inc_irq_stat(CPU_RST);
|
|
local_irq_enable();
|
|
cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
|
|
}
|
|
|
|
/* Upping and downing of CPUs */
|
|
int __cpu_up(unsigned int cpu, struct task_struct *tidle)
|
|
{
|
|
struct pcpu *pcpu = pcpu_devices + cpu;
|
|
int rc;
|
|
|
|
if (pcpu->state != CPU_STATE_CONFIGURED)
|
|
return -EIO;
|
|
if (pcpu_sigp_retry(pcpu, SIGP_INITIAL_CPU_RESET, 0) !=
|
|
SIGP_CC_ORDER_CODE_ACCEPTED)
|
|
return -EIO;
|
|
|
|
rc = pcpu_alloc_lowcore(pcpu, cpu);
|
|
if (rc)
|
|
return rc;
|
|
pcpu_prepare_secondary(pcpu, cpu);
|
|
pcpu_attach_task(pcpu, tidle);
|
|
pcpu_start_fn(pcpu, smp_start_secondary, NULL);
|
|
/* Wait until cpu puts itself in the online & active maps */
|
|
while (!cpu_online(cpu))
|
|
cpu_relax();
|
|
return 0;
|
|
}
|
|
|
|
static unsigned int setup_possible_cpus __initdata;
|
|
|
|
static int __init _setup_possible_cpus(char *s)
|
|
{
|
|
get_option(&s, &setup_possible_cpus);
|
|
return 0;
|
|
}
|
|
early_param("possible_cpus", _setup_possible_cpus);
|
|
|
|
int __cpu_disable(void)
|
|
{
|
|
unsigned long cregs[16];
|
|
int cpu;
|
|
|
|
/* Handle possible pending IPIs */
|
|
smp_handle_ext_call();
|
|
cpu = smp_processor_id();
|
|
set_cpu_online(cpu, false);
|
|
cpumask_clear_cpu(cpu, &cpu_setup_mask);
|
|
update_cpu_masks();
|
|
/* Disable pseudo page faults on this cpu. */
|
|
pfault_fini();
|
|
/* Disable interrupt sources via control register. */
|
|
__ctl_store(cregs, 0, 15);
|
|
cregs[0] &= ~0x0000ee70UL; /* disable all external interrupts */
|
|
cregs[6] &= ~0xff000000UL; /* disable all I/O interrupts */
|
|
cregs[14] &= ~0x1f000000UL; /* disable most machine checks */
|
|
__ctl_load(cregs, 0, 15);
|
|
clear_cpu_flag(CIF_NOHZ_DELAY);
|
|
return 0;
|
|
}
|
|
|
|
void __cpu_die(unsigned int cpu)
|
|
{
|
|
struct pcpu *pcpu;
|
|
|
|
/* Wait until target cpu is down */
|
|
pcpu = pcpu_devices + cpu;
|
|
while (!pcpu_stopped(pcpu))
|
|
cpu_relax();
|
|
pcpu_free_lowcore(pcpu);
|
|
cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
|
|
cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
|
|
}
|
|
|
|
void __noreturn cpu_die(void)
|
|
{
|
|
idle_task_exit();
|
|
__bpon();
|
|
pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
|
|
for (;;) ;
|
|
}
|
|
|
|
void __init smp_fill_possible_mask(void)
|
|
{
|
|
unsigned int possible, sclp_max, cpu;
|
|
|
|
sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
|
|
sclp_max = min(smp_max_threads, sclp_max);
|
|
sclp_max = (sclp.max_cores * sclp_max) ?: nr_cpu_ids;
|
|
possible = setup_possible_cpus ?: nr_cpu_ids;
|
|
possible = min(possible, sclp_max);
|
|
for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
|
|
set_cpu_possible(cpu, true);
|
|
}
|
|
|
|
void __init smp_prepare_cpus(unsigned int max_cpus)
|
|
{
|
|
/* request the 0x1201 emergency signal external interrupt */
|
|
if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
|
|
panic("Couldn't request external interrupt 0x1201");
|
|
/* request the 0x1202 external call external interrupt */
|
|
if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
|
|
panic("Couldn't request external interrupt 0x1202");
|
|
}
|
|
|
|
void __init smp_prepare_boot_cpu(void)
|
|
{
|
|
struct pcpu *pcpu = pcpu_devices;
|
|
|
|
WARN_ON(!cpu_present(0) || !cpu_online(0));
|
|
pcpu->state = CPU_STATE_CONFIGURED;
|
|
S390_lowcore.percpu_offset = __per_cpu_offset[0];
|
|
smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
|
|
}
|
|
|
|
void __init smp_setup_processor_id(void)
|
|
{
|
|
pcpu_devices[0].address = stap();
|
|
S390_lowcore.cpu_nr = 0;
|
|
S390_lowcore.spinlock_lockval = arch_spin_lockval(0);
|
|
S390_lowcore.spinlock_index = 0;
|
|
}
|
|
|
|
/*
|
|
* the frequency of the profiling timer can be changed
|
|
* by writing a multiplier value into /proc/profile.
|
|
*
|
|
* usually you want to run this on all CPUs ;)
|
|
*/
|
|
int setup_profiling_timer(unsigned int multiplier)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static ssize_t cpu_configure_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
ssize_t count;
|
|
|
|
mutex_lock(&smp_cpu_state_mutex);
|
|
count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
|
|
mutex_unlock(&smp_cpu_state_mutex);
|
|
return count;
|
|
}
|
|
|
|
static ssize_t cpu_configure_store(struct device *dev,
|
|
struct device_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
struct pcpu *pcpu;
|
|
int cpu, val, rc, i;
|
|
char delim;
|
|
|
|
if (sscanf(buf, "%d %c", &val, &delim) != 1)
|
|
return -EINVAL;
|
|
if (val != 0 && val != 1)
|
|
return -EINVAL;
|
|
cpus_read_lock();
|
|
mutex_lock(&smp_cpu_state_mutex);
|
|
rc = -EBUSY;
|
|
/* disallow configuration changes of online cpus and cpu 0 */
|
|
cpu = dev->id;
|
|
cpu = smp_get_base_cpu(cpu);
|
|
if (cpu == 0)
|
|
goto out;
|
|
for (i = 0; i <= smp_cpu_mtid; i++)
|
|
if (cpu_online(cpu + i))
|
|
goto out;
|
|
pcpu = pcpu_devices + cpu;
|
|
rc = 0;
|
|
switch (val) {
|
|
case 0:
|
|
if (pcpu->state != CPU_STATE_CONFIGURED)
|
|
break;
|
|
rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
|
|
if (rc)
|
|
break;
|
|
for (i = 0; i <= smp_cpu_mtid; i++) {
|
|
if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
|
|
continue;
|
|
pcpu[i].state = CPU_STATE_STANDBY;
|
|
smp_cpu_set_polarization(cpu + i,
|
|
POLARIZATION_UNKNOWN);
|
|
}
|
|
topology_expect_change();
|
|
break;
|
|
case 1:
|
|
if (pcpu->state != CPU_STATE_STANDBY)
|
|
break;
|
|
rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
|
|
if (rc)
|
|
break;
|
|
for (i = 0; i <= smp_cpu_mtid; i++) {
|
|
if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
|
|
continue;
|
|
pcpu[i].state = CPU_STATE_CONFIGURED;
|
|
smp_cpu_set_polarization(cpu + i,
|
|
POLARIZATION_UNKNOWN);
|
|
}
|
|
topology_expect_change();
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
out:
|
|
mutex_unlock(&smp_cpu_state_mutex);
|
|
cpus_read_unlock();
|
|
return rc ? rc : count;
|
|
}
|
|
static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
|
|
|
|
static ssize_t show_cpu_address(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
|
|
}
|
|
static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
|
|
|
|
static struct attribute *cpu_common_attrs[] = {
|
|
&dev_attr_configure.attr,
|
|
&dev_attr_address.attr,
|
|
NULL,
|
|
};
|
|
|
|
static struct attribute_group cpu_common_attr_group = {
|
|
.attrs = cpu_common_attrs,
|
|
};
|
|
|
|
static struct attribute *cpu_online_attrs[] = {
|
|
&dev_attr_idle_count.attr,
|
|
&dev_attr_idle_time_us.attr,
|
|
NULL,
|
|
};
|
|
|
|
static struct attribute_group cpu_online_attr_group = {
|
|
.attrs = cpu_online_attrs,
|
|
};
|
|
|
|
static int smp_cpu_online(unsigned int cpu)
|
|
{
|
|
struct device *s = &per_cpu(cpu_device, cpu)->dev;
|
|
|
|
return sysfs_create_group(&s->kobj, &cpu_online_attr_group);
|
|
}
|
|
|
|
static int smp_cpu_pre_down(unsigned int cpu)
|
|
{
|
|
struct device *s = &per_cpu(cpu_device, cpu)->dev;
|
|
|
|
sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
|
|
return 0;
|
|
}
|
|
|
|
static int smp_add_present_cpu(int cpu)
|
|
{
|
|
struct device *s;
|
|
struct cpu *c;
|
|
int rc;
|
|
|
|
c = kzalloc(sizeof(*c), GFP_KERNEL);
|
|
if (!c)
|
|
return -ENOMEM;
|
|
per_cpu(cpu_device, cpu) = c;
|
|
s = &c->dev;
|
|
c->hotpluggable = 1;
|
|
rc = register_cpu(c, cpu);
|
|
if (rc)
|
|
goto out;
|
|
rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
|
|
if (rc)
|
|
goto out_cpu;
|
|
rc = topology_cpu_init(c);
|
|
if (rc)
|
|
goto out_topology;
|
|
return 0;
|
|
|
|
out_topology:
|
|
sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
|
|
out_cpu:
|
|
unregister_cpu(c);
|
|
out:
|
|
return rc;
|
|
}
|
|
|
|
int __ref smp_rescan_cpus(void)
|
|
{
|
|
struct sclp_core_info *info;
|
|
int nr;
|
|
|
|
info = kzalloc(sizeof(*info), GFP_KERNEL);
|
|
if (!info)
|
|
return -ENOMEM;
|
|
smp_get_core_info(info, 0);
|
|
nr = __smp_rescan_cpus(info, false);
|
|
kfree(info);
|
|
if (nr)
|
|
topology_schedule_update();
|
|
return 0;
|
|
}
|
|
|
|
static ssize_t __ref rescan_store(struct device *dev,
|
|
struct device_attribute *attr,
|
|
const char *buf,
|
|
size_t count)
|
|
{
|
|
int rc;
|
|
|
|
rc = lock_device_hotplug_sysfs();
|
|
if (rc)
|
|
return rc;
|
|
rc = smp_rescan_cpus();
|
|
unlock_device_hotplug();
|
|
return rc ? rc : count;
|
|
}
|
|
static DEVICE_ATTR_WO(rescan);
|
|
|
|
static int __init s390_smp_init(void)
|
|
{
|
|
int cpu, rc = 0;
|
|
|
|
rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan);
|
|
if (rc)
|
|
return rc;
|
|
for_each_present_cpu(cpu) {
|
|
rc = smp_add_present_cpu(cpu);
|
|
if (rc)
|
|
goto out;
|
|
}
|
|
|
|
rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "s390/smp:online",
|
|
smp_cpu_online, smp_cpu_pre_down);
|
|
rc = rc <= 0 ? rc : 0;
|
|
out:
|
|
return rc;
|
|
}
|
|
subsys_initcall(s390_smp_init);
|
|
|
|
static __always_inline void set_new_lowcore(struct lowcore *lc)
|
|
{
|
|
union register_pair dst, src;
|
|
u32 pfx;
|
|
|
|
src.even = (unsigned long) &S390_lowcore;
|
|
src.odd = sizeof(S390_lowcore);
|
|
dst.even = (unsigned long) lc;
|
|
dst.odd = sizeof(*lc);
|
|
pfx = __pa(lc);
|
|
|
|
asm volatile(
|
|
" mvcl %[dst],%[src]\n"
|
|
" spx %[pfx]\n"
|
|
: [dst] "+&d" (dst.pair), [src] "+&d" (src.pair)
|
|
: [pfx] "Q" (pfx)
|
|
: "memory", "cc");
|
|
}
|
|
|
|
int __init smp_reinit_ipl_cpu(void)
|
|
{
|
|
unsigned long async_stack, nodat_stack, mcck_stack;
|
|
struct lowcore *lc, *lc_ipl;
|
|
unsigned long flags, cr0;
|
|
u64 mcesad;
|
|
|
|
lc_ipl = lowcore_ptr[0];
|
|
lc = (struct lowcore *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
|
|
nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
|
|
async_stack = stack_alloc();
|
|
mcck_stack = stack_alloc();
|
|
if (!lc || !nodat_stack || !async_stack || !mcck_stack || nmi_alloc_mcesa(&mcesad))
|
|
panic("Couldn't allocate memory");
|
|
|
|
local_irq_save(flags);
|
|
local_mcck_disable();
|
|
set_new_lowcore(lc);
|
|
S390_lowcore.nodat_stack = nodat_stack + STACK_INIT_OFFSET;
|
|
S390_lowcore.async_stack = async_stack + STACK_INIT_OFFSET;
|
|
S390_lowcore.mcck_stack = mcck_stack + STACK_INIT_OFFSET;
|
|
__ctl_store(cr0, 0, 0);
|
|
__ctl_clear_bit(0, 28); /* disable lowcore protection */
|
|
S390_lowcore.mcesad = mcesad;
|
|
__ctl_load(cr0, 0, 0);
|
|
if (abs_lowcore_map(0, lc, false))
|
|
panic("Couldn't remap absolute lowcore");
|
|
lowcore_ptr[0] = lc;
|
|
local_mcck_enable();
|
|
local_irq_restore(flags);
|
|
|
|
free_pages(lc_ipl->async_stack - STACK_INIT_OFFSET, THREAD_SIZE_ORDER);
|
|
memblock_free_late(__pa(lc_ipl->mcck_stack - STACK_INIT_OFFSET), THREAD_SIZE);
|
|
memblock_free_late(__pa(lc_ipl), sizeof(*lc_ipl));
|
|
|
|
return 0;
|
|
}
|