6818 lines
194 KiB
C
6818 lines
194 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Per core/cpu state
|
|
*
|
|
* Used to coordinate shared registers between HT threads or
|
|
* among events on a single PMU.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/stddef.h>
|
|
#include <linux/types.h>
|
|
#include <linux/init.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/export.h>
|
|
#include <linux/nmi.h>
|
|
#include <linux/kvm_host.h>
|
|
|
|
#include <asm/cpufeature.h>
|
|
#include <asm/hardirq.h>
|
|
#include <asm/intel-family.h>
|
|
#include <asm/intel_pt.h>
|
|
#include <asm/apic.h>
|
|
#include <asm/cpu_device_id.h>
|
|
|
|
#include "../perf_event.h"
|
|
|
|
/*
|
|
* Intel PerfMon, used on Core and later.
|
|
*/
|
|
static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
|
|
{
|
|
[PERF_COUNT_HW_CPU_CYCLES] = 0x003c,
|
|
[PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
|
|
[PERF_COUNT_HW_CACHE_REFERENCES] = 0x4f2e,
|
|
[PERF_COUNT_HW_CACHE_MISSES] = 0x412e,
|
|
[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
|
|
[PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
|
|
[PERF_COUNT_HW_BUS_CYCLES] = 0x013c,
|
|
[PERF_COUNT_HW_REF_CPU_CYCLES] = 0x0300, /* pseudo-encoding */
|
|
};
|
|
|
|
static struct event_constraint intel_core_event_constraints[] __read_mostly =
|
|
{
|
|
INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
|
|
INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
|
|
INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
|
|
INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
|
|
INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
|
|
INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
|
|
EVENT_CONSTRAINT_END
|
|
};
|
|
|
|
static struct event_constraint intel_core2_event_constraints[] __read_mostly =
|
|
{
|
|
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
|
|
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
|
|
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
|
|
INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
|
|
INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
|
|
INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
|
|
INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
|
|
INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
|
|
INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
|
|
INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
|
|
INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
|
|
INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
|
|
INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
|
|
EVENT_CONSTRAINT_END
|
|
};
|
|
|
|
static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
|
|
{
|
|
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
|
|
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
|
|
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
|
|
INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
|
|
INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
|
|
INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
|
|
INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
|
|
INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
|
|
INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
|
|
INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
|
|
INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
|
|
EVENT_CONSTRAINT_END
|
|
};
|
|
|
|
static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
|
|
{
|
|
/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
|
|
INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
|
|
INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
|
|
EVENT_EXTRA_END
|
|
};
|
|
|
|
static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
|
|
{
|
|
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
|
|
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
|
|
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
|
|
INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
|
|
INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
|
|
INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
|
|
INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
|
|
EVENT_CONSTRAINT_END
|
|
};
|
|
|
|
static struct event_constraint intel_snb_event_constraints[] __read_mostly =
|
|
{
|
|
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
|
|
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
|
|
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
|
|
INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
|
|
INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
|
|
INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
|
|
INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
|
|
INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
|
|
INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
|
|
INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
|
|
INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
|
|
INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
|
|
|
|
/*
|
|
* When HT is off these events can only run on the bottom 4 counters
|
|
* When HT is on, they are impacted by the HT bug and require EXCL access
|
|
*/
|
|
INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
|
|
INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
|
|
INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
|
|
INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
|
|
|
|
EVENT_CONSTRAINT_END
|
|
};
|
|
|
|
static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
|
|
{
|
|
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
|
|
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
|
|
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
|
|
INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
|
|
INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMPTY */
|
|
INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
|
|
INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
|
|
INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
|
|
INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
|
|
INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
|
|
INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
|
|
INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
|
|
INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
|
|
|
|
/*
|
|
* When HT is off these events can only run on the bottom 4 counters
|
|
* When HT is on, they are impacted by the HT bug and require EXCL access
|
|
*/
|
|
INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
|
|
INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
|
|
INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
|
|
INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
|
|
|
|
EVENT_CONSTRAINT_END
|
|
};
|
|
|
|
static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
|
|
{
|
|
/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
|
|
INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
|
|
INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
|
|
INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
|
|
EVENT_EXTRA_END
|
|
};
|
|
|
|
static struct event_constraint intel_v1_event_constraints[] __read_mostly =
|
|
{
|
|
EVENT_CONSTRAINT_END
|
|
};
|
|
|
|
static struct event_constraint intel_gen_event_constraints[] __read_mostly =
|
|
{
|
|
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
|
|
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
|
|
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
|
|
EVENT_CONSTRAINT_END
|
|
};
|
|
|
|
static struct event_constraint intel_v5_gen_event_constraints[] __read_mostly =
|
|
{
|
|
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
|
|
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
|
|
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
|
|
FIXED_EVENT_CONSTRAINT(0x0400, 3), /* SLOTS */
|
|
FIXED_EVENT_CONSTRAINT(0x0500, 4),
|
|
FIXED_EVENT_CONSTRAINT(0x0600, 5),
|
|
FIXED_EVENT_CONSTRAINT(0x0700, 6),
|
|
FIXED_EVENT_CONSTRAINT(0x0800, 7),
|
|
FIXED_EVENT_CONSTRAINT(0x0900, 8),
|
|
FIXED_EVENT_CONSTRAINT(0x0a00, 9),
|
|
FIXED_EVENT_CONSTRAINT(0x0b00, 10),
|
|
FIXED_EVENT_CONSTRAINT(0x0c00, 11),
|
|
FIXED_EVENT_CONSTRAINT(0x0d00, 12),
|
|
FIXED_EVENT_CONSTRAINT(0x0e00, 13),
|
|
FIXED_EVENT_CONSTRAINT(0x0f00, 14),
|
|
FIXED_EVENT_CONSTRAINT(0x1000, 15),
|
|
EVENT_CONSTRAINT_END
|
|
};
|
|
|
|
static struct event_constraint intel_slm_event_constraints[] __read_mostly =
|
|
{
|
|
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
|
|
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
|
|
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
|
|
EVENT_CONSTRAINT_END
|
|
};
|
|
|
|
static struct event_constraint intel_skl_event_constraints[] = {
|
|
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
|
|
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
|
|
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
|
|
INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2), /* INST_RETIRED.PREC_DIST */
|
|
|
|
/*
|
|
* when HT is off, these can only run on the bottom 4 counters
|
|
*/
|
|
INTEL_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */
|
|
INTEL_EVENT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */
|
|
INTEL_EVENT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */
|
|
INTEL_EVENT_CONSTRAINT(0xcd, 0xf), /* MEM_TRANS_RETIRED.* */
|
|
INTEL_EVENT_CONSTRAINT(0xc6, 0xf), /* FRONTEND_RETIRED.* */
|
|
|
|
EVENT_CONSTRAINT_END
|
|
};
|
|
|
|
static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
|
|
INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0),
|
|
INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1),
|
|
EVENT_EXTRA_END
|
|
};
|
|
|
|
static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
|
|
/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
|
|
INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
|
|
INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
|
|
INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
|
|
EVENT_EXTRA_END
|
|
};
|
|
|
|
static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
|
|
/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
|
|
INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
|
|
INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
|
|
INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
|
|
EVENT_EXTRA_END
|
|
};
|
|
|
|
static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
|
|
INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
|
|
INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
|
|
INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
|
|
/*
|
|
* Note the low 8 bits eventsel code is not a continuous field, containing
|
|
* some #GPing bits. These are masked out.
|
|
*/
|
|
INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
|
|
EVENT_EXTRA_END
|
|
};
|
|
|
|
static struct event_constraint intel_icl_event_constraints[] = {
|
|
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
|
|
FIXED_EVENT_CONSTRAINT(0x01c0, 0), /* old INST_RETIRED.PREC_DIST */
|
|
FIXED_EVENT_CONSTRAINT(0x0100, 0), /* INST_RETIRED.PREC_DIST */
|
|
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
|
|
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
|
|
FIXED_EVENT_CONSTRAINT(0x0400, 3), /* SLOTS */
|
|
METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
|
|
METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
|
|
METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
|
|
METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
|
|
INTEL_EVENT_CONSTRAINT_RANGE(0x03, 0x0a, 0xf),
|
|
INTEL_EVENT_CONSTRAINT_RANGE(0x1f, 0x28, 0xf),
|
|
INTEL_EVENT_CONSTRAINT(0x32, 0xf), /* SW_PREFETCH_ACCESS.* */
|
|
INTEL_EVENT_CONSTRAINT_RANGE(0x48, 0x56, 0xf),
|
|
INTEL_EVENT_CONSTRAINT_RANGE(0x60, 0x8b, 0xf),
|
|
INTEL_UEVENT_CONSTRAINT(0x04a3, 0xff), /* CYCLE_ACTIVITY.STALLS_TOTAL */
|
|
INTEL_UEVENT_CONSTRAINT(0x10a3, 0xff), /* CYCLE_ACTIVITY.CYCLES_MEM_ANY */
|
|
INTEL_UEVENT_CONSTRAINT(0x14a3, 0xff), /* CYCLE_ACTIVITY.STALLS_MEM_ANY */
|
|
INTEL_EVENT_CONSTRAINT(0xa3, 0xf), /* CYCLE_ACTIVITY.* */
|
|
INTEL_EVENT_CONSTRAINT_RANGE(0xa8, 0xb0, 0xf),
|
|
INTEL_EVENT_CONSTRAINT_RANGE(0xb7, 0xbd, 0xf),
|
|
INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xe6, 0xf),
|
|
INTEL_EVENT_CONSTRAINT(0xef, 0xf),
|
|
INTEL_EVENT_CONSTRAINT_RANGE(0xf0, 0xf4, 0xf),
|
|
EVENT_CONSTRAINT_END
|
|
};
|
|
|
|
static struct extra_reg intel_icl_extra_regs[] __read_mostly = {
|
|
INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffbfffull, RSP_0),
|
|
INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffffbfffull, RSP_1),
|
|
INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
|
|
INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
|
|
EVENT_EXTRA_END
|
|
};
|
|
|
|
static struct extra_reg intel_spr_extra_regs[] __read_mostly = {
|
|
INTEL_UEVENT_EXTRA_REG(0x012a, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
|
|
INTEL_UEVENT_EXTRA_REG(0x012b, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
|
|
INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
|
|
INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff1f, FE),
|
|
INTEL_UEVENT_EXTRA_REG(0x40ad, MSR_PEBS_FRONTEND, 0x7, FE),
|
|
INTEL_UEVENT_EXTRA_REG(0x04c2, MSR_PEBS_FRONTEND, 0x8, FE),
|
|
EVENT_EXTRA_END
|
|
};
|
|
|
|
static struct event_constraint intel_spr_event_constraints[] = {
|
|
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
|
|
FIXED_EVENT_CONSTRAINT(0x0100, 0), /* INST_RETIRED.PREC_DIST */
|
|
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
|
|
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
|
|
FIXED_EVENT_CONSTRAINT(0x0400, 3), /* SLOTS */
|
|
METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
|
|
METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
|
|
METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
|
|
METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
|
|
METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_HEAVY_OPS, 4),
|
|
METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BR_MISPREDICT, 5),
|
|
METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FETCH_LAT, 6),
|
|
METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_MEM_BOUND, 7),
|
|
|
|
INTEL_EVENT_CONSTRAINT(0x2e, 0xff),
|
|
INTEL_EVENT_CONSTRAINT(0x3c, 0xff),
|
|
/*
|
|
* Generally event codes < 0x90 are restricted to counters 0-3.
|
|
* The 0x2E and 0x3C are exception, which has no restriction.
|
|
*/
|
|
INTEL_EVENT_CONSTRAINT_RANGE(0x01, 0x8f, 0xf),
|
|
|
|
INTEL_UEVENT_CONSTRAINT(0x01a3, 0xf),
|
|
INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf),
|
|
INTEL_UEVENT_CONSTRAINT(0x08a3, 0xf),
|
|
INTEL_UEVENT_CONSTRAINT(0x04a4, 0x1),
|
|
INTEL_UEVENT_CONSTRAINT(0x08a4, 0x1),
|
|
INTEL_UEVENT_CONSTRAINT(0x02cd, 0x1),
|
|
INTEL_EVENT_CONSTRAINT(0xce, 0x1),
|
|
INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xdf, 0xf),
|
|
/*
|
|
* Generally event codes >= 0x90 are likely to have no restrictions.
|
|
* The exception are defined as above.
|
|
*/
|
|
INTEL_EVENT_CONSTRAINT_RANGE(0x90, 0xfe, 0xff),
|
|
|
|
EVENT_CONSTRAINT_END
|
|
};
|
|
|
|
|
|
EVENT_ATTR_STR(mem-loads, mem_ld_nhm, "event=0x0b,umask=0x10,ldlat=3");
|
|
EVENT_ATTR_STR(mem-loads, mem_ld_snb, "event=0xcd,umask=0x1,ldlat=3");
|
|
EVENT_ATTR_STR(mem-stores, mem_st_snb, "event=0xcd,umask=0x2");
|
|
|
|
static struct attribute *nhm_mem_events_attrs[] = {
|
|
EVENT_PTR(mem_ld_nhm),
|
|
NULL,
|
|
};
|
|
|
|
/*
|
|
* topdown events for Intel Core CPUs.
|
|
*
|
|
* The events are all in slots, which is a free slot in a 4 wide
|
|
* pipeline. Some events are already reported in slots, for cycle
|
|
* events we multiply by the pipeline width (4).
|
|
*
|
|
* With Hyper Threading on, topdown metrics are either summed or averaged
|
|
* between the threads of a core: (count_t0 + count_t1).
|
|
*
|
|
* For the average case the metric is always scaled to pipeline width,
|
|
* so we use factor 2 ((count_t0 + count_t1) / 2 * 4)
|
|
*/
|
|
|
|
EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots,
|
|
"event=0x3c,umask=0x0", /* cpu_clk_unhalted.thread */
|
|
"event=0x3c,umask=0x0,any=1"); /* cpu_clk_unhalted.thread_any */
|
|
EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2");
|
|
EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued,
|
|
"event=0xe,umask=0x1"); /* uops_issued.any */
|
|
EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired,
|
|
"event=0xc2,umask=0x2"); /* uops_retired.retire_slots */
|
|
EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles,
|
|
"event=0x9c,umask=0x1"); /* idq_uops_not_delivered_core */
|
|
EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles,
|
|
"event=0xd,umask=0x3,cmask=1", /* int_misc.recovery_cycles */
|
|
"event=0xd,umask=0x3,cmask=1,any=1"); /* int_misc.recovery_cycles_any */
|
|
EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale,
|
|
"4", "2");
|
|
|
|
EVENT_ATTR_STR(slots, slots, "event=0x00,umask=0x4");
|
|
EVENT_ATTR_STR(topdown-retiring, td_retiring, "event=0x00,umask=0x80");
|
|
EVENT_ATTR_STR(topdown-bad-spec, td_bad_spec, "event=0x00,umask=0x81");
|
|
EVENT_ATTR_STR(topdown-fe-bound, td_fe_bound, "event=0x00,umask=0x82");
|
|
EVENT_ATTR_STR(topdown-be-bound, td_be_bound, "event=0x00,umask=0x83");
|
|
EVENT_ATTR_STR(topdown-heavy-ops, td_heavy_ops, "event=0x00,umask=0x84");
|
|
EVENT_ATTR_STR(topdown-br-mispredict, td_br_mispredict, "event=0x00,umask=0x85");
|
|
EVENT_ATTR_STR(topdown-fetch-lat, td_fetch_lat, "event=0x00,umask=0x86");
|
|
EVENT_ATTR_STR(topdown-mem-bound, td_mem_bound, "event=0x00,umask=0x87");
|
|
|
|
static struct attribute *snb_events_attrs[] = {
|
|
EVENT_PTR(td_slots_issued),
|
|
EVENT_PTR(td_slots_retired),
|
|
EVENT_PTR(td_fetch_bubbles),
|
|
EVENT_PTR(td_total_slots),
|
|
EVENT_PTR(td_total_slots_scale),
|
|
EVENT_PTR(td_recovery_bubbles),
|
|
EVENT_PTR(td_recovery_bubbles_scale),
|
|
NULL,
|
|
};
|
|
|
|
static struct attribute *snb_mem_events_attrs[] = {
|
|
EVENT_PTR(mem_ld_snb),
|
|
EVENT_PTR(mem_st_snb),
|
|
NULL,
|
|
};
|
|
|
|
static struct event_constraint intel_hsw_event_constraints[] = {
|
|
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
|
|
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
|
|
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
|
|
INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */
|
|
INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
|
|
INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
|
|
/* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
|
|
INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
|
|
/* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
|
|
INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
|
|
/* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
|
|
INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
|
|
|
|
/*
|
|
* When HT is off these events can only run on the bottom 4 counters
|
|
* When HT is on, they are impacted by the HT bug and require EXCL access
|
|
*/
|
|
INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
|
|
INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
|
|
INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
|
|
INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
|
|
|
|
EVENT_CONSTRAINT_END
|
|
};
|
|
|
|
static struct event_constraint intel_bdw_event_constraints[] = {
|
|
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
|
|
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
|
|
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
|
|
INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */
|
|
INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
|
|
/*
|
|
* when HT is off, these can only run on the bottom 4 counters
|
|
*/
|
|
INTEL_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */
|
|
INTEL_EVENT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */
|
|
INTEL_EVENT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */
|
|
INTEL_EVENT_CONSTRAINT(0xcd, 0xf), /* MEM_TRANS_RETIRED.* */
|
|
EVENT_CONSTRAINT_END
|
|
};
|
|
|
|
static u64 intel_pmu_event_map(int hw_event)
|
|
{
|
|
return intel_perfmon_event_map[hw_event];
|
|
}
|
|
|
|
static __initconst const u64 spr_hw_cache_event_ids
|
|
[PERF_COUNT_HW_CACHE_MAX]
|
|
[PERF_COUNT_HW_CACHE_OP_MAX]
|
|
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
|
|
{
|
|
[ C(L1D ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x81d0,
|
|
[ C(RESULT_MISS) ] = 0xe124,
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x82d0,
|
|
},
|
|
},
|
|
[ C(L1I ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_MISS) ] = 0xe424,
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
},
|
|
[ C(LL ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x12a,
|
|
[ C(RESULT_MISS) ] = 0x12a,
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x12a,
|
|
[ C(RESULT_MISS) ] = 0x12a,
|
|
},
|
|
},
|
|
[ C(DTLB) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x81d0,
|
|
[ C(RESULT_MISS) ] = 0xe12,
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x82d0,
|
|
[ C(RESULT_MISS) ] = 0xe13,
|
|
},
|
|
},
|
|
[ C(ITLB) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = 0xe11,
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
},
|
|
[ C(BPU ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x4c4,
|
|
[ C(RESULT_MISS) ] = 0x4c5,
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
},
|
|
[ C(NODE) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x12a,
|
|
[ C(RESULT_MISS) ] = 0x12a,
|
|
},
|
|
},
|
|
};
|
|
|
|
static __initconst const u64 spr_hw_cache_extra_regs
|
|
[PERF_COUNT_HW_CACHE_MAX]
|
|
[PERF_COUNT_HW_CACHE_OP_MAX]
|
|
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
|
|
{
|
|
[ C(LL ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x10001,
|
|
[ C(RESULT_MISS) ] = 0x3fbfc00001,
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x3f3ffc0002,
|
|
[ C(RESULT_MISS) ] = 0x3f3fc00002,
|
|
},
|
|
},
|
|
[ C(NODE) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x10c000001,
|
|
[ C(RESULT_MISS) ] = 0x3fb3000001,
|
|
},
|
|
},
|
|
};
|
|
|
|
/*
|
|
* Notes on the events:
|
|
* - data reads do not include code reads (comparable to earlier tables)
|
|
* - data counts include speculative execution (except L1 write, dtlb, bpu)
|
|
* - remote node access includes remote memory, remote cache, remote mmio.
|
|
* - prefetches are not included in the counts.
|
|
* - icache miss does not include decoded icache
|
|
*/
|
|
|
|
#define SKL_DEMAND_DATA_RD BIT_ULL(0)
|
|
#define SKL_DEMAND_RFO BIT_ULL(1)
|
|
#define SKL_ANY_RESPONSE BIT_ULL(16)
|
|
#define SKL_SUPPLIER_NONE BIT_ULL(17)
|
|
#define SKL_L3_MISS_LOCAL_DRAM BIT_ULL(26)
|
|
#define SKL_L3_MISS_REMOTE_HOP0_DRAM BIT_ULL(27)
|
|
#define SKL_L3_MISS_REMOTE_HOP1_DRAM BIT_ULL(28)
|
|
#define SKL_L3_MISS_REMOTE_HOP2P_DRAM BIT_ULL(29)
|
|
#define SKL_L3_MISS (SKL_L3_MISS_LOCAL_DRAM| \
|
|
SKL_L3_MISS_REMOTE_HOP0_DRAM| \
|
|
SKL_L3_MISS_REMOTE_HOP1_DRAM| \
|
|
SKL_L3_MISS_REMOTE_HOP2P_DRAM)
|
|
#define SKL_SPL_HIT BIT_ULL(30)
|
|
#define SKL_SNOOP_NONE BIT_ULL(31)
|
|
#define SKL_SNOOP_NOT_NEEDED BIT_ULL(32)
|
|
#define SKL_SNOOP_MISS BIT_ULL(33)
|
|
#define SKL_SNOOP_HIT_NO_FWD BIT_ULL(34)
|
|
#define SKL_SNOOP_HIT_WITH_FWD BIT_ULL(35)
|
|
#define SKL_SNOOP_HITM BIT_ULL(36)
|
|
#define SKL_SNOOP_NON_DRAM BIT_ULL(37)
|
|
#define SKL_ANY_SNOOP (SKL_SPL_HIT|SKL_SNOOP_NONE| \
|
|
SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
|
|
SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
|
|
SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
|
|
#define SKL_DEMAND_READ SKL_DEMAND_DATA_RD
|
|
#define SKL_SNOOP_DRAM (SKL_SNOOP_NONE| \
|
|
SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
|
|
SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
|
|
SKL_SNOOP_HITM|SKL_SPL_HIT)
|
|
#define SKL_DEMAND_WRITE SKL_DEMAND_RFO
|
|
#define SKL_LLC_ACCESS SKL_ANY_RESPONSE
|
|
#define SKL_L3_MISS_REMOTE (SKL_L3_MISS_REMOTE_HOP0_DRAM| \
|
|
SKL_L3_MISS_REMOTE_HOP1_DRAM| \
|
|
SKL_L3_MISS_REMOTE_HOP2P_DRAM)
|
|
|
|
static __initconst const u64 skl_hw_cache_event_ids
|
|
[PERF_COUNT_HW_CACHE_MAX]
|
|
[PERF_COUNT_HW_CACHE_OP_MAX]
|
|
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
|
|
{
|
|
[ C(L1D ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_INST_RETIRED.ALL_LOADS */
|
|
[ C(RESULT_MISS) ] = 0x151, /* L1D.REPLACEMENT */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_INST_RETIRED.ALL_STORES */
|
|
[ C(RESULT_MISS) ] = 0x0,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0,
|
|
[ C(RESULT_MISS) ] = 0x0,
|
|
},
|
|
},
|
|
[ C(L1I ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0,
|
|
[ C(RESULT_MISS) ] = 0x283, /* ICACHE_64B.MISS */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0,
|
|
[ C(RESULT_MISS) ] = 0x0,
|
|
},
|
|
},
|
|
[ C(LL ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
|
|
[ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
|
|
[ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0,
|
|
[ C(RESULT_MISS) ] = 0x0,
|
|
},
|
|
},
|
|
[ C(DTLB) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_INST_RETIRED.ALL_LOADS */
|
|
[ C(RESULT_MISS) ] = 0xe08, /* DTLB_LOAD_MISSES.WALK_COMPLETED */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_INST_RETIRED.ALL_STORES */
|
|
[ C(RESULT_MISS) ] = 0xe49, /* DTLB_STORE_MISSES.WALK_COMPLETED */
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0,
|
|
[ C(RESULT_MISS) ] = 0x0,
|
|
},
|
|
},
|
|
[ C(ITLB) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x2085, /* ITLB_MISSES.STLB_HIT */
|
|
[ C(RESULT_MISS) ] = 0xe85, /* ITLB_MISSES.WALK_COMPLETED */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
},
|
|
[ C(BPU ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */
|
|
[ C(RESULT_MISS) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
},
|
|
[ C(NODE) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
|
|
[ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
|
|
[ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0,
|
|
[ C(RESULT_MISS) ] = 0x0,
|
|
},
|
|
},
|
|
};
|
|
|
|
static __initconst const u64 skl_hw_cache_extra_regs
|
|
[PERF_COUNT_HW_CACHE_MAX]
|
|
[PERF_COUNT_HW_CACHE_OP_MAX]
|
|
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
|
|
{
|
|
[ C(LL ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
|
|
SKL_LLC_ACCESS|SKL_ANY_SNOOP,
|
|
[ C(RESULT_MISS) ] = SKL_DEMAND_READ|
|
|
SKL_L3_MISS|SKL_ANY_SNOOP|
|
|
SKL_SUPPLIER_NONE,
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
|
|
SKL_LLC_ACCESS|SKL_ANY_SNOOP,
|
|
[ C(RESULT_MISS) ] = SKL_DEMAND_WRITE|
|
|
SKL_L3_MISS|SKL_ANY_SNOOP|
|
|
SKL_SUPPLIER_NONE,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0,
|
|
[ C(RESULT_MISS) ] = 0x0,
|
|
},
|
|
},
|
|
[ C(NODE) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
|
|
SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
|
|
[ C(RESULT_MISS) ] = SKL_DEMAND_READ|
|
|
SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
|
|
SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
|
|
[ C(RESULT_MISS) ] = SKL_DEMAND_WRITE|
|
|
SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0,
|
|
[ C(RESULT_MISS) ] = 0x0,
|
|
},
|
|
},
|
|
};
|
|
|
|
#define SNB_DMND_DATA_RD (1ULL << 0)
|
|
#define SNB_DMND_RFO (1ULL << 1)
|
|
#define SNB_DMND_IFETCH (1ULL << 2)
|
|
#define SNB_DMND_WB (1ULL << 3)
|
|
#define SNB_PF_DATA_RD (1ULL << 4)
|
|
#define SNB_PF_RFO (1ULL << 5)
|
|
#define SNB_PF_IFETCH (1ULL << 6)
|
|
#define SNB_LLC_DATA_RD (1ULL << 7)
|
|
#define SNB_LLC_RFO (1ULL << 8)
|
|
#define SNB_LLC_IFETCH (1ULL << 9)
|
|
#define SNB_BUS_LOCKS (1ULL << 10)
|
|
#define SNB_STRM_ST (1ULL << 11)
|
|
#define SNB_OTHER (1ULL << 15)
|
|
#define SNB_RESP_ANY (1ULL << 16)
|
|
#define SNB_NO_SUPP (1ULL << 17)
|
|
#define SNB_LLC_HITM (1ULL << 18)
|
|
#define SNB_LLC_HITE (1ULL << 19)
|
|
#define SNB_LLC_HITS (1ULL << 20)
|
|
#define SNB_LLC_HITF (1ULL << 21)
|
|
#define SNB_LOCAL (1ULL << 22)
|
|
#define SNB_REMOTE (0xffULL << 23)
|
|
#define SNB_SNP_NONE (1ULL << 31)
|
|
#define SNB_SNP_NOT_NEEDED (1ULL << 32)
|
|
#define SNB_SNP_MISS (1ULL << 33)
|
|
#define SNB_NO_FWD (1ULL << 34)
|
|
#define SNB_SNP_FWD (1ULL << 35)
|
|
#define SNB_HITM (1ULL << 36)
|
|
#define SNB_NON_DRAM (1ULL << 37)
|
|
|
|
#define SNB_DMND_READ (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
|
|
#define SNB_DMND_WRITE (SNB_DMND_RFO|SNB_LLC_RFO)
|
|
#define SNB_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
|
|
|
|
#define SNB_SNP_ANY (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
|
|
SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
|
|
SNB_HITM)
|
|
|
|
#define SNB_DRAM_ANY (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
|
|
#define SNB_DRAM_REMOTE (SNB_REMOTE|SNB_SNP_ANY)
|
|
|
|
#define SNB_L3_ACCESS SNB_RESP_ANY
|
|
#define SNB_L3_MISS (SNB_DRAM_ANY|SNB_NON_DRAM)
|
|
|
|
static __initconst const u64 snb_hw_cache_extra_regs
|
|
[PERF_COUNT_HW_CACHE_MAX]
|
|
[PERF_COUNT_HW_CACHE_OP_MAX]
|
|
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
|
|
{
|
|
[ C(LL ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
|
|
[ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_L3_MISS,
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
|
|
[ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_L3_MISS,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
|
|
[ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
|
|
},
|
|
},
|
|
[ C(NODE) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
|
|
[ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
|
|
[ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
|
|
[ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
|
|
},
|
|
},
|
|
};
|
|
|
|
static __initconst const u64 snb_hw_cache_event_ids
|
|
[PERF_COUNT_HW_CACHE_MAX]
|
|
[PERF_COUNT_HW_CACHE_OP_MAX]
|
|
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
|
|
{
|
|
[ C(L1D) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS */
|
|
[ C(RESULT_MISS) ] = 0x0151, /* L1D.REPLACEMENT */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES */
|
|
[ C(RESULT_MISS) ] = 0x0851, /* L1D.ALL_M_REPLACEMENT */
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0,
|
|
[ C(RESULT_MISS) ] = 0x024e, /* HW_PRE_REQ.DL1_MISS */
|
|
},
|
|
},
|
|
[ C(L1I ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0,
|
|
[ C(RESULT_MISS) ] = 0x0280, /* ICACHE.MISSES */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0,
|
|
[ C(RESULT_MISS) ] = 0x0,
|
|
},
|
|
},
|
|
[ C(LL ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
|
|
[ C(RESULT_ACCESS) ] = 0x01b7,
|
|
/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
|
|
[ C(RESULT_MISS) ] = 0x01b7,
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
|
|
[ C(RESULT_ACCESS) ] = 0x01b7,
|
|
/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
|
|
[ C(RESULT_MISS) ] = 0x01b7,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
|
|
[ C(RESULT_ACCESS) ] = 0x01b7,
|
|
/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
|
|
[ C(RESULT_MISS) ] = 0x01b7,
|
|
},
|
|
},
|
|
[ C(DTLB) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
|
|
[ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
|
|
[ C(RESULT_MISS) ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0,
|
|
[ C(RESULT_MISS) ] = 0x0,
|
|
},
|
|
},
|
|
[ C(ITLB) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT */
|
|
[ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
},
|
|
[ C(BPU ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
|
|
[ C(RESULT_MISS) ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
},
|
|
[ C(NODE) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x01b7,
|
|
[ C(RESULT_MISS) ] = 0x01b7,
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x01b7,
|
|
[ C(RESULT_MISS) ] = 0x01b7,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x01b7,
|
|
[ C(RESULT_MISS) ] = 0x01b7,
|
|
},
|
|
},
|
|
|
|
};
|
|
|
|
/*
|
|
* Notes on the events:
|
|
* - data reads do not include code reads (comparable to earlier tables)
|
|
* - data counts include speculative execution (except L1 write, dtlb, bpu)
|
|
* - remote node access includes remote memory, remote cache, remote mmio.
|
|
* - prefetches are not included in the counts because they are not
|
|
* reliably counted.
|
|
*/
|
|
|
|
#define HSW_DEMAND_DATA_RD BIT_ULL(0)
|
|
#define HSW_DEMAND_RFO BIT_ULL(1)
|
|
#define HSW_ANY_RESPONSE BIT_ULL(16)
|
|
#define HSW_SUPPLIER_NONE BIT_ULL(17)
|
|
#define HSW_L3_MISS_LOCAL_DRAM BIT_ULL(22)
|
|
#define HSW_L3_MISS_REMOTE_HOP0 BIT_ULL(27)
|
|
#define HSW_L3_MISS_REMOTE_HOP1 BIT_ULL(28)
|
|
#define HSW_L3_MISS_REMOTE_HOP2P BIT_ULL(29)
|
|
#define HSW_L3_MISS (HSW_L3_MISS_LOCAL_DRAM| \
|
|
HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
|
|
HSW_L3_MISS_REMOTE_HOP2P)
|
|
#define HSW_SNOOP_NONE BIT_ULL(31)
|
|
#define HSW_SNOOP_NOT_NEEDED BIT_ULL(32)
|
|
#define HSW_SNOOP_MISS BIT_ULL(33)
|
|
#define HSW_SNOOP_HIT_NO_FWD BIT_ULL(34)
|
|
#define HSW_SNOOP_HIT_WITH_FWD BIT_ULL(35)
|
|
#define HSW_SNOOP_HITM BIT_ULL(36)
|
|
#define HSW_SNOOP_NON_DRAM BIT_ULL(37)
|
|
#define HSW_ANY_SNOOP (HSW_SNOOP_NONE| \
|
|
HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
|
|
HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
|
|
HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
|
|
#define HSW_SNOOP_DRAM (HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
|
|
#define HSW_DEMAND_READ HSW_DEMAND_DATA_RD
|
|
#define HSW_DEMAND_WRITE HSW_DEMAND_RFO
|
|
#define HSW_L3_MISS_REMOTE (HSW_L3_MISS_REMOTE_HOP0|\
|
|
HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
|
|
#define HSW_LLC_ACCESS HSW_ANY_RESPONSE
|
|
|
|
#define BDW_L3_MISS_LOCAL BIT(26)
|
|
#define BDW_L3_MISS (BDW_L3_MISS_LOCAL| \
|
|
HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
|
|
HSW_L3_MISS_REMOTE_HOP2P)
|
|
|
|
|
|
static __initconst const u64 hsw_hw_cache_event_ids
|
|
[PERF_COUNT_HW_CACHE_MAX]
|
|
[PERF_COUNT_HW_CACHE_OP_MAX]
|
|
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
|
|
{
|
|
[ C(L1D ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
|
|
[ C(RESULT_MISS) ] = 0x151, /* L1D.REPLACEMENT */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
|
|
[ C(RESULT_MISS) ] = 0x0,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0,
|
|
[ C(RESULT_MISS) ] = 0x0,
|
|
},
|
|
},
|
|
[ C(L1I ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0,
|
|
[ C(RESULT_MISS) ] = 0x280, /* ICACHE.MISSES */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0,
|
|
[ C(RESULT_MISS) ] = 0x0,
|
|
},
|
|
},
|
|
[ C(LL ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
|
|
[ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
|
|
[ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0,
|
|
[ C(RESULT_MISS) ] = 0x0,
|
|
},
|
|
},
|
|
[ C(DTLB) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
|
|
[ C(RESULT_MISS) ] = 0x108, /* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
|
|
[ C(RESULT_MISS) ] = 0x149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0,
|
|
[ C(RESULT_MISS) ] = 0x0,
|
|
},
|
|
},
|
|
[ C(ITLB) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x6085, /* ITLB_MISSES.STLB_HIT */
|
|
[ C(RESULT_MISS) ] = 0x185, /* ITLB_MISSES.MISS_CAUSES_A_WALK */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
},
|
|
[ C(BPU ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */
|
|
[ C(RESULT_MISS) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
},
|
|
[ C(NODE) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
|
|
[ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
|
|
[ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0,
|
|
[ C(RESULT_MISS) ] = 0x0,
|
|
},
|
|
},
|
|
};
|
|
|
|
static __initconst const u64 hsw_hw_cache_extra_regs
|
|
[PERF_COUNT_HW_CACHE_MAX]
|
|
[PERF_COUNT_HW_CACHE_OP_MAX]
|
|
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
|
|
{
|
|
[ C(LL ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
|
|
HSW_LLC_ACCESS,
|
|
[ C(RESULT_MISS) ] = HSW_DEMAND_READ|
|
|
HSW_L3_MISS|HSW_ANY_SNOOP,
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
|
|
HSW_LLC_ACCESS,
|
|
[ C(RESULT_MISS) ] = HSW_DEMAND_WRITE|
|
|
HSW_L3_MISS|HSW_ANY_SNOOP,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0,
|
|
[ C(RESULT_MISS) ] = 0x0,
|
|
},
|
|
},
|
|
[ C(NODE) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
|
|
HSW_L3_MISS_LOCAL_DRAM|
|
|
HSW_SNOOP_DRAM,
|
|
[ C(RESULT_MISS) ] = HSW_DEMAND_READ|
|
|
HSW_L3_MISS_REMOTE|
|
|
HSW_SNOOP_DRAM,
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
|
|
HSW_L3_MISS_LOCAL_DRAM|
|
|
HSW_SNOOP_DRAM,
|
|
[ C(RESULT_MISS) ] = HSW_DEMAND_WRITE|
|
|
HSW_L3_MISS_REMOTE|
|
|
HSW_SNOOP_DRAM,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0,
|
|
[ C(RESULT_MISS) ] = 0x0,
|
|
},
|
|
},
|
|
};
|
|
|
|
static __initconst const u64 westmere_hw_cache_event_ids
|
|
[PERF_COUNT_HW_CACHE_MAX]
|
|
[PERF_COUNT_HW_CACHE_OP_MAX]
|
|
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
|
|
{
|
|
[ C(L1D) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
|
|
[ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
|
|
[ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
|
|
[ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
|
|
},
|
|
},
|
|
[ C(L1I ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
|
|
[ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0,
|
|
[ C(RESULT_MISS) ] = 0x0,
|
|
},
|
|
},
|
|
[ C(LL ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
|
|
[ C(RESULT_ACCESS) ] = 0x01b7,
|
|
/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
|
|
[ C(RESULT_MISS) ] = 0x01b7,
|
|
},
|
|
/*
|
|
* Use RFO, not WRITEBACK, because a write miss would typically occur
|
|
* on RFO.
|
|
*/
|
|
[ C(OP_WRITE) ] = {
|
|
/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
|
|
[ C(RESULT_ACCESS) ] = 0x01b7,
|
|
/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
|
|
[ C(RESULT_MISS) ] = 0x01b7,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
|
|
[ C(RESULT_ACCESS) ] = 0x01b7,
|
|
/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
|
|
[ C(RESULT_MISS) ] = 0x01b7,
|
|
},
|
|
},
|
|
[ C(DTLB) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
|
|
[ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
|
|
[ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0,
|
|
[ C(RESULT_MISS) ] = 0x0,
|
|
},
|
|
},
|
|
[ C(ITLB) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
|
|
[ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.ANY */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
},
|
|
[ C(BPU ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
|
|
[ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
},
|
|
[ C(NODE) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x01b7,
|
|
[ C(RESULT_MISS) ] = 0x01b7,
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x01b7,
|
|
[ C(RESULT_MISS) ] = 0x01b7,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x01b7,
|
|
[ C(RESULT_MISS) ] = 0x01b7,
|
|
},
|
|
},
|
|
};
|
|
|
|
/*
|
|
* Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
|
|
* See IA32 SDM Vol 3B 30.6.1.3
|
|
*/
|
|
|
|
#define NHM_DMND_DATA_RD (1 << 0)
|
|
#define NHM_DMND_RFO (1 << 1)
|
|
#define NHM_DMND_IFETCH (1 << 2)
|
|
#define NHM_DMND_WB (1 << 3)
|
|
#define NHM_PF_DATA_RD (1 << 4)
|
|
#define NHM_PF_DATA_RFO (1 << 5)
|
|
#define NHM_PF_IFETCH (1 << 6)
|
|
#define NHM_OFFCORE_OTHER (1 << 7)
|
|
#define NHM_UNCORE_HIT (1 << 8)
|
|
#define NHM_OTHER_CORE_HIT_SNP (1 << 9)
|
|
#define NHM_OTHER_CORE_HITM (1 << 10)
|
|
/* reserved */
|
|
#define NHM_REMOTE_CACHE_FWD (1 << 12)
|
|
#define NHM_REMOTE_DRAM (1 << 13)
|
|
#define NHM_LOCAL_DRAM (1 << 14)
|
|
#define NHM_NON_DRAM (1 << 15)
|
|
|
|
#define NHM_LOCAL (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
|
|
#define NHM_REMOTE (NHM_REMOTE_DRAM)
|
|
|
|
#define NHM_DMND_READ (NHM_DMND_DATA_RD)
|
|
#define NHM_DMND_WRITE (NHM_DMND_RFO|NHM_DMND_WB)
|
|
#define NHM_DMND_PREFETCH (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
|
|
|
|
#define NHM_L3_HIT (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
|
|
#define NHM_L3_MISS (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
|
|
#define NHM_L3_ACCESS (NHM_L3_HIT|NHM_L3_MISS)
|
|
|
|
static __initconst const u64 nehalem_hw_cache_extra_regs
|
|
[PERF_COUNT_HW_CACHE_MAX]
|
|
[PERF_COUNT_HW_CACHE_OP_MAX]
|
|
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
|
|
{
|
|
[ C(LL ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
|
|
[ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_L3_MISS,
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
|
|
[ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_L3_MISS,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
|
|
[ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
|
|
},
|
|
},
|
|
[ C(NODE) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
|
|
[ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_REMOTE,
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
|
|
[ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_REMOTE,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
|
|
[ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_REMOTE,
|
|
},
|
|
},
|
|
};
|
|
|
|
static __initconst const u64 nehalem_hw_cache_event_ids
|
|
[PERF_COUNT_HW_CACHE_MAX]
|
|
[PERF_COUNT_HW_CACHE_OP_MAX]
|
|
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
|
|
{
|
|
[ C(L1D) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
|
|
[ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
|
|
[ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
|
|
[ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
|
|
},
|
|
},
|
|
[ C(L1I ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
|
|
[ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0,
|
|
[ C(RESULT_MISS) ] = 0x0,
|
|
},
|
|
},
|
|
[ C(LL ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
|
|
[ C(RESULT_ACCESS) ] = 0x01b7,
|
|
/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
|
|
[ C(RESULT_MISS) ] = 0x01b7,
|
|
},
|
|
/*
|
|
* Use RFO, not WRITEBACK, because a write miss would typically occur
|
|
* on RFO.
|
|
*/
|
|
[ C(OP_WRITE) ] = {
|
|
/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
|
|
[ C(RESULT_ACCESS) ] = 0x01b7,
|
|
/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
|
|
[ C(RESULT_MISS) ] = 0x01b7,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
|
|
[ C(RESULT_ACCESS) ] = 0x01b7,
|
|
/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
|
|
[ C(RESULT_MISS) ] = 0x01b7,
|
|
},
|
|
},
|
|
[ C(DTLB) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
|
|
[ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
|
|
[ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0,
|
|
[ C(RESULT_MISS) ] = 0x0,
|
|
},
|
|
},
|
|
[ C(ITLB) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
|
|
[ C(RESULT_MISS) ] = 0x20c8, /* ITLB_MISS_RETIRED */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
},
|
|
[ C(BPU ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
|
|
[ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
},
|
|
[ C(NODE) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x01b7,
|
|
[ C(RESULT_MISS) ] = 0x01b7,
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x01b7,
|
|
[ C(RESULT_MISS) ] = 0x01b7,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x01b7,
|
|
[ C(RESULT_MISS) ] = 0x01b7,
|
|
},
|
|
},
|
|
};
|
|
|
|
static __initconst const u64 core2_hw_cache_event_ids
|
|
[PERF_COUNT_HW_CACHE_MAX]
|
|
[PERF_COUNT_HW_CACHE_OP_MAX]
|
|
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
|
|
{
|
|
[ C(L1D) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
|
|
[ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
|
|
[ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */
|
|
[ C(RESULT_MISS) ] = 0,
|
|
},
|
|
},
|
|
[ C(L1I ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS */
|
|
[ C(RESULT_MISS) ] = 0x0081, /* L1I.MISSES */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0,
|
|
[ C(RESULT_MISS) ] = 0,
|
|
},
|
|
},
|
|
[ C(LL ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
|
|
[ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
|
|
[ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0,
|
|
[ C(RESULT_MISS) ] = 0,
|
|
},
|
|
},
|
|
[ C(DTLB) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
|
|
[ C(RESULT_MISS) ] = 0x0208, /* DTLB_MISSES.MISS_LD */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
|
|
[ C(RESULT_MISS) ] = 0x0808, /* DTLB_MISSES.MISS_ST */
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0,
|
|
[ C(RESULT_MISS) ] = 0,
|
|
},
|
|
},
|
|
[ C(ITLB) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
|
|
[ C(RESULT_MISS) ] = 0x1282, /* ITLBMISSES */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
},
|
|
[ C(BPU ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
|
|
[ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
},
|
|
};
|
|
|
|
static __initconst const u64 atom_hw_cache_event_ids
|
|
[PERF_COUNT_HW_CACHE_MAX]
|
|
[PERF_COUNT_HW_CACHE_OP_MAX]
|
|
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
|
|
{
|
|
[ C(L1D) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD */
|
|
[ C(RESULT_MISS) ] = 0,
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST */
|
|
[ C(RESULT_MISS) ] = 0,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0,
|
|
[ C(RESULT_MISS) ] = 0,
|
|
},
|
|
},
|
|
[ C(L1I ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
|
|
[ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0,
|
|
[ C(RESULT_MISS) ] = 0,
|
|
},
|
|
},
|
|
[ C(LL ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
|
|
[ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
|
|
[ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0,
|
|
[ C(RESULT_MISS) ] = 0,
|
|
},
|
|
},
|
|
[ C(DTLB) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */
|
|
[ C(RESULT_MISS) ] = 0x0508, /* DTLB_MISSES.MISS_LD */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */
|
|
[ C(RESULT_MISS) ] = 0x0608, /* DTLB_MISSES.MISS_ST */
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0,
|
|
[ C(RESULT_MISS) ] = 0,
|
|
},
|
|
},
|
|
[ C(ITLB) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
|
|
[ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
},
|
|
[ C(BPU ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
|
|
[ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
},
|
|
};
|
|
|
|
EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c");
|
|
EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2");
|
|
/* no_alloc_cycles.not_delivered */
|
|
EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm,
|
|
"event=0xca,umask=0x50");
|
|
EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2");
|
|
/* uops_retired.all */
|
|
EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm,
|
|
"event=0xc2,umask=0x10");
|
|
/* uops_retired.all */
|
|
EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm,
|
|
"event=0xc2,umask=0x10");
|
|
|
|
static struct attribute *slm_events_attrs[] = {
|
|
EVENT_PTR(td_total_slots_slm),
|
|
EVENT_PTR(td_total_slots_scale_slm),
|
|
EVENT_PTR(td_fetch_bubbles_slm),
|
|
EVENT_PTR(td_fetch_bubbles_scale_slm),
|
|
EVENT_PTR(td_slots_issued_slm),
|
|
EVENT_PTR(td_slots_retired_slm),
|
|
NULL
|
|
};
|
|
|
|
static struct extra_reg intel_slm_extra_regs[] __read_mostly =
|
|
{
|
|
/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
|
|
INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
|
|
INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
|
|
EVENT_EXTRA_END
|
|
};
|
|
|
|
#define SLM_DMND_READ SNB_DMND_DATA_RD
|
|
#define SLM_DMND_WRITE SNB_DMND_RFO
|
|
#define SLM_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
|
|
|
|
#define SLM_SNP_ANY (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
|
|
#define SLM_LLC_ACCESS SNB_RESP_ANY
|
|
#define SLM_LLC_MISS (SLM_SNP_ANY|SNB_NON_DRAM)
|
|
|
|
static __initconst const u64 slm_hw_cache_extra_regs
|
|
[PERF_COUNT_HW_CACHE_MAX]
|
|
[PERF_COUNT_HW_CACHE_OP_MAX]
|
|
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
|
|
{
|
|
[ C(LL ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
|
|
[ C(RESULT_MISS) ] = 0,
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
|
|
[ C(RESULT_MISS) ] = SLM_DMND_WRITE|SLM_LLC_MISS,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
|
|
[ C(RESULT_MISS) ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
|
|
},
|
|
},
|
|
};
|
|
|
|
static __initconst const u64 slm_hw_cache_event_ids
|
|
[PERF_COUNT_HW_CACHE_MAX]
|
|
[PERF_COUNT_HW_CACHE_OP_MAX]
|
|
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
|
|
{
|
|
[ C(L1D) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0,
|
|
[ C(RESULT_MISS) ] = 0x0104, /* LD_DCU_MISS */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0,
|
|
[ C(RESULT_MISS) ] = 0,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0,
|
|
[ C(RESULT_MISS) ] = 0,
|
|
},
|
|
},
|
|
[ C(L1I ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
|
|
[ C(RESULT_MISS) ] = 0x0280, /* ICACGE.MISSES */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0,
|
|
[ C(RESULT_MISS) ] = 0,
|
|
},
|
|
},
|
|
[ C(LL ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
|
|
[ C(RESULT_ACCESS) ] = 0x01b7,
|
|
[ C(RESULT_MISS) ] = 0,
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
|
|
[ C(RESULT_ACCESS) ] = 0x01b7,
|
|
/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
|
|
[ C(RESULT_MISS) ] = 0x01b7,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
|
|
[ C(RESULT_ACCESS) ] = 0x01b7,
|
|
/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
|
|
[ C(RESULT_MISS) ] = 0x01b7,
|
|
},
|
|
},
|
|
[ C(DTLB) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0,
|
|
[ C(RESULT_MISS) ] = 0x0804, /* LD_DTLB_MISS */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0,
|
|
[ C(RESULT_MISS) ] = 0,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0,
|
|
[ C(RESULT_MISS) ] = 0,
|
|
},
|
|
},
|
|
[ C(ITLB) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
|
|
[ C(RESULT_MISS) ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
},
|
|
[ C(BPU ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
|
|
[ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
},
|
|
};
|
|
|
|
EVENT_ATTR_STR(topdown-total-slots, td_total_slots_glm, "event=0x3c");
|
|
EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_glm, "3");
|
|
/* UOPS_NOT_DELIVERED.ANY */
|
|
EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_glm, "event=0x9c");
|
|
/* ISSUE_SLOTS_NOT_CONSUMED.RECOVERY */
|
|
EVENT_ATTR_STR(topdown-recovery-bubbles, td_recovery_bubbles_glm, "event=0xca,umask=0x02");
|
|
/* UOPS_RETIRED.ANY */
|
|
EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_glm, "event=0xc2");
|
|
/* UOPS_ISSUED.ANY */
|
|
EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_glm, "event=0x0e");
|
|
|
|
static struct attribute *glm_events_attrs[] = {
|
|
EVENT_PTR(td_total_slots_glm),
|
|
EVENT_PTR(td_total_slots_scale_glm),
|
|
EVENT_PTR(td_fetch_bubbles_glm),
|
|
EVENT_PTR(td_recovery_bubbles_glm),
|
|
EVENT_PTR(td_slots_issued_glm),
|
|
EVENT_PTR(td_slots_retired_glm),
|
|
NULL
|
|
};
|
|
|
|
static struct extra_reg intel_glm_extra_regs[] __read_mostly = {
|
|
/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
|
|
INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0),
|
|
INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1),
|
|
EVENT_EXTRA_END
|
|
};
|
|
|
|
#define GLM_DEMAND_DATA_RD BIT_ULL(0)
|
|
#define GLM_DEMAND_RFO BIT_ULL(1)
|
|
#define GLM_ANY_RESPONSE BIT_ULL(16)
|
|
#define GLM_SNP_NONE_OR_MISS BIT_ULL(33)
|
|
#define GLM_DEMAND_READ GLM_DEMAND_DATA_RD
|
|
#define GLM_DEMAND_WRITE GLM_DEMAND_RFO
|
|
#define GLM_DEMAND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
|
|
#define GLM_LLC_ACCESS GLM_ANY_RESPONSE
|
|
#define GLM_SNP_ANY (GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
|
|
#define GLM_LLC_MISS (GLM_SNP_ANY|SNB_NON_DRAM)
|
|
|
|
static __initconst const u64 glm_hw_cache_event_ids
|
|
[PERF_COUNT_HW_CACHE_MAX]
|
|
[PERF_COUNT_HW_CACHE_OP_MAX]
|
|
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
|
|
[C(L1D)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
|
|
[C(RESULT_MISS)] = 0x0,
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
|
|
[C(RESULT_MISS)] = 0x0,
|
|
},
|
|
[C(OP_PREFETCH)] = {
|
|
[C(RESULT_ACCESS)] = 0x0,
|
|
[C(RESULT_MISS)] = 0x0,
|
|
},
|
|
},
|
|
[C(L1I)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = 0x0380, /* ICACHE.ACCESSES */
|
|
[C(RESULT_MISS)] = 0x0280, /* ICACHE.MISSES */
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_ACCESS)] = -1,
|
|
[C(RESULT_MISS)] = -1,
|
|
},
|
|
[C(OP_PREFETCH)] = {
|
|
[C(RESULT_ACCESS)] = 0x0,
|
|
[C(RESULT_MISS)] = 0x0,
|
|
},
|
|
},
|
|
[C(LL)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
|
|
[C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
|
|
[C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
|
|
},
|
|
[C(OP_PREFETCH)] = {
|
|
[C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
|
|
[C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
|
|
},
|
|
},
|
|
[C(DTLB)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
|
|
[C(RESULT_MISS)] = 0x0,
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
|
|
[C(RESULT_MISS)] = 0x0,
|
|
},
|
|
[C(OP_PREFETCH)] = {
|
|
[C(RESULT_ACCESS)] = 0x0,
|
|
[C(RESULT_MISS)] = 0x0,
|
|
},
|
|
},
|
|
[C(ITLB)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = 0x00c0, /* INST_RETIRED.ANY_P */
|
|
[C(RESULT_MISS)] = 0x0481, /* ITLB.MISS */
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_ACCESS)] = -1,
|
|
[C(RESULT_MISS)] = -1,
|
|
},
|
|
[C(OP_PREFETCH)] = {
|
|
[C(RESULT_ACCESS)] = -1,
|
|
[C(RESULT_MISS)] = -1,
|
|
},
|
|
},
|
|
[C(BPU)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
|
|
[C(RESULT_MISS)] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_ACCESS)] = -1,
|
|
[C(RESULT_MISS)] = -1,
|
|
},
|
|
[C(OP_PREFETCH)] = {
|
|
[C(RESULT_ACCESS)] = -1,
|
|
[C(RESULT_MISS)] = -1,
|
|
},
|
|
},
|
|
};
|
|
|
|
static __initconst const u64 glm_hw_cache_extra_regs
|
|
[PERF_COUNT_HW_CACHE_MAX]
|
|
[PERF_COUNT_HW_CACHE_OP_MAX]
|
|
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
|
|
[C(LL)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = GLM_DEMAND_READ|
|
|
GLM_LLC_ACCESS,
|
|
[C(RESULT_MISS)] = GLM_DEMAND_READ|
|
|
GLM_LLC_MISS,
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_ACCESS)] = GLM_DEMAND_WRITE|
|
|
GLM_LLC_ACCESS,
|
|
[C(RESULT_MISS)] = GLM_DEMAND_WRITE|
|
|
GLM_LLC_MISS,
|
|
},
|
|
[C(OP_PREFETCH)] = {
|
|
[C(RESULT_ACCESS)] = GLM_DEMAND_PREFETCH|
|
|
GLM_LLC_ACCESS,
|
|
[C(RESULT_MISS)] = GLM_DEMAND_PREFETCH|
|
|
GLM_LLC_MISS,
|
|
},
|
|
},
|
|
};
|
|
|
|
static __initconst const u64 glp_hw_cache_event_ids
|
|
[PERF_COUNT_HW_CACHE_MAX]
|
|
[PERF_COUNT_HW_CACHE_OP_MAX]
|
|
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
|
|
[C(L1D)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
|
|
[C(RESULT_MISS)] = 0x0,
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
|
|
[C(RESULT_MISS)] = 0x0,
|
|
},
|
|
[C(OP_PREFETCH)] = {
|
|
[C(RESULT_ACCESS)] = 0x0,
|
|
[C(RESULT_MISS)] = 0x0,
|
|
},
|
|
},
|
|
[C(L1I)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = 0x0380, /* ICACHE.ACCESSES */
|
|
[C(RESULT_MISS)] = 0x0280, /* ICACHE.MISSES */
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_ACCESS)] = -1,
|
|
[C(RESULT_MISS)] = -1,
|
|
},
|
|
[C(OP_PREFETCH)] = {
|
|
[C(RESULT_ACCESS)] = 0x0,
|
|
[C(RESULT_MISS)] = 0x0,
|
|
},
|
|
},
|
|
[C(LL)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
|
|
[C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
|
|
[C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
|
|
},
|
|
[C(OP_PREFETCH)] = {
|
|
[C(RESULT_ACCESS)] = 0x0,
|
|
[C(RESULT_MISS)] = 0x0,
|
|
},
|
|
},
|
|
[C(DTLB)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
|
|
[C(RESULT_MISS)] = 0xe08, /* DTLB_LOAD_MISSES.WALK_COMPLETED */
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
|
|
[C(RESULT_MISS)] = 0xe49, /* DTLB_STORE_MISSES.WALK_COMPLETED */
|
|
},
|
|
[C(OP_PREFETCH)] = {
|
|
[C(RESULT_ACCESS)] = 0x0,
|
|
[C(RESULT_MISS)] = 0x0,
|
|
},
|
|
},
|
|
[C(ITLB)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = 0x00c0, /* INST_RETIRED.ANY_P */
|
|
[C(RESULT_MISS)] = 0x0481, /* ITLB.MISS */
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_ACCESS)] = -1,
|
|
[C(RESULT_MISS)] = -1,
|
|
},
|
|
[C(OP_PREFETCH)] = {
|
|
[C(RESULT_ACCESS)] = -1,
|
|
[C(RESULT_MISS)] = -1,
|
|
},
|
|
},
|
|
[C(BPU)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
|
|
[C(RESULT_MISS)] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_ACCESS)] = -1,
|
|
[C(RESULT_MISS)] = -1,
|
|
},
|
|
[C(OP_PREFETCH)] = {
|
|
[C(RESULT_ACCESS)] = -1,
|
|
[C(RESULT_MISS)] = -1,
|
|
},
|
|
},
|
|
};
|
|
|
|
static __initconst const u64 glp_hw_cache_extra_regs
|
|
[PERF_COUNT_HW_CACHE_MAX]
|
|
[PERF_COUNT_HW_CACHE_OP_MAX]
|
|
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
|
|
[C(LL)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = GLM_DEMAND_READ|
|
|
GLM_LLC_ACCESS,
|
|
[C(RESULT_MISS)] = GLM_DEMAND_READ|
|
|
GLM_LLC_MISS,
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_ACCESS)] = GLM_DEMAND_WRITE|
|
|
GLM_LLC_ACCESS,
|
|
[C(RESULT_MISS)] = GLM_DEMAND_WRITE|
|
|
GLM_LLC_MISS,
|
|
},
|
|
[C(OP_PREFETCH)] = {
|
|
[C(RESULT_ACCESS)] = 0x0,
|
|
[C(RESULT_MISS)] = 0x0,
|
|
},
|
|
},
|
|
};
|
|
|
|
#define TNT_LOCAL_DRAM BIT_ULL(26)
|
|
#define TNT_DEMAND_READ GLM_DEMAND_DATA_RD
|
|
#define TNT_DEMAND_WRITE GLM_DEMAND_RFO
|
|
#define TNT_LLC_ACCESS GLM_ANY_RESPONSE
|
|
#define TNT_SNP_ANY (SNB_SNP_NOT_NEEDED|SNB_SNP_MISS| \
|
|
SNB_NO_FWD|SNB_SNP_FWD|SNB_HITM)
|
|
#define TNT_LLC_MISS (TNT_SNP_ANY|SNB_NON_DRAM|TNT_LOCAL_DRAM)
|
|
|
|
static __initconst const u64 tnt_hw_cache_extra_regs
|
|
[PERF_COUNT_HW_CACHE_MAX]
|
|
[PERF_COUNT_HW_CACHE_OP_MAX]
|
|
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
|
|
[C(LL)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = TNT_DEMAND_READ|
|
|
TNT_LLC_ACCESS,
|
|
[C(RESULT_MISS)] = TNT_DEMAND_READ|
|
|
TNT_LLC_MISS,
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_ACCESS)] = TNT_DEMAND_WRITE|
|
|
TNT_LLC_ACCESS,
|
|
[C(RESULT_MISS)] = TNT_DEMAND_WRITE|
|
|
TNT_LLC_MISS,
|
|
},
|
|
[C(OP_PREFETCH)] = {
|
|
[C(RESULT_ACCESS)] = 0x0,
|
|
[C(RESULT_MISS)] = 0x0,
|
|
},
|
|
},
|
|
};
|
|
|
|
EVENT_ATTR_STR(topdown-fe-bound, td_fe_bound_tnt, "event=0x71,umask=0x0");
|
|
EVENT_ATTR_STR(topdown-retiring, td_retiring_tnt, "event=0xc2,umask=0x0");
|
|
EVENT_ATTR_STR(topdown-bad-spec, td_bad_spec_tnt, "event=0x73,umask=0x6");
|
|
EVENT_ATTR_STR(topdown-be-bound, td_be_bound_tnt, "event=0x74,umask=0x0");
|
|
|
|
static struct attribute *tnt_events_attrs[] = {
|
|
EVENT_PTR(td_fe_bound_tnt),
|
|
EVENT_PTR(td_retiring_tnt),
|
|
EVENT_PTR(td_bad_spec_tnt),
|
|
EVENT_PTR(td_be_bound_tnt),
|
|
NULL,
|
|
};
|
|
|
|
static struct extra_reg intel_tnt_extra_regs[] __read_mostly = {
|
|
/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
|
|
INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x800ff0ffffff9fffull, RSP_0),
|
|
INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0xff0ffffff9fffull, RSP_1),
|
|
EVENT_EXTRA_END
|
|
};
|
|
|
|
EVENT_ATTR_STR(mem-loads, mem_ld_grt, "event=0xd0,umask=0x5,ldlat=3");
|
|
EVENT_ATTR_STR(mem-stores, mem_st_grt, "event=0xd0,umask=0x6");
|
|
|
|
static struct attribute *grt_mem_attrs[] = {
|
|
EVENT_PTR(mem_ld_grt),
|
|
EVENT_PTR(mem_st_grt),
|
|
NULL
|
|
};
|
|
|
|
static struct extra_reg intel_grt_extra_regs[] __read_mostly = {
|
|
/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
|
|
INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
|
|
INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
|
|
INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x5d0),
|
|
EVENT_EXTRA_END
|
|
};
|
|
|
|
static struct extra_reg intel_cmt_extra_regs[] __read_mostly = {
|
|
/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
|
|
INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x800ff3ffffffffffull, RSP_0),
|
|
INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0xff3ffffffffffull, RSP_1),
|
|
INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x5d0),
|
|
INTEL_UEVENT_EXTRA_REG(0x0127, MSR_SNOOP_RSP_0, 0xffffffffffffffffull, SNOOP_0),
|
|
INTEL_UEVENT_EXTRA_REG(0x0227, MSR_SNOOP_RSP_1, 0xffffffffffffffffull, SNOOP_1),
|
|
EVENT_EXTRA_END
|
|
};
|
|
|
|
#define KNL_OT_L2_HITE BIT_ULL(19) /* Other Tile L2 Hit */
|
|
#define KNL_OT_L2_HITF BIT_ULL(20) /* Other Tile L2 Hit */
|
|
#define KNL_MCDRAM_LOCAL BIT_ULL(21)
|
|
#define KNL_MCDRAM_FAR BIT_ULL(22)
|
|
#define KNL_DDR_LOCAL BIT_ULL(23)
|
|
#define KNL_DDR_FAR BIT_ULL(24)
|
|
#define KNL_DRAM_ANY (KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
|
|
KNL_DDR_LOCAL | KNL_DDR_FAR)
|
|
#define KNL_L2_READ SLM_DMND_READ
|
|
#define KNL_L2_WRITE SLM_DMND_WRITE
|
|
#define KNL_L2_PREFETCH SLM_DMND_PREFETCH
|
|
#define KNL_L2_ACCESS SLM_LLC_ACCESS
|
|
#define KNL_L2_MISS (KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
|
|
KNL_DRAM_ANY | SNB_SNP_ANY | \
|
|
SNB_NON_DRAM)
|
|
|
|
static __initconst const u64 knl_hw_cache_extra_regs
|
|
[PERF_COUNT_HW_CACHE_MAX]
|
|
[PERF_COUNT_HW_CACHE_OP_MAX]
|
|
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
|
|
[C(LL)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
|
|
[C(RESULT_MISS)] = 0,
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
|
|
[C(RESULT_MISS)] = KNL_L2_WRITE | KNL_L2_MISS,
|
|
},
|
|
[C(OP_PREFETCH)] = {
|
|
[C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
|
|
[C(RESULT_MISS)] = KNL_L2_PREFETCH | KNL_L2_MISS,
|
|
},
|
|
},
|
|
};
|
|
|
|
/*
|
|
* Used from PMIs where the LBRs are already disabled.
|
|
*
|
|
* This function could be called consecutively. It is required to remain in
|
|
* disabled state if called consecutively.
|
|
*
|
|
* During consecutive calls, the same disable value will be written to related
|
|
* registers, so the PMU state remains unchanged.
|
|
*
|
|
* intel_bts events don't coexist with intel PMU's BTS events because of
|
|
* x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them
|
|
* disabled around intel PMU's event batching etc, only inside the PMI handler.
|
|
*
|
|
* Avoid PEBS_ENABLE MSR access in PMIs.
|
|
* The GLOBAL_CTRL has been disabled. All the counters do not count anymore.
|
|
* It doesn't matter if the PEBS is enabled or not.
|
|
* Usually, the PEBS status are not changed in PMIs. It's unnecessary to
|
|
* access PEBS_ENABLE MSR in disable_all()/enable_all().
|
|
* However, there are some cases which may change PEBS status, e.g. PMI
|
|
* throttle. The PEBS_ENABLE should be updated where the status changes.
|
|
*/
|
|
static __always_inline void __intel_pmu_disable_all(bool bts)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
|
|
wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
|
|
|
|
if (bts && test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
|
|
intel_pmu_disable_bts();
|
|
}
|
|
|
|
static __always_inline void intel_pmu_disable_all(void)
|
|
{
|
|
__intel_pmu_disable_all(true);
|
|
intel_pmu_pebs_disable_all();
|
|
intel_pmu_lbr_disable_all();
|
|
}
|
|
|
|
static void __intel_pmu_enable_all(int added, bool pmi)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
|
|
|
|
intel_pmu_lbr_enable_all(pmi);
|
|
|
|
if (cpuc->fixed_ctrl_val != cpuc->active_fixed_ctrl_val) {
|
|
wrmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, cpuc->fixed_ctrl_val);
|
|
cpuc->active_fixed_ctrl_val = cpuc->fixed_ctrl_val;
|
|
}
|
|
|
|
wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
|
|
intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
|
|
|
|
if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
|
|
struct perf_event *event =
|
|
cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
|
|
|
|
if (WARN_ON_ONCE(!event))
|
|
return;
|
|
|
|
intel_pmu_enable_bts(event->hw.config);
|
|
}
|
|
}
|
|
|
|
static void intel_pmu_enable_all(int added)
|
|
{
|
|
intel_pmu_pebs_enable_all();
|
|
__intel_pmu_enable_all(added, false);
|
|
}
|
|
|
|
static noinline int
|
|
__intel_pmu_snapshot_branch_stack(struct perf_branch_entry *entries,
|
|
unsigned int cnt, unsigned long flags)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
|
|
intel_pmu_lbr_read();
|
|
cnt = min_t(unsigned int, cnt, x86_pmu.lbr_nr);
|
|
|
|
memcpy(entries, cpuc->lbr_entries, sizeof(struct perf_branch_entry) * cnt);
|
|
intel_pmu_enable_all(0);
|
|
local_irq_restore(flags);
|
|
return cnt;
|
|
}
|
|
|
|
static int
|
|
intel_pmu_snapshot_branch_stack(struct perf_branch_entry *entries, unsigned int cnt)
|
|
{
|
|
unsigned long flags;
|
|
|
|
/* must not have branches... */
|
|
local_irq_save(flags);
|
|
__intel_pmu_disable_all(false); /* we don't care about BTS */
|
|
__intel_pmu_lbr_disable();
|
|
/* ... until here */
|
|
return __intel_pmu_snapshot_branch_stack(entries, cnt, flags);
|
|
}
|
|
|
|
static int
|
|
intel_pmu_snapshot_arch_branch_stack(struct perf_branch_entry *entries, unsigned int cnt)
|
|
{
|
|
unsigned long flags;
|
|
|
|
/* must not have branches... */
|
|
local_irq_save(flags);
|
|
__intel_pmu_disable_all(false); /* we don't care about BTS */
|
|
__intel_pmu_arch_lbr_disable();
|
|
/* ... until here */
|
|
return __intel_pmu_snapshot_branch_stack(entries, cnt, flags);
|
|
}
|
|
|
|
/*
|
|
* Workaround for:
|
|
* Intel Errata AAK100 (model 26)
|
|
* Intel Errata AAP53 (model 30)
|
|
* Intel Errata BD53 (model 44)
|
|
*
|
|
* The official story:
|
|
* These chips need to be 'reset' when adding counters by programming the
|
|
* magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
|
|
* in sequence on the same PMC or on different PMCs.
|
|
*
|
|
* In practice it appears some of these events do in fact count, and
|
|
* we need to program all 4 events.
|
|
*/
|
|
static void intel_pmu_nhm_workaround(void)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
static const unsigned long nhm_magic[4] = {
|
|
0x4300B5,
|
|
0x4300D2,
|
|
0x4300B1,
|
|
0x4300B1
|
|
};
|
|
struct perf_event *event;
|
|
int i;
|
|
|
|
/*
|
|
* The Errata requires below steps:
|
|
* 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
|
|
* 2) Configure 4 PERFEVTSELx with the magic events and clear
|
|
* the corresponding PMCx;
|
|
* 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
|
|
* 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
|
|
* 5) Clear 4 pairs of ERFEVTSELx and PMCx;
|
|
*/
|
|
|
|
/*
|
|
* The real steps we choose are a little different from above.
|
|
* A) To reduce MSR operations, we don't run step 1) as they
|
|
* are already cleared before this function is called;
|
|
* B) Call x86_perf_event_update to save PMCx before configuring
|
|
* PERFEVTSELx with magic number;
|
|
* C) With step 5), we do clear only when the PERFEVTSELx is
|
|
* not used currently.
|
|
* D) Call x86_perf_event_set_period to restore PMCx;
|
|
*/
|
|
|
|
/* We always operate 4 pairs of PERF Counters */
|
|
for (i = 0; i < 4; i++) {
|
|
event = cpuc->events[i];
|
|
if (event)
|
|
static_call(x86_pmu_update)(event);
|
|
}
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
|
|
wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
|
|
}
|
|
|
|
wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
|
|
wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
event = cpuc->events[i];
|
|
|
|
if (event) {
|
|
static_call(x86_pmu_set_period)(event);
|
|
__x86_pmu_enable_event(&event->hw,
|
|
ARCH_PERFMON_EVENTSEL_ENABLE);
|
|
} else
|
|
wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
|
|
}
|
|
}
|
|
|
|
static void intel_pmu_nhm_enable_all(int added)
|
|
{
|
|
if (added)
|
|
intel_pmu_nhm_workaround();
|
|
intel_pmu_enable_all(added);
|
|
}
|
|
|
|
static void intel_set_tfa(struct cpu_hw_events *cpuc, bool on)
|
|
{
|
|
u64 val = on ? MSR_TFA_RTM_FORCE_ABORT : 0;
|
|
|
|
if (cpuc->tfa_shadow != val) {
|
|
cpuc->tfa_shadow = val;
|
|
wrmsrl(MSR_TSX_FORCE_ABORT, val);
|
|
}
|
|
}
|
|
|
|
static void intel_tfa_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
|
|
{
|
|
/*
|
|
* We're going to use PMC3, make sure TFA is set before we touch it.
|
|
*/
|
|
if (cntr == 3)
|
|
intel_set_tfa(cpuc, true);
|
|
}
|
|
|
|
static void intel_tfa_pmu_enable_all(int added)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
|
|
/*
|
|
* If we find PMC3 is no longer used when we enable the PMU, we can
|
|
* clear TFA.
|
|
*/
|
|
if (!test_bit(3, cpuc->active_mask))
|
|
intel_set_tfa(cpuc, false);
|
|
|
|
intel_pmu_enable_all(added);
|
|
}
|
|
|
|
static inline u64 intel_pmu_get_status(void)
|
|
{
|
|
u64 status;
|
|
|
|
rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
|
|
|
|
return status;
|
|
}
|
|
|
|
static inline void intel_pmu_ack_status(u64 ack)
|
|
{
|
|
wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
|
|
}
|
|
|
|
static inline bool event_is_checkpointed(struct perf_event *event)
|
|
{
|
|
return unlikely(event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
|
|
}
|
|
|
|
static inline void intel_set_masks(struct perf_event *event, int idx)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
|
|
if (event->attr.exclude_host)
|
|
__set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
|
|
if (event->attr.exclude_guest)
|
|
__set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
|
|
if (event_is_checkpointed(event))
|
|
__set_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
|
|
}
|
|
|
|
static inline void intel_clear_masks(struct perf_event *event, int idx)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
|
|
__clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
|
|
__clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
|
|
__clear_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
|
|
}
|
|
|
|
static void intel_pmu_disable_fixed(struct perf_event *event)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
int idx = hwc->idx;
|
|
u64 mask;
|
|
|
|
if (is_topdown_idx(idx)) {
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
|
|
/*
|
|
* When there are other active TopDown events,
|
|
* don't disable the fixed counter 3.
|
|
*/
|
|
if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx))
|
|
return;
|
|
idx = INTEL_PMC_IDX_FIXED_SLOTS;
|
|
}
|
|
|
|
intel_clear_masks(event, idx);
|
|
|
|
mask = 0xfULL << ((idx - INTEL_PMC_IDX_FIXED) * 4);
|
|
cpuc->fixed_ctrl_val &= ~mask;
|
|
}
|
|
|
|
static void intel_pmu_disable_event(struct perf_event *event)
|
|
{
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
int idx = hwc->idx;
|
|
|
|
switch (idx) {
|
|
case 0 ... INTEL_PMC_IDX_FIXED - 1:
|
|
intel_clear_masks(event, idx);
|
|
x86_pmu_disable_event(event);
|
|
break;
|
|
case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1:
|
|
case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
|
|
intel_pmu_disable_fixed(event);
|
|
break;
|
|
case INTEL_PMC_IDX_FIXED_BTS:
|
|
intel_pmu_disable_bts();
|
|
intel_pmu_drain_bts_buffer();
|
|
return;
|
|
case INTEL_PMC_IDX_FIXED_VLBR:
|
|
intel_clear_masks(event, idx);
|
|
break;
|
|
default:
|
|
intel_clear_masks(event, idx);
|
|
pr_warn("Failed to disable the event with invalid index %d\n",
|
|
idx);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Needs to be called after x86_pmu_disable_event,
|
|
* so we don't trigger the event without PEBS bit set.
|
|
*/
|
|
if (unlikely(event->attr.precise_ip))
|
|
intel_pmu_pebs_disable(event);
|
|
}
|
|
|
|
static void intel_pmu_assign_event(struct perf_event *event, int idx)
|
|
{
|
|
if (is_pebs_pt(event))
|
|
perf_report_aux_output_id(event, idx);
|
|
}
|
|
|
|
static void intel_pmu_del_event(struct perf_event *event)
|
|
{
|
|
if (needs_branch_stack(event))
|
|
intel_pmu_lbr_del(event);
|
|
if (event->attr.precise_ip)
|
|
intel_pmu_pebs_del(event);
|
|
}
|
|
|
|
static int icl_set_topdown_event_period(struct perf_event *event)
|
|
{
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
s64 left = local64_read(&hwc->period_left);
|
|
|
|
/*
|
|
* The values in PERF_METRICS MSR are derived from fixed counter 3.
|
|
* Software should start both registers, PERF_METRICS and fixed
|
|
* counter 3, from zero.
|
|
* Clear PERF_METRICS and Fixed counter 3 in initialization.
|
|
* After that, both MSRs will be cleared for each read.
|
|
* Don't need to clear them again.
|
|
*/
|
|
if (left == x86_pmu.max_period) {
|
|
wrmsrl(MSR_CORE_PERF_FIXED_CTR3, 0);
|
|
wrmsrl(MSR_PERF_METRICS, 0);
|
|
hwc->saved_slots = 0;
|
|
hwc->saved_metric = 0;
|
|
}
|
|
|
|
if ((hwc->saved_slots) && is_slots_event(event)) {
|
|
wrmsrl(MSR_CORE_PERF_FIXED_CTR3, hwc->saved_slots);
|
|
wrmsrl(MSR_PERF_METRICS, hwc->saved_metric);
|
|
}
|
|
|
|
perf_event_update_userpage(event);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int adl_set_topdown_event_period(struct perf_event *event)
|
|
{
|
|
struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
|
|
|
|
if (pmu->cpu_type != hybrid_big)
|
|
return 0;
|
|
|
|
return icl_set_topdown_event_period(event);
|
|
}
|
|
|
|
DEFINE_STATIC_CALL(intel_pmu_set_topdown_event_period, x86_perf_event_set_period);
|
|
|
|
static inline u64 icl_get_metrics_event_value(u64 metric, u64 slots, int idx)
|
|
{
|
|
u32 val;
|
|
|
|
/*
|
|
* The metric is reported as an 8bit integer fraction
|
|
* summing up to 0xff.
|
|
* slots-in-metric = (Metric / 0xff) * slots
|
|
*/
|
|
val = (metric >> ((idx - INTEL_PMC_IDX_METRIC_BASE) * 8)) & 0xff;
|
|
return mul_u64_u32_div(slots, val, 0xff);
|
|
}
|
|
|
|
static u64 icl_get_topdown_value(struct perf_event *event,
|
|
u64 slots, u64 metrics)
|
|
{
|
|
int idx = event->hw.idx;
|
|
u64 delta;
|
|
|
|
if (is_metric_idx(idx))
|
|
delta = icl_get_metrics_event_value(metrics, slots, idx);
|
|
else
|
|
delta = slots;
|
|
|
|
return delta;
|
|
}
|
|
|
|
static void __icl_update_topdown_event(struct perf_event *event,
|
|
u64 slots, u64 metrics,
|
|
u64 last_slots, u64 last_metrics)
|
|
{
|
|
u64 delta, last = 0;
|
|
|
|
delta = icl_get_topdown_value(event, slots, metrics);
|
|
if (last_slots)
|
|
last = icl_get_topdown_value(event, last_slots, last_metrics);
|
|
|
|
/*
|
|
* The 8bit integer fraction of metric may be not accurate,
|
|
* especially when the changes is very small.
|
|
* For example, if only a few bad_spec happens, the fraction
|
|
* may be reduced from 1 to 0. If so, the bad_spec event value
|
|
* will be 0 which is definitely less than the last value.
|
|
* Avoid update event->count for this case.
|
|
*/
|
|
if (delta > last) {
|
|
delta -= last;
|
|
local64_add(delta, &event->count);
|
|
}
|
|
}
|
|
|
|
static void update_saved_topdown_regs(struct perf_event *event, u64 slots,
|
|
u64 metrics, int metric_end)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
struct perf_event *other;
|
|
int idx;
|
|
|
|
event->hw.saved_slots = slots;
|
|
event->hw.saved_metric = metrics;
|
|
|
|
for_each_set_bit(idx, cpuc->active_mask, metric_end + 1) {
|
|
if (!is_topdown_idx(idx))
|
|
continue;
|
|
other = cpuc->events[idx];
|
|
other->hw.saved_slots = slots;
|
|
other->hw.saved_metric = metrics;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Update all active Topdown events.
|
|
*
|
|
* The PERF_METRICS and Fixed counter 3 are read separately. The values may be
|
|
* modify by a NMI. PMU has to be disabled before calling this function.
|
|
*/
|
|
|
|
static u64 intel_update_topdown_event(struct perf_event *event, int metric_end)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
struct perf_event *other;
|
|
u64 slots, metrics;
|
|
bool reset = true;
|
|
int idx;
|
|
|
|
/* read Fixed counter 3 */
|
|
rdpmcl((3 | INTEL_PMC_FIXED_RDPMC_BASE), slots);
|
|
if (!slots)
|
|
return 0;
|
|
|
|
/* read PERF_METRICS */
|
|
rdpmcl(INTEL_PMC_FIXED_RDPMC_METRICS, metrics);
|
|
|
|
for_each_set_bit(idx, cpuc->active_mask, metric_end + 1) {
|
|
if (!is_topdown_idx(idx))
|
|
continue;
|
|
other = cpuc->events[idx];
|
|
__icl_update_topdown_event(other, slots, metrics,
|
|
event ? event->hw.saved_slots : 0,
|
|
event ? event->hw.saved_metric : 0);
|
|
}
|
|
|
|
/*
|
|
* Check and update this event, which may have been cleared
|
|
* in active_mask e.g. x86_pmu_stop()
|
|
*/
|
|
if (event && !test_bit(event->hw.idx, cpuc->active_mask)) {
|
|
__icl_update_topdown_event(event, slots, metrics,
|
|
event->hw.saved_slots,
|
|
event->hw.saved_metric);
|
|
|
|
/*
|
|
* In x86_pmu_stop(), the event is cleared in active_mask first,
|
|
* then drain the delta, which indicates context switch for
|
|
* counting.
|
|
* Save metric and slots for context switch.
|
|
* Don't need to reset the PERF_METRICS and Fixed counter 3.
|
|
* Because the values will be restored in next schedule in.
|
|
*/
|
|
update_saved_topdown_regs(event, slots, metrics, metric_end);
|
|
reset = false;
|
|
}
|
|
|
|
if (reset) {
|
|
/* The fixed counter 3 has to be written before the PERF_METRICS. */
|
|
wrmsrl(MSR_CORE_PERF_FIXED_CTR3, 0);
|
|
wrmsrl(MSR_PERF_METRICS, 0);
|
|
if (event)
|
|
update_saved_topdown_regs(event, 0, 0, metric_end);
|
|
}
|
|
|
|
return slots;
|
|
}
|
|
|
|
static u64 icl_update_topdown_event(struct perf_event *event)
|
|
{
|
|
return intel_update_topdown_event(event, INTEL_PMC_IDX_METRIC_BASE +
|
|
x86_pmu.num_topdown_events - 1);
|
|
}
|
|
|
|
static u64 adl_update_topdown_event(struct perf_event *event)
|
|
{
|
|
struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
|
|
|
|
if (pmu->cpu_type != hybrid_big)
|
|
return 0;
|
|
|
|
return icl_update_topdown_event(event);
|
|
}
|
|
|
|
DEFINE_STATIC_CALL(intel_pmu_update_topdown_event, x86_perf_event_update);
|
|
|
|
static void intel_pmu_read_topdown_event(struct perf_event *event)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
|
|
/* Only need to call update_topdown_event() once for group read. */
|
|
if ((cpuc->txn_flags & PERF_PMU_TXN_READ) &&
|
|
!is_slots_event(event))
|
|
return;
|
|
|
|
perf_pmu_disable(event->pmu);
|
|
static_call(intel_pmu_update_topdown_event)(event);
|
|
perf_pmu_enable(event->pmu);
|
|
}
|
|
|
|
static void intel_pmu_read_event(struct perf_event *event)
|
|
{
|
|
if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
|
|
intel_pmu_auto_reload_read(event);
|
|
else if (is_topdown_count(event))
|
|
intel_pmu_read_topdown_event(event);
|
|
else
|
|
x86_perf_event_update(event);
|
|
}
|
|
|
|
static void intel_pmu_enable_fixed(struct perf_event *event)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
u64 mask, bits = 0;
|
|
int idx = hwc->idx;
|
|
|
|
if (is_topdown_idx(idx)) {
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
/*
|
|
* When there are other active TopDown events,
|
|
* don't enable the fixed counter 3 again.
|
|
*/
|
|
if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx))
|
|
return;
|
|
|
|
idx = INTEL_PMC_IDX_FIXED_SLOTS;
|
|
}
|
|
|
|
intel_set_masks(event, idx);
|
|
|
|
/*
|
|
* Enable IRQ generation (0x8), if not PEBS,
|
|
* and enable ring-3 counting (0x2) and ring-0 counting (0x1)
|
|
* if requested:
|
|
*/
|
|
if (!event->attr.precise_ip)
|
|
bits |= 0x8;
|
|
if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
|
|
bits |= 0x2;
|
|
if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
|
|
bits |= 0x1;
|
|
|
|
/*
|
|
* ANY bit is supported in v3 and up
|
|
*/
|
|
if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
|
|
bits |= 0x4;
|
|
|
|
idx -= INTEL_PMC_IDX_FIXED;
|
|
bits <<= (idx * 4);
|
|
mask = 0xfULL << (idx * 4);
|
|
|
|
if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip) {
|
|
bits |= ICL_FIXED_0_ADAPTIVE << (idx * 4);
|
|
mask |= ICL_FIXED_0_ADAPTIVE << (idx * 4);
|
|
}
|
|
|
|
cpuc->fixed_ctrl_val &= ~mask;
|
|
cpuc->fixed_ctrl_val |= bits;
|
|
}
|
|
|
|
static void intel_pmu_enable_event(struct perf_event *event)
|
|
{
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
int idx = hwc->idx;
|
|
|
|
if (unlikely(event->attr.precise_ip))
|
|
intel_pmu_pebs_enable(event);
|
|
|
|
switch (idx) {
|
|
case 0 ... INTEL_PMC_IDX_FIXED - 1:
|
|
intel_set_masks(event, idx);
|
|
__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
|
|
break;
|
|
case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1:
|
|
case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
|
|
intel_pmu_enable_fixed(event);
|
|
break;
|
|
case INTEL_PMC_IDX_FIXED_BTS:
|
|
if (!__this_cpu_read(cpu_hw_events.enabled))
|
|
return;
|
|
intel_pmu_enable_bts(hwc->config);
|
|
break;
|
|
case INTEL_PMC_IDX_FIXED_VLBR:
|
|
intel_set_masks(event, idx);
|
|
break;
|
|
default:
|
|
pr_warn("Failed to enable the event with invalid index %d\n",
|
|
idx);
|
|
}
|
|
}
|
|
|
|
static void intel_pmu_add_event(struct perf_event *event)
|
|
{
|
|
if (event->attr.precise_ip)
|
|
intel_pmu_pebs_add(event);
|
|
if (needs_branch_stack(event))
|
|
intel_pmu_lbr_add(event);
|
|
}
|
|
|
|
/*
|
|
* Save and restart an expired event. Called by NMI contexts,
|
|
* so it has to be careful about preempting normal event ops:
|
|
*/
|
|
int intel_pmu_save_and_restart(struct perf_event *event)
|
|
{
|
|
static_call(x86_pmu_update)(event);
|
|
/*
|
|
* For a checkpointed counter always reset back to 0. This
|
|
* avoids a situation where the counter overflows, aborts the
|
|
* transaction and is then set back to shortly before the
|
|
* overflow, and overflows and aborts again.
|
|
*/
|
|
if (unlikely(event_is_checkpointed(event))) {
|
|
/* No race with NMIs because the counter should not be armed */
|
|
wrmsrl(event->hw.event_base, 0);
|
|
local64_set(&event->hw.prev_count, 0);
|
|
}
|
|
return static_call(x86_pmu_set_period)(event);
|
|
}
|
|
|
|
static int intel_pmu_set_period(struct perf_event *event)
|
|
{
|
|
if (unlikely(is_topdown_count(event)))
|
|
return static_call(intel_pmu_set_topdown_event_period)(event);
|
|
|
|
return x86_perf_event_set_period(event);
|
|
}
|
|
|
|
static u64 intel_pmu_update(struct perf_event *event)
|
|
{
|
|
if (unlikely(is_topdown_count(event)))
|
|
return static_call(intel_pmu_update_topdown_event)(event);
|
|
|
|
return x86_perf_event_update(event);
|
|
}
|
|
|
|
static void intel_pmu_reset(void)
|
|
{
|
|
struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
|
|
int num_counters = hybrid(cpuc->pmu, num_counters);
|
|
unsigned long flags;
|
|
int idx;
|
|
|
|
if (!num_counters)
|
|
return;
|
|
|
|
local_irq_save(flags);
|
|
|
|
pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
|
|
|
|
for (idx = 0; idx < num_counters; idx++) {
|
|
wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
|
|
wrmsrl_safe(x86_pmu_event_addr(idx), 0ull);
|
|
}
|
|
for (idx = 0; idx < num_counters_fixed; idx++) {
|
|
if (fixed_counter_disabled(idx, cpuc->pmu))
|
|
continue;
|
|
wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
|
|
}
|
|
|
|
if (ds)
|
|
ds->bts_index = ds->bts_buffer_base;
|
|
|
|
/* Ack all overflows and disable fixed counters */
|
|
if (x86_pmu.version >= 2) {
|
|
intel_pmu_ack_status(intel_pmu_get_status());
|
|
wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
|
|
}
|
|
|
|
/* Reset LBRs and LBR freezing */
|
|
if (x86_pmu.lbr_nr) {
|
|
update_debugctlmsr(get_debugctlmsr() &
|
|
~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
|
|
}
|
|
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
/*
|
|
* We may be running with guest PEBS events created by KVM, and the
|
|
* PEBS records are logged into the guest's DS and invisible to host.
|
|
*
|
|
* In the case of guest PEBS overflow, we only trigger a fake event
|
|
* to emulate the PEBS overflow PMI for guest PEBS counters in KVM.
|
|
* The guest will then vm-entry and check the guest DS area to read
|
|
* the guest PEBS records.
|
|
*
|
|
* The contents and other behavior of the guest event do not matter.
|
|
*/
|
|
static void x86_pmu_handle_guest_pebs(struct pt_regs *regs,
|
|
struct perf_sample_data *data)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
u64 guest_pebs_idxs = cpuc->pebs_enabled & ~cpuc->intel_ctrl_host_mask;
|
|
struct perf_event *event = NULL;
|
|
int bit;
|
|
|
|
if (!unlikely(perf_guest_state()))
|
|
return;
|
|
|
|
if (!x86_pmu.pebs_ept || !x86_pmu.pebs_active ||
|
|
!guest_pebs_idxs)
|
|
return;
|
|
|
|
for_each_set_bit(bit, (unsigned long *)&guest_pebs_idxs,
|
|
INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed) {
|
|
event = cpuc->events[bit];
|
|
if (!event->attr.precise_ip)
|
|
continue;
|
|
|
|
perf_sample_data_init(data, 0, event->hw.last_period);
|
|
if (perf_event_overflow(event, data, regs))
|
|
x86_pmu_stop(event, 0);
|
|
|
|
/* Inject one fake event is enough. */
|
|
break;
|
|
}
|
|
}
|
|
|
|
static int handle_pmi_common(struct pt_regs *regs, u64 status)
|
|
{
|
|
struct perf_sample_data data;
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
int bit;
|
|
int handled = 0;
|
|
u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
|
|
|
|
inc_irq_stat(apic_perf_irqs);
|
|
|
|
/*
|
|
* Ignore a range of extra bits in status that do not indicate
|
|
* overflow by themselves.
|
|
*/
|
|
status &= ~(GLOBAL_STATUS_COND_CHG |
|
|
GLOBAL_STATUS_ASIF |
|
|
GLOBAL_STATUS_LBRS_FROZEN);
|
|
if (!status)
|
|
return 0;
|
|
/*
|
|
* In case multiple PEBS events are sampled at the same time,
|
|
* it is possible to have GLOBAL_STATUS bit 62 set indicating
|
|
* PEBS buffer overflow and also seeing at most 3 PEBS counters
|
|
* having their bits set in the status register. This is a sign
|
|
* that there was at least one PEBS record pending at the time
|
|
* of the PMU interrupt. PEBS counters must only be processed
|
|
* via the drain_pebs() calls and not via the regular sample
|
|
* processing loop coming after that the function, otherwise
|
|
* phony regular samples may be generated in the sampling buffer
|
|
* not marked with the EXACT tag. Another possibility is to have
|
|
* one PEBS event and at least one non-PEBS event which overflows
|
|
* while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will
|
|
* not be set, yet the overflow status bit for the PEBS counter will
|
|
* be on Skylake.
|
|
*
|
|
* To avoid this problem, we systematically ignore the PEBS-enabled
|
|
* counters from the GLOBAL_STATUS mask and we always process PEBS
|
|
* events via drain_pebs().
|
|
*/
|
|
status &= ~(cpuc->pebs_enabled & x86_pmu.pebs_capable);
|
|
|
|
/*
|
|
* PEBS overflow sets bit 62 in the global status register
|
|
*/
|
|
if (__test_and_clear_bit(GLOBAL_STATUS_BUFFER_OVF_BIT, (unsigned long *)&status)) {
|
|
u64 pebs_enabled = cpuc->pebs_enabled;
|
|
|
|
handled++;
|
|
x86_pmu_handle_guest_pebs(regs, &data);
|
|
x86_pmu.drain_pebs(regs, &data);
|
|
status &= intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI;
|
|
|
|
/*
|
|
* PMI throttle may be triggered, which stops the PEBS event.
|
|
* Although cpuc->pebs_enabled is updated accordingly, the
|
|
* MSR_IA32_PEBS_ENABLE is not updated. Because the
|
|
* cpuc->enabled has been forced to 0 in PMI.
|
|
* Update the MSR if pebs_enabled is changed.
|
|
*/
|
|
if (pebs_enabled != cpuc->pebs_enabled)
|
|
wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
|
|
}
|
|
|
|
/*
|
|
* Intel PT
|
|
*/
|
|
if (__test_and_clear_bit(GLOBAL_STATUS_TRACE_TOPAPMI_BIT, (unsigned long *)&status)) {
|
|
handled++;
|
|
if (!perf_guest_handle_intel_pt_intr())
|
|
intel_pt_interrupt();
|
|
}
|
|
|
|
/*
|
|
* Intel Perf metrics
|
|
*/
|
|
if (__test_and_clear_bit(GLOBAL_STATUS_PERF_METRICS_OVF_BIT, (unsigned long *)&status)) {
|
|
handled++;
|
|
static_call(intel_pmu_update_topdown_event)(NULL);
|
|
}
|
|
|
|
/*
|
|
* Checkpointed counters can lead to 'spurious' PMIs because the
|
|
* rollback caused by the PMI will have cleared the overflow status
|
|
* bit. Therefore always force probe these counters.
|
|
*/
|
|
status |= cpuc->intel_cp_status;
|
|
|
|
for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
|
|
struct perf_event *event = cpuc->events[bit];
|
|
|
|
handled++;
|
|
|
|
if (!test_bit(bit, cpuc->active_mask))
|
|
continue;
|
|
|
|
if (!intel_pmu_save_and_restart(event))
|
|
continue;
|
|
|
|
perf_sample_data_init(&data, 0, event->hw.last_period);
|
|
|
|
if (has_branch_stack(event))
|
|
perf_sample_save_brstack(&data, event, &cpuc->lbr_stack);
|
|
|
|
if (perf_event_overflow(event, &data, regs))
|
|
x86_pmu_stop(event, 0);
|
|
}
|
|
|
|
return handled;
|
|
}
|
|
|
|
/*
|
|
* This handler is triggered by the local APIC, so the APIC IRQ handling
|
|
* rules apply:
|
|
*/
|
|
static int intel_pmu_handle_irq(struct pt_regs *regs)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
bool late_ack = hybrid_bit(cpuc->pmu, late_ack);
|
|
bool mid_ack = hybrid_bit(cpuc->pmu, mid_ack);
|
|
int loops;
|
|
u64 status;
|
|
int handled;
|
|
int pmu_enabled;
|
|
|
|
/*
|
|
* Save the PMU state.
|
|
* It needs to be restored when leaving the handler.
|
|
*/
|
|
pmu_enabled = cpuc->enabled;
|
|
/*
|
|
* In general, the early ACK is only applied for old platforms.
|
|
* For the big core starts from Haswell, the late ACK should be
|
|
* applied.
|
|
* For the small core after Tremont, we have to do the ACK right
|
|
* before re-enabling counters, which is in the middle of the
|
|
* NMI handler.
|
|
*/
|
|
if (!late_ack && !mid_ack)
|
|
apic_write(APIC_LVTPC, APIC_DM_NMI);
|
|
intel_bts_disable_local();
|
|
cpuc->enabled = 0;
|
|
__intel_pmu_disable_all(true);
|
|
handled = intel_pmu_drain_bts_buffer();
|
|
handled += intel_bts_interrupt();
|
|
status = intel_pmu_get_status();
|
|
if (!status)
|
|
goto done;
|
|
|
|
loops = 0;
|
|
again:
|
|
intel_pmu_lbr_read();
|
|
intel_pmu_ack_status(status);
|
|
if (++loops > 100) {
|
|
static bool warned;
|
|
|
|
if (!warned) {
|
|
WARN(1, "perfevents: irq loop stuck!\n");
|
|
perf_event_print_debug();
|
|
warned = true;
|
|
}
|
|
intel_pmu_reset();
|
|
goto done;
|
|
}
|
|
|
|
handled += handle_pmi_common(regs, status);
|
|
|
|
/*
|
|
* Repeat if there is more work to be done:
|
|
*/
|
|
status = intel_pmu_get_status();
|
|
if (status)
|
|
goto again;
|
|
|
|
done:
|
|
if (mid_ack)
|
|
apic_write(APIC_LVTPC, APIC_DM_NMI);
|
|
/* Only restore PMU state when it's active. See x86_pmu_disable(). */
|
|
cpuc->enabled = pmu_enabled;
|
|
if (pmu_enabled)
|
|
__intel_pmu_enable_all(0, true);
|
|
intel_bts_enable_local();
|
|
|
|
/*
|
|
* Only unmask the NMI after the overflow counters
|
|
* have been reset. This avoids spurious NMIs on
|
|
* Haswell CPUs.
|
|
*/
|
|
if (late_ack)
|
|
apic_write(APIC_LVTPC, APIC_DM_NMI);
|
|
return handled;
|
|
}
|
|
|
|
static struct event_constraint *
|
|
intel_bts_constraints(struct perf_event *event)
|
|
{
|
|
if (unlikely(intel_pmu_has_bts(event)))
|
|
return &bts_constraint;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Note: matches a fake event, like Fixed2.
|
|
*/
|
|
static struct event_constraint *
|
|
intel_vlbr_constraints(struct perf_event *event)
|
|
{
|
|
struct event_constraint *c = &vlbr_constraint;
|
|
|
|
if (unlikely(constraint_match(c, event->hw.config))) {
|
|
event->hw.flags |= c->flags;
|
|
return c;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static int intel_alt_er(struct cpu_hw_events *cpuc,
|
|
int idx, u64 config)
|
|
{
|
|
struct extra_reg *extra_regs = hybrid(cpuc->pmu, extra_regs);
|
|
int alt_idx = idx;
|
|
|
|
if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
|
|
return idx;
|
|
|
|
if (idx == EXTRA_REG_RSP_0)
|
|
alt_idx = EXTRA_REG_RSP_1;
|
|
|
|
if (idx == EXTRA_REG_RSP_1)
|
|
alt_idx = EXTRA_REG_RSP_0;
|
|
|
|
if (config & ~extra_regs[alt_idx].valid_mask)
|
|
return idx;
|
|
|
|
return alt_idx;
|
|
}
|
|
|
|
static void intel_fixup_er(struct perf_event *event, int idx)
|
|
{
|
|
struct extra_reg *extra_regs = hybrid(event->pmu, extra_regs);
|
|
event->hw.extra_reg.idx = idx;
|
|
|
|
if (idx == EXTRA_REG_RSP_0) {
|
|
event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
|
|
event->hw.config |= extra_regs[EXTRA_REG_RSP_0].event;
|
|
event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
|
|
} else if (idx == EXTRA_REG_RSP_1) {
|
|
event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
|
|
event->hw.config |= extra_regs[EXTRA_REG_RSP_1].event;
|
|
event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* manage allocation of shared extra msr for certain events
|
|
*
|
|
* sharing can be:
|
|
* per-cpu: to be shared between the various events on a single PMU
|
|
* per-core: per-cpu + shared by HT threads
|
|
*/
|
|
static struct event_constraint *
|
|
__intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
|
|
struct perf_event *event,
|
|
struct hw_perf_event_extra *reg)
|
|
{
|
|
struct event_constraint *c = &emptyconstraint;
|
|
struct er_account *era;
|
|
unsigned long flags;
|
|
int idx = reg->idx;
|
|
|
|
/*
|
|
* reg->alloc can be set due to existing state, so for fake cpuc we
|
|
* need to ignore this, otherwise we might fail to allocate proper fake
|
|
* state for this extra reg constraint. Also see the comment below.
|
|
*/
|
|
if (reg->alloc && !cpuc->is_fake)
|
|
return NULL; /* call x86_get_event_constraint() */
|
|
|
|
again:
|
|
era = &cpuc->shared_regs->regs[idx];
|
|
/*
|
|
* we use spin_lock_irqsave() to avoid lockdep issues when
|
|
* passing a fake cpuc
|
|
*/
|
|
raw_spin_lock_irqsave(&era->lock, flags);
|
|
|
|
if (!atomic_read(&era->ref) || era->config == reg->config) {
|
|
|
|
/*
|
|
* If its a fake cpuc -- as per validate_{group,event}() we
|
|
* shouldn't touch event state and we can avoid doing so
|
|
* since both will only call get_event_constraints() once
|
|
* on each event, this avoids the need for reg->alloc.
|
|
*
|
|
* Not doing the ER fixup will only result in era->reg being
|
|
* wrong, but since we won't actually try and program hardware
|
|
* this isn't a problem either.
|
|
*/
|
|
if (!cpuc->is_fake) {
|
|
if (idx != reg->idx)
|
|
intel_fixup_er(event, idx);
|
|
|
|
/*
|
|
* x86_schedule_events() can call get_event_constraints()
|
|
* multiple times on events in the case of incremental
|
|
* scheduling(). reg->alloc ensures we only do the ER
|
|
* allocation once.
|
|
*/
|
|
reg->alloc = 1;
|
|
}
|
|
|
|
/* lock in msr value */
|
|
era->config = reg->config;
|
|
era->reg = reg->reg;
|
|
|
|
/* one more user */
|
|
atomic_inc(&era->ref);
|
|
|
|
/*
|
|
* need to call x86_get_event_constraint()
|
|
* to check if associated event has constraints
|
|
*/
|
|
c = NULL;
|
|
} else {
|
|
idx = intel_alt_er(cpuc, idx, reg->config);
|
|
if (idx != reg->idx) {
|
|
raw_spin_unlock_irqrestore(&era->lock, flags);
|
|
goto again;
|
|
}
|
|
}
|
|
raw_spin_unlock_irqrestore(&era->lock, flags);
|
|
|
|
return c;
|
|
}
|
|
|
|
static void
|
|
__intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
|
|
struct hw_perf_event_extra *reg)
|
|
{
|
|
struct er_account *era;
|
|
|
|
/*
|
|
* Only put constraint if extra reg was actually allocated. Also takes
|
|
* care of event which do not use an extra shared reg.
|
|
*
|
|
* Also, if this is a fake cpuc we shouldn't touch any event state
|
|
* (reg->alloc) and we don't care about leaving inconsistent cpuc state
|
|
* either since it'll be thrown out.
|
|
*/
|
|
if (!reg->alloc || cpuc->is_fake)
|
|
return;
|
|
|
|
era = &cpuc->shared_regs->regs[reg->idx];
|
|
|
|
/* one fewer user */
|
|
atomic_dec(&era->ref);
|
|
|
|
/* allocate again next time */
|
|
reg->alloc = 0;
|
|
}
|
|
|
|
static struct event_constraint *
|
|
intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
|
|
struct perf_event *event)
|
|
{
|
|
struct event_constraint *c = NULL, *d;
|
|
struct hw_perf_event_extra *xreg, *breg;
|
|
|
|
xreg = &event->hw.extra_reg;
|
|
if (xreg->idx != EXTRA_REG_NONE) {
|
|
c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
|
|
if (c == &emptyconstraint)
|
|
return c;
|
|
}
|
|
breg = &event->hw.branch_reg;
|
|
if (breg->idx != EXTRA_REG_NONE) {
|
|
d = __intel_shared_reg_get_constraints(cpuc, event, breg);
|
|
if (d == &emptyconstraint) {
|
|
__intel_shared_reg_put_constraints(cpuc, xreg);
|
|
c = d;
|
|
}
|
|
}
|
|
return c;
|
|
}
|
|
|
|
struct event_constraint *
|
|
x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
|
|
struct perf_event *event)
|
|
{
|
|
struct event_constraint *event_constraints = hybrid(cpuc->pmu, event_constraints);
|
|
struct event_constraint *c;
|
|
|
|
if (event_constraints) {
|
|
for_each_event_constraint(c, event_constraints) {
|
|
if (constraint_match(c, event->hw.config)) {
|
|
event->hw.flags |= c->flags;
|
|
return c;
|
|
}
|
|
}
|
|
}
|
|
|
|
return &hybrid_var(cpuc->pmu, unconstrained);
|
|
}
|
|
|
|
static struct event_constraint *
|
|
__intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
|
|
struct perf_event *event)
|
|
{
|
|
struct event_constraint *c;
|
|
|
|
c = intel_vlbr_constraints(event);
|
|
if (c)
|
|
return c;
|
|
|
|
c = intel_bts_constraints(event);
|
|
if (c)
|
|
return c;
|
|
|
|
c = intel_shared_regs_constraints(cpuc, event);
|
|
if (c)
|
|
return c;
|
|
|
|
c = intel_pebs_constraints(event);
|
|
if (c)
|
|
return c;
|
|
|
|
return x86_get_event_constraints(cpuc, idx, event);
|
|
}
|
|
|
|
static void
|
|
intel_start_scheduling(struct cpu_hw_events *cpuc)
|
|
{
|
|
struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
|
|
struct intel_excl_states *xl;
|
|
int tid = cpuc->excl_thread_id;
|
|
|
|
/*
|
|
* nothing needed if in group validation mode
|
|
*/
|
|
if (cpuc->is_fake || !is_ht_workaround_enabled())
|
|
return;
|
|
|
|
/*
|
|
* no exclusion needed
|
|
*/
|
|
if (WARN_ON_ONCE(!excl_cntrs))
|
|
return;
|
|
|
|
xl = &excl_cntrs->states[tid];
|
|
|
|
xl->sched_started = true;
|
|
/*
|
|
* lock shared state until we are done scheduling
|
|
* in stop_event_scheduling()
|
|
* makes scheduling appear as a transaction
|
|
*/
|
|
raw_spin_lock(&excl_cntrs->lock);
|
|
}
|
|
|
|
static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
|
|
{
|
|
struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
|
|
struct event_constraint *c = cpuc->event_constraint[idx];
|
|
struct intel_excl_states *xl;
|
|
int tid = cpuc->excl_thread_id;
|
|
|
|
if (cpuc->is_fake || !is_ht_workaround_enabled())
|
|
return;
|
|
|
|
if (WARN_ON_ONCE(!excl_cntrs))
|
|
return;
|
|
|
|
if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
|
|
return;
|
|
|
|
xl = &excl_cntrs->states[tid];
|
|
|
|
lockdep_assert_held(&excl_cntrs->lock);
|
|
|
|
if (c->flags & PERF_X86_EVENT_EXCL)
|
|
xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
|
|
else
|
|
xl->state[cntr] = INTEL_EXCL_SHARED;
|
|
}
|
|
|
|
static void
|
|
intel_stop_scheduling(struct cpu_hw_events *cpuc)
|
|
{
|
|
struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
|
|
struct intel_excl_states *xl;
|
|
int tid = cpuc->excl_thread_id;
|
|
|
|
/*
|
|
* nothing needed if in group validation mode
|
|
*/
|
|
if (cpuc->is_fake || !is_ht_workaround_enabled())
|
|
return;
|
|
/*
|
|
* no exclusion needed
|
|
*/
|
|
if (WARN_ON_ONCE(!excl_cntrs))
|
|
return;
|
|
|
|
xl = &excl_cntrs->states[tid];
|
|
|
|
xl->sched_started = false;
|
|
/*
|
|
* release shared state lock (acquired in intel_start_scheduling())
|
|
*/
|
|
raw_spin_unlock(&excl_cntrs->lock);
|
|
}
|
|
|
|
static struct event_constraint *
|
|
dyn_constraint(struct cpu_hw_events *cpuc, struct event_constraint *c, int idx)
|
|
{
|
|
WARN_ON_ONCE(!cpuc->constraint_list);
|
|
|
|
if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
|
|
struct event_constraint *cx;
|
|
|
|
/*
|
|
* grab pre-allocated constraint entry
|
|
*/
|
|
cx = &cpuc->constraint_list[idx];
|
|
|
|
/*
|
|
* initialize dynamic constraint
|
|
* with static constraint
|
|
*/
|
|
*cx = *c;
|
|
|
|
/*
|
|
* mark constraint as dynamic
|
|
*/
|
|
cx->flags |= PERF_X86_EVENT_DYNAMIC;
|
|
c = cx;
|
|
}
|
|
|
|
return c;
|
|
}
|
|
|
|
static struct event_constraint *
|
|
intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
|
|
int idx, struct event_constraint *c)
|
|
{
|
|
struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
|
|
struct intel_excl_states *xlo;
|
|
int tid = cpuc->excl_thread_id;
|
|
int is_excl, i, w;
|
|
|
|
/*
|
|
* validating a group does not require
|
|
* enforcing cross-thread exclusion
|
|
*/
|
|
if (cpuc->is_fake || !is_ht_workaround_enabled())
|
|
return c;
|
|
|
|
/*
|
|
* no exclusion needed
|
|
*/
|
|
if (WARN_ON_ONCE(!excl_cntrs))
|
|
return c;
|
|
|
|
/*
|
|
* because we modify the constraint, we need
|
|
* to make a copy. Static constraints come
|
|
* from static const tables.
|
|
*
|
|
* only needed when constraint has not yet
|
|
* been cloned (marked dynamic)
|
|
*/
|
|
c = dyn_constraint(cpuc, c, idx);
|
|
|
|
/*
|
|
* From here on, the constraint is dynamic.
|
|
* Either it was just allocated above, or it
|
|
* was allocated during a earlier invocation
|
|
* of this function
|
|
*/
|
|
|
|
/*
|
|
* state of sibling HT
|
|
*/
|
|
xlo = &excl_cntrs->states[tid ^ 1];
|
|
|
|
/*
|
|
* event requires exclusive counter access
|
|
* across HT threads
|
|
*/
|
|
is_excl = c->flags & PERF_X86_EVENT_EXCL;
|
|
if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
|
|
event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
|
|
if (!cpuc->n_excl++)
|
|
WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
|
|
}
|
|
|
|
/*
|
|
* Modify static constraint with current dynamic
|
|
* state of thread
|
|
*
|
|
* EXCLUSIVE: sibling counter measuring exclusive event
|
|
* SHARED : sibling counter measuring non-exclusive event
|
|
* UNUSED : sibling counter unused
|
|
*/
|
|
w = c->weight;
|
|
for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
|
|
/*
|
|
* exclusive event in sibling counter
|
|
* our corresponding counter cannot be used
|
|
* regardless of our event
|
|
*/
|
|
if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE) {
|
|
__clear_bit(i, c->idxmsk);
|
|
w--;
|
|
continue;
|
|
}
|
|
/*
|
|
* if measuring an exclusive event, sibling
|
|
* measuring non-exclusive, then counter cannot
|
|
* be used
|
|
*/
|
|
if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED) {
|
|
__clear_bit(i, c->idxmsk);
|
|
w--;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* if we return an empty mask, then switch
|
|
* back to static empty constraint to avoid
|
|
* the cost of freeing later on
|
|
*/
|
|
if (!w)
|
|
c = &emptyconstraint;
|
|
|
|
c->weight = w;
|
|
|
|
return c;
|
|
}
|
|
|
|
static struct event_constraint *
|
|
intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
|
|
struct perf_event *event)
|
|
{
|
|
struct event_constraint *c1, *c2;
|
|
|
|
c1 = cpuc->event_constraint[idx];
|
|
|
|
/*
|
|
* first time only
|
|
* - static constraint: no change across incremental scheduling calls
|
|
* - dynamic constraint: handled by intel_get_excl_constraints()
|
|
*/
|
|
c2 = __intel_get_event_constraints(cpuc, idx, event);
|
|
if (c1) {
|
|
WARN_ON_ONCE(!(c1->flags & PERF_X86_EVENT_DYNAMIC));
|
|
bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
|
|
c1->weight = c2->weight;
|
|
c2 = c1;
|
|
}
|
|
|
|
if (cpuc->excl_cntrs)
|
|
return intel_get_excl_constraints(cpuc, event, idx, c2);
|
|
|
|
return c2;
|
|
}
|
|
|
|
static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
|
|
struct perf_event *event)
|
|
{
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
|
|
int tid = cpuc->excl_thread_id;
|
|
struct intel_excl_states *xl;
|
|
|
|
/*
|
|
* nothing needed if in group validation mode
|
|
*/
|
|
if (cpuc->is_fake)
|
|
return;
|
|
|
|
if (WARN_ON_ONCE(!excl_cntrs))
|
|
return;
|
|
|
|
if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
|
|
hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
|
|
if (!--cpuc->n_excl)
|
|
WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
|
|
}
|
|
|
|
/*
|
|
* If event was actually assigned, then mark the counter state as
|
|
* unused now.
|
|
*/
|
|
if (hwc->idx >= 0) {
|
|
xl = &excl_cntrs->states[tid];
|
|
|
|
/*
|
|
* put_constraint may be called from x86_schedule_events()
|
|
* which already has the lock held so here make locking
|
|
* conditional.
|
|
*/
|
|
if (!xl->sched_started)
|
|
raw_spin_lock(&excl_cntrs->lock);
|
|
|
|
xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
|
|
|
|
if (!xl->sched_started)
|
|
raw_spin_unlock(&excl_cntrs->lock);
|
|
}
|
|
}
|
|
|
|
static void
|
|
intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
|
|
struct perf_event *event)
|
|
{
|
|
struct hw_perf_event_extra *reg;
|
|
|
|
reg = &event->hw.extra_reg;
|
|
if (reg->idx != EXTRA_REG_NONE)
|
|
__intel_shared_reg_put_constraints(cpuc, reg);
|
|
|
|
reg = &event->hw.branch_reg;
|
|
if (reg->idx != EXTRA_REG_NONE)
|
|
__intel_shared_reg_put_constraints(cpuc, reg);
|
|
}
|
|
|
|
static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
|
|
struct perf_event *event)
|
|
{
|
|
intel_put_shared_regs_event_constraints(cpuc, event);
|
|
|
|
/*
|
|
* is PMU has exclusive counter restrictions, then
|
|
* all events are subject to and must call the
|
|
* put_excl_constraints() routine
|
|
*/
|
|
if (cpuc->excl_cntrs)
|
|
intel_put_excl_constraints(cpuc, event);
|
|
}
|
|
|
|
static void intel_pebs_aliases_core2(struct perf_event *event)
|
|
{
|
|
if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
|
|
/*
|
|
* Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
|
|
* (0x003c) so that we can use it with PEBS.
|
|
*
|
|
* The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
|
|
* PEBS capable. However we can use INST_RETIRED.ANY_P
|
|
* (0x00c0), which is a PEBS capable event, to get the same
|
|
* count.
|
|
*
|
|
* INST_RETIRED.ANY_P counts the number of cycles that retires
|
|
* CNTMASK instructions. By setting CNTMASK to a value (16)
|
|
* larger than the maximum number of instructions that can be
|
|
* retired per cycle (4) and then inverting the condition, we
|
|
* count all cycles that retire 16 or less instructions, which
|
|
* is every cycle.
|
|
*
|
|
* Thereby we gain a PEBS capable cycle counter.
|
|
*/
|
|
u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
|
|
|
|
alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
|
|
event->hw.config = alt_config;
|
|
}
|
|
}
|
|
|
|
static void intel_pebs_aliases_snb(struct perf_event *event)
|
|
{
|
|
if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
|
|
/*
|
|
* Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
|
|
* (0x003c) so that we can use it with PEBS.
|
|
*
|
|
* The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
|
|
* PEBS capable. However we can use UOPS_RETIRED.ALL
|
|
* (0x01c2), which is a PEBS capable event, to get the same
|
|
* count.
|
|
*
|
|
* UOPS_RETIRED.ALL counts the number of cycles that retires
|
|
* CNTMASK micro-ops. By setting CNTMASK to a value (16)
|
|
* larger than the maximum number of micro-ops that can be
|
|
* retired per cycle (4) and then inverting the condition, we
|
|
* count all cycles that retire 16 or less micro-ops, which
|
|
* is every cycle.
|
|
*
|
|
* Thereby we gain a PEBS capable cycle counter.
|
|
*/
|
|
u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
|
|
|
|
alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
|
|
event->hw.config = alt_config;
|
|
}
|
|
}
|
|
|
|
static void intel_pebs_aliases_precdist(struct perf_event *event)
|
|
{
|
|
if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
|
|
/*
|
|
* Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
|
|
* (0x003c) so that we can use it with PEBS.
|
|
*
|
|
* The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
|
|
* PEBS capable. However we can use INST_RETIRED.PREC_DIST
|
|
* (0x01c0), which is a PEBS capable event, to get the same
|
|
* count.
|
|
*
|
|
* The PREC_DIST event has special support to minimize sample
|
|
* shadowing effects. One drawback is that it can be
|
|
* only programmed on counter 1, but that seems like an
|
|
* acceptable trade off.
|
|
*/
|
|
u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);
|
|
|
|
alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
|
|
event->hw.config = alt_config;
|
|
}
|
|
}
|
|
|
|
static void intel_pebs_aliases_ivb(struct perf_event *event)
|
|
{
|
|
if (event->attr.precise_ip < 3)
|
|
return intel_pebs_aliases_snb(event);
|
|
return intel_pebs_aliases_precdist(event);
|
|
}
|
|
|
|
static void intel_pebs_aliases_skl(struct perf_event *event)
|
|
{
|
|
if (event->attr.precise_ip < 3)
|
|
return intel_pebs_aliases_core2(event);
|
|
return intel_pebs_aliases_precdist(event);
|
|
}
|
|
|
|
static unsigned long intel_pmu_large_pebs_flags(struct perf_event *event)
|
|
{
|
|
unsigned long flags = x86_pmu.large_pebs_flags;
|
|
|
|
if (event->attr.use_clockid)
|
|
flags &= ~PERF_SAMPLE_TIME;
|
|
if (!event->attr.exclude_kernel)
|
|
flags &= ~PERF_SAMPLE_REGS_USER;
|
|
if (event->attr.sample_regs_user & ~PEBS_GP_REGS)
|
|
flags &= ~(PERF_SAMPLE_REGS_USER | PERF_SAMPLE_REGS_INTR);
|
|
return flags;
|
|
}
|
|
|
|
static int intel_pmu_bts_config(struct perf_event *event)
|
|
{
|
|
struct perf_event_attr *attr = &event->attr;
|
|
|
|
if (unlikely(intel_pmu_has_bts(event))) {
|
|
/* BTS is not supported by this architecture. */
|
|
if (!x86_pmu.bts_active)
|
|
return -EOPNOTSUPP;
|
|
|
|
/* BTS is currently only allowed for user-mode. */
|
|
if (!attr->exclude_kernel)
|
|
return -EOPNOTSUPP;
|
|
|
|
/* BTS is not allowed for precise events. */
|
|
if (attr->precise_ip)
|
|
return -EOPNOTSUPP;
|
|
|
|
/* disallow bts if conflicting events are present */
|
|
if (x86_add_exclusive(x86_lbr_exclusive_lbr))
|
|
return -EBUSY;
|
|
|
|
event->destroy = hw_perf_lbr_event_destroy;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int core_pmu_hw_config(struct perf_event *event)
|
|
{
|
|
int ret = x86_pmu_hw_config(event);
|
|
|
|
if (ret)
|
|
return ret;
|
|
|
|
return intel_pmu_bts_config(event);
|
|
}
|
|
|
|
#define INTEL_TD_METRIC_AVAILABLE_MAX (INTEL_TD_METRIC_RETIRING + \
|
|
((x86_pmu.num_topdown_events - 1) << 8))
|
|
|
|
static bool is_available_metric_event(struct perf_event *event)
|
|
{
|
|
return is_metric_event(event) &&
|
|
event->attr.config <= INTEL_TD_METRIC_AVAILABLE_MAX;
|
|
}
|
|
|
|
static inline bool is_mem_loads_event(struct perf_event *event)
|
|
{
|
|
return (event->attr.config & INTEL_ARCH_EVENT_MASK) == X86_CONFIG(.event=0xcd, .umask=0x01);
|
|
}
|
|
|
|
static inline bool is_mem_loads_aux_event(struct perf_event *event)
|
|
{
|
|
return (event->attr.config & INTEL_ARCH_EVENT_MASK) == X86_CONFIG(.event=0x03, .umask=0x82);
|
|
}
|
|
|
|
static inline bool require_mem_loads_aux_event(struct perf_event *event)
|
|
{
|
|
if (!(x86_pmu.flags & PMU_FL_MEM_LOADS_AUX))
|
|
return false;
|
|
|
|
if (is_hybrid())
|
|
return hybrid_pmu(event->pmu)->cpu_type == hybrid_big;
|
|
|
|
return true;
|
|
}
|
|
|
|
static inline bool intel_pmu_has_cap(struct perf_event *event, int idx)
|
|
{
|
|
union perf_capabilities *intel_cap = &hybrid(event->pmu, intel_cap);
|
|
|
|
return test_bit(idx, (unsigned long *)&intel_cap->capabilities);
|
|
}
|
|
|
|
static int intel_pmu_hw_config(struct perf_event *event)
|
|
{
|
|
int ret = x86_pmu_hw_config(event);
|
|
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = intel_pmu_bts_config(event);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (event->attr.precise_ip) {
|
|
if ((event->attr.config & INTEL_ARCH_EVENT_MASK) == INTEL_FIXED_VLBR_EVENT)
|
|
return -EINVAL;
|
|
|
|
if (!(event->attr.freq || (event->attr.wakeup_events && !event->attr.watermark))) {
|
|
event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
|
|
if (!(event->attr.sample_type &
|
|
~intel_pmu_large_pebs_flags(event))) {
|
|
event->hw.flags |= PERF_X86_EVENT_LARGE_PEBS;
|
|
event->attach_state |= PERF_ATTACH_SCHED_CB;
|
|
}
|
|
}
|
|
if (x86_pmu.pebs_aliases)
|
|
x86_pmu.pebs_aliases(event);
|
|
}
|
|
|
|
if (needs_branch_stack(event)) {
|
|
ret = intel_pmu_setup_lbr_filter(event);
|
|
if (ret)
|
|
return ret;
|
|
event->attach_state |= PERF_ATTACH_SCHED_CB;
|
|
|
|
/*
|
|
* BTS is set up earlier in this path, so don't account twice
|
|
*/
|
|
if (!unlikely(intel_pmu_has_bts(event))) {
|
|
/* disallow lbr if conflicting events are present */
|
|
if (x86_add_exclusive(x86_lbr_exclusive_lbr))
|
|
return -EBUSY;
|
|
|
|
event->destroy = hw_perf_lbr_event_destroy;
|
|
}
|
|
}
|
|
|
|
if (event->attr.aux_output) {
|
|
if (!event->attr.precise_ip)
|
|
return -EINVAL;
|
|
|
|
event->hw.flags |= PERF_X86_EVENT_PEBS_VIA_PT;
|
|
}
|
|
|
|
if ((event->attr.type == PERF_TYPE_HARDWARE) ||
|
|
(event->attr.type == PERF_TYPE_HW_CACHE))
|
|
return 0;
|
|
|
|
/*
|
|
* Config Topdown slots and metric events
|
|
*
|
|
* The slots event on Fixed Counter 3 can support sampling,
|
|
* which will be handled normally in x86_perf_event_update().
|
|
*
|
|
* Metric events don't support sampling and require being paired
|
|
* with a slots event as group leader. When the slots event
|
|
* is used in a metrics group, it too cannot support sampling.
|
|
*/
|
|
if (intel_pmu_has_cap(event, PERF_CAP_METRICS_IDX) && is_topdown_event(event)) {
|
|
if (event->attr.config1 || event->attr.config2)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* The TopDown metrics events and slots event don't
|
|
* support any filters.
|
|
*/
|
|
if (event->attr.config & X86_ALL_EVENT_FLAGS)
|
|
return -EINVAL;
|
|
|
|
if (is_available_metric_event(event)) {
|
|
struct perf_event *leader = event->group_leader;
|
|
|
|
/* The metric events don't support sampling. */
|
|
if (is_sampling_event(event))
|
|
return -EINVAL;
|
|
|
|
/* The metric events require a slots group leader. */
|
|
if (!is_slots_event(leader))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* The leader/SLOTS must not be a sampling event for
|
|
* metric use; hardware requires it starts at 0 when used
|
|
* in conjunction with MSR_PERF_METRICS.
|
|
*/
|
|
if (is_sampling_event(leader))
|
|
return -EINVAL;
|
|
|
|
event->event_caps |= PERF_EV_CAP_SIBLING;
|
|
/*
|
|
* Only once we have a METRICs sibling do we
|
|
* need TopDown magic.
|
|
*/
|
|
leader->hw.flags |= PERF_X86_EVENT_TOPDOWN;
|
|
event->hw.flags |= PERF_X86_EVENT_TOPDOWN;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The load latency event X86_CONFIG(.event=0xcd, .umask=0x01) on SPR
|
|
* doesn't function quite right. As a work-around it needs to always be
|
|
* co-scheduled with a auxiliary event X86_CONFIG(.event=0x03, .umask=0x82).
|
|
* The actual count of this second event is irrelevant it just needs
|
|
* to be active to make the first event function correctly.
|
|
*
|
|
* In a group, the auxiliary event must be in front of the load latency
|
|
* event. The rule is to simplify the implementation of the check.
|
|
* That's because perf cannot have a complete group at the moment.
|
|
*/
|
|
if (require_mem_loads_aux_event(event) &&
|
|
(event->attr.sample_type & PERF_SAMPLE_DATA_SRC) &&
|
|
is_mem_loads_event(event)) {
|
|
struct perf_event *leader = event->group_leader;
|
|
struct perf_event *sibling = NULL;
|
|
|
|
if (!is_mem_loads_aux_event(leader)) {
|
|
for_each_sibling_event(sibling, leader) {
|
|
if (is_mem_loads_aux_event(sibling))
|
|
break;
|
|
}
|
|
if (list_entry_is_head(sibling, &leader->sibling_list, sibling_list))
|
|
return -ENODATA;
|
|
}
|
|
}
|
|
|
|
if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
|
|
return 0;
|
|
|
|
if (x86_pmu.version < 3)
|
|
return -EINVAL;
|
|
|
|
ret = perf_allow_cpu(&event->attr);
|
|
if (ret)
|
|
return ret;
|
|
|
|
event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Currently, the only caller of this function is the atomic_switch_perf_msrs().
|
|
* The host perf conext helps to prepare the values of the real hardware for
|
|
* a set of msrs that need to be switched atomically in a vmx transaction.
|
|
*
|
|
* For example, the pseudocode needed to add a new msr should look like:
|
|
*
|
|
* arr[(*nr)++] = (struct perf_guest_switch_msr){
|
|
* .msr = the hardware msr address,
|
|
* .host = the value the hardware has when it doesn't run a guest,
|
|
* .guest = the value the hardware has when it runs a guest,
|
|
* };
|
|
*
|
|
* These values have nothing to do with the emulated values the guest sees
|
|
* when it uses {RD,WR}MSR, which should be handled by the KVM context,
|
|
* specifically in the intel_pmu_{get,set}_msr().
|
|
*/
|
|
static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr, void *data)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
|
|
struct kvm_pmu *kvm_pmu = (struct kvm_pmu *)data;
|
|
u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
|
|
u64 pebs_mask = cpuc->pebs_enabled & x86_pmu.pebs_capable;
|
|
int global_ctrl, pebs_enable;
|
|
|
|
*nr = 0;
|
|
global_ctrl = (*nr)++;
|
|
arr[global_ctrl] = (struct perf_guest_switch_msr){
|
|
.msr = MSR_CORE_PERF_GLOBAL_CTRL,
|
|
.host = intel_ctrl & ~cpuc->intel_ctrl_guest_mask,
|
|
.guest = intel_ctrl & (~cpuc->intel_ctrl_host_mask | ~pebs_mask),
|
|
};
|
|
|
|
if (!x86_pmu.pebs)
|
|
return arr;
|
|
|
|
/*
|
|
* If PMU counter has PEBS enabled it is not enough to
|
|
* disable counter on a guest entry since PEBS memory
|
|
* write can overshoot guest entry and corrupt guest
|
|
* memory. Disabling PEBS solves the problem.
|
|
*
|
|
* Don't do this if the CPU already enforces it.
|
|
*/
|
|
if (x86_pmu.pebs_no_isolation) {
|
|
arr[(*nr)++] = (struct perf_guest_switch_msr){
|
|
.msr = MSR_IA32_PEBS_ENABLE,
|
|
.host = cpuc->pebs_enabled,
|
|
.guest = 0,
|
|
};
|
|
return arr;
|
|
}
|
|
|
|
if (!kvm_pmu || !x86_pmu.pebs_ept)
|
|
return arr;
|
|
|
|
arr[(*nr)++] = (struct perf_guest_switch_msr){
|
|
.msr = MSR_IA32_DS_AREA,
|
|
.host = (unsigned long)cpuc->ds,
|
|
.guest = kvm_pmu->ds_area,
|
|
};
|
|
|
|
if (x86_pmu.intel_cap.pebs_baseline) {
|
|
arr[(*nr)++] = (struct perf_guest_switch_msr){
|
|
.msr = MSR_PEBS_DATA_CFG,
|
|
.host = cpuc->active_pebs_data_cfg,
|
|
.guest = kvm_pmu->pebs_data_cfg,
|
|
};
|
|
}
|
|
|
|
pebs_enable = (*nr)++;
|
|
arr[pebs_enable] = (struct perf_guest_switch_msr){
|
|
.msr = MSR_IA32_PEBS_ENABLE,
|
|
.host = cpuc->pebs_enabled & ~cpuc->intel_ctrl_guest_mask,
|
|
.guest = pebs_mask & ~cpuc->intel_ctrl_host_mask,
|
|
};
|
|
|
|
if (arr[pebs_enable].host) {
|
|
/* Disable guest PEBS if host PEBS is enabled. */
|
|
arr[pebs_enable].guest = 0;
|
|
} else {
|
|
/* Disable guest PEBS thoroughly for cross-mapped PEBS counters. */
|
|
arr[pebs_enable].guest &= ~kvm_pmu->host_cross_mapped_mask;
|
|
arr[global_ctrl].guest &= ~kvm_pmu->host_cross_mapped_mask;
|
|
/* Set hw GLOBAL_CTRL bits for PEBS counter when it runs for guest */
|
|
arr[global_ctrl].guest |= arr[pebs_enable].guest;
|
|
}
|
|
|
|
return arr;
|
|
}
|
|
|
|
static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr, void *data)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
|
|
int idx;
|
|
|
|
for (idx = 0; idx < x86_pmu.num_counters; idx++) {
|
|
struct perf_event *event = cpuc->events[idx];
|
|
|
|
arr[idx].msr = x86_pmu_config_addr(idx);
|
|
arr[idx].host = arr[idx].guest = 0;
|
|
|
|
if (!test_bit(idx, cpuc->active_mask))
|
|
continue;
|
|
|
|
arr[idx].host = arr[idx].guest =
|
|
event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
|
|
|
|
if (event->attr.exclude_host)
|
|
arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
|
|
else if (event->attr.exclude_guest)
|
|
arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
|
|
}
|
|
|
|
*nr = x86_pmu.num_counters;
|
|
return arr;
|
|
}
|
|
|
|
static void core_pmu_enable_event(struct perf_event *event)
|
|
{
|
|
if (!event->attr.exclude_host)
|
|
x86_pmu_enable_event(event);
|
|
}
|
|
|
|
static void core_pmu_enable_all(int added)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
int idx;
|
|
|
|
for (idx = 0; idx < x86_pmu.num_counters; idx++) {
|
|
struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
|
|
|
|
if (!test_bit(idx, cpuc->active_mask) ||
|
|
cpuc->events[idx]->attr.exclude_host)
|
|
continue;
|
|
|
|
__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
|
|
}
|
|
}
|
|
|
|
static int hsw_hw_config(struct perf_event *event)
|
|
{
|
|
int ret = intel_pmu_hw_config(event);
|
|
|
|
if (ret)
|
|
return ret;
|
|
if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
|
|
return 0;
|
|
event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
|
|
|
|
/*
|
|
* IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
|
|
* PEBS or in ANY thread mode. Since the results are non-sensical forbid
|
|
* this combination.
|
|
*/
|
|
if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
|
|
((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
|
|
event->attr.precise_ip > 0))
|
|
return -EOPNOTSUPP;
|
|
|
|
if (event_is_checkpointed(event)) {
|
|
/*
|
|
* Sampling of checkpointed events can cause situations where
|
|
* the CPU constantly aborts because of a overflow, which is
|
|
* then checkpointed back and ignored. Forbid checkpointing
|
|
* for sampling.
|
|
*
|
|
* But still allow a long sampling period, so that perf stat
|
|
* from KVM works.
|
|
*/
|
|
if (event->attr.sample_period > 0 &&
|
|
event->attr.sample_period < 0x7fffffff)
|
|
return -EOPNOTSUPP;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static struct event_constraint counter0_constraint =
|
|
INTEL_ALL_EVENT_CONSTRAINT(0, 0x1);
|
|
|
|
static struct event_constraint counter1_constraint =
|
|
INTEL_ALL_EVENT_CONSTRAINT(0, 0x2);
|
|
|
|
static struct event_constraint counter0_1_constraint =
|
|
INTEL_ALL_EVENT_CONSTRAINT(0, 0x3);
|
|
|
|
static struct event_constraint counter2_constraint =
|
|
EVENT_CONSTRAINT(0, 0x4, 0);
|
|
|
|
static struct event_constraint fixed0_constraint =
|
|
FIXED_EVENT_CONSTRAINT(0x00c0, 0);
|
|
|
|
static struct event_constraint fixed0_counter0_constraint =
|
|
INTEL_ALL_EVENT_CONSTRAINT(0, 0x100000001ULL);
|
|
|
|
static struct event_constraint fixed0_counter0_1_constraint =
|
|
INTEL_ALL_EVENT_CONSTRAINT(0, 0x100000003ULL);
|
|
|
|
static struct event_constraint counters_1_7_constraint =
|
|
INTEL_ALL_EVENT_CONSTRAINT(0, 0xfeULL);
|
|
|
|
static struct event_constraint *
|
|
hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
|
|
struct perf_event *event)
|
|
{
|
|
struct event_constraint *c;
|
|
|
|
c = intel_get_event_constraints(cpuc, idx, event);
|
|
|
|
/* Handle special quirk on in_tx_checkpointed only in counter 2 */
|
|
if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
|
|
if (c->idxmsk64 & (1U << 2))
|
|
return &counter2_constraint;
|
|
return &emptyconstraint;
|
|
}
|
|
|
|
return c;
|
|
}
|
|
|
|
static struct event_constraint *
|
|
icl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
|
|
struct perf_event *event)
|
|
{
|
|
/*
|
|
* Fixed counter 0 has less skid.
|
|
* Force instruction:ppp in Fixed counter 0
|
|
*/
|
|
if ((event->attr.precise_ip == 3) &&
|
|
constraint_match(&fixed0_constraint, event->hw.config))
|
|
return &fixed0_constraint;
|
|
|
|
return hsw_get_event_constraints(cpuc, idx, event);
|
|
}
|
|
|
|
static struct event_constraint *
|
|
spr_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
|
|
struct perf_event *event)
|
|
{
|
|
struct event_constraint *c;
|
|
|
|
c = icl_get_event_constraints(cpuc, idx, event);
|
|
|
|
/*
|
|
* The :ppp indicates the Precise Distribution (PDist) facility, which
|
|
* is only supported on the GP counter 0. If a :ppp event which is not
|
|
* available on the GP counter 0, error out.
|
|
* Exception: Instruction PDIR is only available on the fixed counter 0.
|
|
*/
|
|
if ((event->attr.precise_ip == 3) &&
|
|
!constraint_match(&fixed0_constraint, event->hw.config)) {
|
|
if (c->idxmsk64 & BIT_ULL(0))
|
|
return &counter0_constraint;
|
|
|
|
return &emptyconstraint;
|
|
}
|
|
|
|
return c;
|
|
}
|
|
|
|
static struct event_constraint *
|
|
glp_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
|
|
struct perf_event *event)
|
|
{
|
|
struct event_constraint *c;
|
|
|
|
/* :ppp means to do reduced skid PEBS which is PMC0 only. */
|
|
if (event->attr.precise_ip == 3)
|
|
return &counter0_constraint;
|
|
|
|
c = intel_get_event_constraints(cpuc, idx, event);
|
|
|
|
return c;
|
|
}
|
|
|
|
static struct event_constraint *
|
|
tnt_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
|
|
struct perf_event *event)
|
|
{
|
|
struct event_constraint *c;
|
|
|
|
c = intel_get_event_constraints(cpuc, idx, event);
|
|
|
|
/*
|
|
* :ppp means to do reduced skid PEBS,
|
|
* which is available on PMC0 and fixed counter 0.
|
|
*/
|
|
if (event->attr.precise_ip == 3) {
|
|
/* Force instruction:ppp on PMC0 and Fixed counter 0 */
|
|
if (constraint_match(&fixed0_constraint, event->hw.config))
|
|
return &fixed0_counter0_constraint;
|
|
|
|
return &counter0_constraint;
|
|
}
|
|
|
|
return c;
|
|
}
|
|
|
|
static bool allow_tsx_force_abort = true;
|
|
|
|
static struct event_constraint *
|
|
tfa_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
|
|
struct perf_event *event)
|
|
{
|
|
struct event_constraint *c = hsw_get_event_constraints(cpuc, idx, event);
|
|
|
|
/*
|
|
* Without TFA we must not use PMC3.
|
|
*/
|
|
if (!allow_tsx_force_abort && test_bit(3, c->idxmsk)) {
|
|
c = dyn_constraint(cpuc, c, idx);
|
|
c->idxmsk64 &= ~(1ULL << 3);
|
|
c->weight--;
|
|
}
|
|
|
|
return c;
|
|
}
|
|
|
|
static struct event_constraint *
|
|
adl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
|
|
struct perf_event *event)
|
|
{
|
|
struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
|
|
|
|
if (pmu->cpu_type == hybrid_big)
|
|
return spr_get_event_constraints(cpuc, idx, event);
|
|
else if (pmu->cpu_type == hybrid_small)
|
|
return tnt_get_event_constraints(cpuc, idx, event);
|
|
|
|
WARN_ON(1);
|
|
return &emptyconstraint;
|
|
}
|
|
|
|
static struct event_constraint *
|
|
cmt_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
|
|
struct perf_event *event)
|
|
{
|
|
struct event_constraint *c;
|
|
|
|
c = intel_get_event_constraints(cpuc, idx, event);
|
|
|
|
/*
|
|
* The :ppp indicates the Precise Distribution (PDist) facility, which
|
|
* is only supported on the GP counter 0 & 1 and Fixed counter 0.
|
|
* If a :ppp event which is not available on the above eligible counters,
|
|
* error out.
|
|
*/
|
|
if (event->attr.precise_ip == 3) {
|
|
/* Force instruction:ppp on PMC0, 1 and Fixed counter 0 */
|
|
if (constraint_match(&fixed0_constraint, event->hw.config))
|
|
return &fixed0_counter0_1_constraint;
|
|
|
|
switch (c->idxmsk64 & 0x3ull) {
|
|
case 0x1:
|
|
return &counter0_constraint;
|
|
case 0x2:
|
|
return &counter1_constraint;
|
|
case 0x3:
|
|
return &counter0_1_constraint;
|
|
}
|
|
return &emptyconstraint;
|
|
}
|
|
|
|
return c;
|
|
}
|
|
|
|
static struct event_constraint *
|
|
rwc_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
|
|
struct perf_event *event)
|
|
{
|
|
struct event_constraint *c;
|
|
|
|
c = spr_get_event_constraints(cpuc, idx, event);
|
|
|
|
/* The Retire Latency is not supported by the fixed counter 0. */
|
|
if (event->attr.precise_ip &&
|
|
(event->attr.sample_type & PERF_SAMPLE_WEIGHT_TYPE) &&
|
|
constraint_match(&fixed0_constraint, event->hw.config)) {
|
|
/*
|
|
* The Instruction PDIR is only available
|
|
* on the fixed counter 0. Error out for this case.
|
|
*/
|
|
if (event->attr.precise_ip == 3)
|
|
return &emptyconstraint;
|
|
return &counters_1_7_constraint;
|
|
}
|
|
|
|
return c;
|
|
}
|
|
|
|
static struct event_constraint *
|
|
mtl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
|
|
struct perf_event *event)
|
|
{
|
|
struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
|
|
|
|
if (pmu->cpu_type == hybrid_big)
|
|
return rwc_get_event_constraints(cpuc, idx, event);
|
|
if (pmu->cpu_type == hybrid_small)
|
|
return cmt_get_event_constraints(cpuc, idx, event);
|
|
|
|
WARN_ON(1);
|
|
return &emptyconstraint;
|
|
}
|
|
|
|
static int adl_hw_config(struct perf_event *event)
|
|
{
|
|
struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
|
|
|
|
if (pmu->cpu_type == hybrid_big)
|
|
return hsw_hw_config(event);
|
|
else if (pmu->cpu_type == hybrid_small)
|
|
return intel_pmu_hw_config(event);
|
|
|
|
WARN_ON(1);
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
static u8 adl_get_hybrid_cpu_type(void)
|
|
{
|
|
return hybrid_big;
|
|
}
|
|
|
|
/*
|
|
* Broadwell:
|
|
*
|
|
* The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
|
|
* (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
|
|
* the two to enforce a minimum period of 128 (the smallest value that has bits
|
|
* 0-5 cleared and >= 100).
|
|
*
|
|
* Because of how the code in x86_perf_event_set_period() works, the truncation
|
|
* of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
|
|
* to make up for the 'lost' events due to carrying the 'error' in period_left.
|
|
*
|
|
* Therefore the effective (average) period matches the requested period,
|
|
* despite coarser hardware granularity.
|
|
*/
|
|
static void bdw_limit_period(struct perf_event *event, s64 *left)
|
|
{
|
|
if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
|
|
X86_CONFIG(.event=0xc0, .umask=0x01)) {
|
|
if (*left < 128)
|
|
*left = 128;
|
|
*left &= ~0x3fULL;
|
|
}
|
|
}
|
|
|
|
static void nhm_limit_period(struct perf_event *event, s64 *left)
|
|
{
|
|
*left = max(*left, 32LL);
|
|
}
|
|
|
|
static void spr_limit_period(struct perf_event *event, s64 *left)
|
|
{
|
|
if (event->attr.precise_ip == 3)
|
|
*left = max(*left, 128LL);
|
|
}
|
|
|
|
PMU_FORMAT_ATTR(event, "config:0-7" );
|
|
PMU_FORMAT_ATTR(umask, "config:8-15" );
|
|
PMU_FORMAT_ATTR(edge, "config:18" );
|
|
PMU_FORMAT_ATTR(pc, "config:19" );
|
|
PMU_FORMAT_ATTR(any, "config:21" ); /* v3 + */
|
|
PMU_FORMAT_ATTR(inv, "config:23" );
|
|
PMU_FORMAT_ATTR(cmask, "config:24-31" );
|
|
PMU_FORMAT_ATTR(in_tx, "config:32");
|
|
PMU_FORMAT_ATTR(in_tx_cp, "config:33");
|
|
|
|
static struct attribute *intel_arch_formats_attr[] = {
|
|
&format_attr_event.attr,
|
|
&format_attr_umask.attr,
|
|
&format_attr_edge.attr,
|
|
&format_attr_pc.attr,
|
|
&format_attr_inv.attr,
|
|
&format_attr_cmask.attr,
|
|
NULL,
|
|
};
|
|
|
|
ssize_t intel_event_sysfs_show(char *page, u64 config)
|
|
{
|
|
u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
|
|
|
|
return x86_event_sysfs_show(page, config, event);
|
|
}
|
|
|
|
static struct intel_shared_regs *allocate_shared_regs(int cpu)
|
|
{
|
|
struct intel_shared_regs *regs;
|
|
int i;
|
|
|
|
regs = kzalloc_node(sizeof(struct intel_shared_regs),
|
|
GFP_KERNEL, cpu_to_node(cpu));
|
|
if (regs) {
|
|
/*
|
|
* initialize the locks to keep lockdep happy
|
|
*/
|
|
for (i = 0; i < EXTRA_REG_MAX; i++)
|
|
raw_spin_lock_init(®s->regs[i].lock);
|
|
|
|
regs->core_id = -1;
|
|
}
|
|
return regs;
|
|
}
|
|
|
|
static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
|
|
{
|
|
struct intel_excl_cntrs *c;
|
|
|
|
c = kzalloc_node(sizeof(struct intel_excl_cntrs),
|
|
GFP_KERNEL, cpu_to_node(cpu));
|
|
if (c) {
|
|
raw_spin_lock_init(&c->lock);
|
|
c->core_id = -1;
|
|
}
|
|
return c;
|
|
}
|
|
|
|
|
|
int intel_cpuc_prepare(struct cpu_hw_events *cpuc, int cpu)
|
|
{
|
|
cpuc->pebs_record_size = x86_pmu.pebs_record_size;
|
|
|
|
if (is_hybrid() || x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
|
|
cpuc->shared_regs = allocate_shared_regs(cpu);
|
|
if (!cpuc->shared_regs)
|
|
goto err;
|
|
}
|
|
|
|
if (x86_pmu.flags & (PMU_FL_EXCL_CNTRS | PMU_FL_TFA)) {
|
|
size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
|
|
|
|
cpuc->constraint_list = kzalloc_node(sz, GFP_KERNEL, cpu_to_node(cpu));
|
|
if (!cpuc->constraint_list)
|
|
goto err_shared_regs;
|
|
}
|
|
|
|
if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
|
|
cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
|
|
if (!cpuc->excl_cntrs)
|
|
goto err_constraint_list;
|
|
|
|
cpuc->excl_thread_id = 0;
|
|
}
|
|
|
|
return 0;
|
|
|
|
err_constraint_list:
|
|
kfree(cpuc->constraint_list);
|
|
cpuc->constraint_list = NULL;
|
|
|
|
err_shared_regs:
|
|
kfree(cpuc->shared_regs);
|
|
cpuc->shared_regs = NULL;
|
|
|
|
err:
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static int intel_pmu_cpu_prepare(int cpu)
|
|
{
|
|
return intel_cpuc_prepare(&per_cpu(cpu_hw_events, cpu), cpu);
|
|
}
|
|
|
|
static void flip_smm_bit(void *data)
|
|
{
|
|
unsigned long set = *(unsigned long *)data;
|
|
|
|
if (set > 0) {
|
|
msr_set_bit(MSR_IA32_DEBUGCTLMSR,
|
|
DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
|
|
} else {
|
|
msr_clear_bit(MSR_IA32_DEBUGCTLMSR,
|
|
DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
|
|
}
|
|
}
|
|
|
|
static void intel_pmu_check_num_counters(int *num_counters,
|
|
int *num_counters_fixed,
|
|
u64 *intel_ctrl, u64 fixed_mask);
|
|
|
|
static void update_pmu_cap(struct x86_hybrid_pmu *pmu)
|
|
{
|
|
unsigned int sub_bitmaps = cpuid_eax(ARCH_PERFMON_EXT_LEAF);
|
|
unsigned int eax, ebx, ecx, edx;
|
|
|
|
if (sub_bitmaps & ARCH_PERFMON_NUM_COUNTER_LEAF_BIT) {
|
|
cpuid_count(ARCH_PERFMON_EXT_LEAF, ARCH_PERFMON_NUM_COUNTER_LEAF,
|
|
&eax, &ebx, &ecx, &edx);
|
|
pmu->num_counters = fls(eax);
|
|
pmu->num_counters_fixed = fls(ebx);
|
|
intel_pmu_check_num_counters(&pmu->num_counters, &pmu->num_counters_fixed,
|
|
&pmu->intel_ctrl, ebx);
|
|
}
|
|
}
|
|
|
|
static bool init_hybrid_pmu(int cpu)
|
|
{
|
|
struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
|
|
u8 cpu_type = get_this_hybrid_cpu_type();
|
|
struct x86_hybrid_pmu *pmu = NULL;
|
|
int i;
|
|
|
|
if (!cpu_type && x86_pmu.get_hybrid_cpu_type)
|
|
cpu_type = x86_pmu.get_hybrid_cpu_type();
|
|
|
|
for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
|
|
if (x86_pmu.hybrid_pmu[i].cpu_type == cpu_type) {
|
|
pmu = &x86_pmu.hybrid_pmu[i];
|
|
break;
|
|
}
|
|
}
|
|
if (WARN_ON_ONCE(!pmu || (pmu->pmu.type == -1))) {
|
|
cpuc->pmu = NULL;
|
|
return false;
|
|
}
|
|
|
|
/* Only check and dump the PMU information for the first CPU */
|
|
if (!cpumask_empty(&pmu->supported_cpus))
|
|
goto end;
|
|
|
|
if (this_cpu_has(X86_FEATURE_ARCH_PERFMON_EXT))
|
|
update_pmu_cap(pmu);
|
|
|
|
if (!check_hw_exists(&pmu->pmu, pmu->num_counters, pmu->num_counters_fixed))
|
|
return false;
|
|
|
|
pr_info("%s PMU driver: ", pmu->name);
|
|
|
|
if (pmu->intel_cap.pebs_output_pt_available)
|
|
pr_cont("PEBS-via-PT ");
|
|
|
|
pr_cont("\n");
|
|
|
|
x86_pmu_show_pmu_cap(pmu->num_counters, pmu->num_counters_fixed,
|
|
pmu->intel_ctrl);
|
|
|
|
end:
|
|
cpumask_set_cpu(cpu, &pmu->supported_cpus);
|
|
cpuc->pmu = &pmu->pmu;
|
|
|
|
return true;
|
|
}
|
|
|
|
static void intel_pmu_cpu_starting(int cpu)
|
|
{
|
|
struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
|
|
int core_id = topology_core_id(cpu);
|
|
int i;
|
|
|
|
if (is_hybrid() && !init_hybrid_pmu(cpu))
|
|
return;
|
|
|
|
init_debug_store_on_cpu(cpu);
|
|
/*
|
|
* Deal with CPUs that don't clear their LBRs on power-up.
|
|
*/
|
|
intel_pmu_lbr_reset();
|
|
|
|
cpuc->lbr_sel = NULL;
|
|
|
|
if (x86_pmu.flags & PMU_FL_TFA) {
|
|
WARN_ON_ONCE(cpuc->tfa_shadow);
|
|
cpuc->tfa_shadow = ~0ULL;
|
|
intel_set_tfa(cpuc, false);
|
|
}
|
|
|
|
if (x86_pmu.version > 1)
|
|
flip_smm_bit(&x86_pmu.attr_freeze_on_smi);
|
|
|
|
/*
|
|
* Disable perf metrics if any added CPU doesn't support it.
|
|
*
|
|
* Turn off the check for a hybrid architecture, because the
|
|
* architecture MSR, MSR_IA32_PERF_CAPABILITIES, only indicate
|
|
* the architecture features. The perf metrics is a model-specific
|
|
* feature for now. The corresponding bit should always be 0 on
|
|
* a hybrid platform, e.g., Alder Lake.
|
|
*/
|
|
if (!is_hybrid() && x86_pmu.intel_cap.perf_metrics) {
|
|
union perf_capabilities perf_cap;
|
|
|
|
rdmsrl(MSR_IA32_PERF_CAPABILITIES, perf_cap.capabilities);
|
|
if (!perf_cap.perf_metrics) {
|
|
x86_pmu.intel_cap.perf_metrics = 0;
|
|
x86_pmu.intel_ctrl &= ~(1ULL << GLOBAL_CTRL_EN_PERF_METRICS);
|
|
}
|
|
}
|
|
|
|
if (!cpuc->shared_regs)
|
|
return;
|
|
|
|
if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
|
|
for_each_cpu(i, topology_sibling_cpumask(cpu)) {
|
|
struct intel_shared_regs *pc;
|
|
|
|
pc = per_cpu(cpu_hw_events, i).shared_regs;
|
|
if (pc && pc->core_id == core_id) {
|
|
cpuc->kfree_on_online[0] = cpuc->shared_regs;
|
|
cpuc->shared_regs = pc;
|
|
break;
|
|
}
|
|
}
|
|
cpuc->shared_regs->core_id = core_id;
|
|
cpuc->shared_regs->refcnt++;
|
|
}
|
|
|
|
if (x86_pmu.lbr_sel_map)
|
|
cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
|
|
|
|
if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
|
|
for_each_cpu(i, topology_sibling_cpumask(cpu)) {
|
|
struct cpu_hw_events *sibling;
|
|
struct intel_excl_cntrs *c;
|
|
|
|
sibling = &per_cpu(cpu_hw_events, i);
|
|
c = sibling->excl_cntrs;
|
|
if (c && c->core_id == core_id) {
|
|
cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
|
|
cpuc->excl_cntrs = c;
|
|
if (!sibling->excl_thread_id)
|
|
cpuc->excl_thread_id = 1;
|
|
break;
|
|
}
|
|
}
|
|
cpuc->excl_cntrs->core_id = core_id;
|
|
cpuc->excl_cntrs->refcnt++;
|
|
}
|
|
}
|
|
|
|
static void free_excl_cntrs(struct cpu_hw_events *cpuc)
|
|
{
|
|
struct intel_excl_cntrs *c;
|
|
|
|
c = cpuc->excl_cntrs;
|
|
if (c) {
|
|
if (c->core_id == -1 || --c->refcnt == 0)
|
|
kfree(c);
|
|
cpuc->excl_cntrs = NULL;
|
|
}
|
|
|
|
kfree(cpuc->constraint_list);
|
|
cpuc->constraint_list = NULL;
|
|
}
|
|
|
|
static void intel_pmu_cpu_dying(int cpu)
|
|
{
|
|
fini_debug_store_on_cpu(cpu);
|
|
}
|
|
|
|
void intel_cpuc_finish(struct cpu_hw_events *cpuc)
|
|
{
|
|
struct intel_shared_regs *pc;
|
|
|
|
pc = cpuc->shared_regs;
|
|
if (pc) {
|
|
if (pc->core_id == -1 || --pc->refcnt == 0)
|
|
kfree(pc);
|
|
cpuc->shared_regs = NULL;
|
|
}
|
|
|
|
free_excl_cntrs(cpuc);
|
|
}
|
|
|
|
static void intel_pmu_cpu_dead(int cpu)
|
|
{
|
|
struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
|
|
|
|
intel_cpuc_finish(cpuc);
|
|
|
|
if (is_hybrid() && cpuc->pmu)
|
|
cpumask_clear_cpu(cpu, &hybrid_pmu(cpuc->pmu)->supported_cpus);
|
|
}
|
|
|
|
static void intel_pmu_sched_task(struct perf_event_pmu_context *pmu_ctx,
|
|
bool sched_in)
|
|
{
|
|
intel_pmu_pebs_sched_task(pmu_ctx, sched_in);
|
|
intel_pmu_lbr_sched_task(pmu_ctx, sched_in);
|
|
}
|
|
|
|
static void intel_pmu_swap_task_ctx(struct perf_event_pmu_context *prev_epc,
|
|
struct perf_event_pmu_context *next_epc)
|
|
{
|
|
intel_pmu_lbr_swap_task_ctx(prev_epc, next_epc);
|
|
}
|
|
|
|
static int intel_pmu_check_period(struct perf_event *event, u64 value)
|
|
{
|
|
return intel_pmu_has_bts_period(event, value) ? -EINVAL : 0;
|
|
}
|
|
|
|
static void intel_aux_output_init(void)
|
|
{
|
|
/* Refer also intel_pmu_aux_output_match() */
|
|
if (x86_pmu.intel_cap.pebs_output_pt_available)
|
|
x86_pmu.assign = intel_pmu_assign_event;
|
|
}
|
|
|
|
static int intel_pmu_aux_output_match(struct perf_event *event)
|
|
{
|
|
/* intel_pmu_assign_event() is needed, refer intel_aux_output_init() */
|
|
if (!x86_pmu.intel_cap.pebs_output_pt_available)
|
|
return 0;
|
|
|
|
return is_intel_pt_event(event);
|
|
}
|
|
|
|
static void intel_pmu_filter(struct pmu *pmu, int cpu, bool *ret)
|
|
{
|
|
struct x86_hybrid_pmu *hpmu = hybrid_pmu(pmu);
|
|
|
|
*ret = !cpumask_test_cpu(cpu, &hpmu->supported_cpus);
|
|
}
|
|
|
|
PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
|
|
|
|
PMU_FORMAT_ATTR(ldlat, "config1:0-15");
|
|
|
|
PMU_FORMAT_ATTR(frontend, "config1:0-23");
|
|
|
|
static struct attribute *intel_arch3_formats_attr[] = {
|
|
&format_attr_event.attr,
|
|
&format_attr_umask.attr,
|
|
&format_attr_edge.attr,
|
|
&format_attr_pc.attr,
|
|
&format_attr_any.attr,
|
|
&format_attr_inv.attr,
|
|
&format_attr_cmask.attr,
|
|
NULL,
|
|
};
|
|
|
|
static struct attribute *hsw_format_attr[] = {
|
|
&format_attr_in_tx.attr,
|
|
&format_attr_in_tx_cp.attr,
|
|
&format_attr_offcore_rsp.attr,
|
|
&format_attr_ldlat.attr,
|
|
NULL
|
|
};
|
|
|
|
static struct attribute *nhm_format_attr[] = {
|
|
&format_attr_offcore_rsp.attr,
|
|
&format_attr_ldlat.attr,
|
|
NULL
|
|
};
|
|
|
|
static struct attribute *slm_format_attr[] = {
|
|
&format_attr_offcore_rsp.attr,
|
|
NULL
|
|
};
|
|
|
|
static struct attribute *skl_format_attr[] = {
|
|
&format_attr_frontend.attr,
|
|
NULL,
|
|
};
|
|
|
|
static __initconst const struct x86_pmu core_pmu = {
|
|
.name = "core",
|
|
.handle_irq = x86_pmu_handle_irq,
|
|
.disable_all = x86_pmu_disable_all,
|
|
.enable_all = core_pmu_enable_all,
|
|
.enable = core_pmu_enable_event,
|
|
.disable = x86_pmu_disable_event,
|
|
.hw_config = core_pmu_hw_config,
|
|
.schedule_events = x86_schedule_events,
|
|
.eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
|
|
.perfctr = MSR_ARCH_PERFMON_PERFCTR0,
|
|
.event_map = intel_pmu_event_map,
|
|
.max_events = ARRAY_SIZE(intel_perfmon_event_map),
|
|
.apic = 1,
|
|
.large_pebs_flags = LARGE_PEBS_FLAGS,
|
|
|
|
/*
|
|
* Intel PMCs cannot be accessed sanely above 32-bit width,
|
|
* so we install an artificial 1<<31 period regardless of
|
|
* the generic event period:
|
|
*/
|
|
.max_period = (1ULL<<31) - 1,
|
|
.get_event_constraints = intel_get_event_constraints,
|
|
.put_event_constraints = intel_put_event_constraints,
|
|
.event_constraints = intel_core_event_constraints,
|
|
.guest_get_msrs = core_guest_get_msrs,
|
|
.format_attrs = intel_arch_formats_attr,
|
|
.events_sysfs_show = intel_event_sysfs_show,
|
|
|
|
/*
|
|
* Virtual (or funny metal) CPU can define x86_pmu.extra_regs
|
|
* together with PMU version 1 and thus be using core_pmu with
|
|
* shared_regs. We need following callbacks here to allocate
|
|
* it properly.
|
|
*/
|
|
.cpu_prepare = intel_pmu_cpu_prepare,
|
|
.cpu_starting = intel_pmu_cpu_starting,
|
|
.cpu_dying = intel_pmu_cpu_dying,
|
|
.cpu_dead = intel_pmu_cpu_dead,
|
|
|
|
.check_period = intel_pmu_check_period,
|
|
|
|
.lbr_reset = intel_pmu_lbr_reset_64,
|
|
.lbr_read = intel_pmu_lbr_read_64,
|
|
.lbr_save = intel_pmu_lbr_save,
|
|
.lbr_restore = intel_pmu_lbr_restore,
|
|
};
|
|
|
|
static __initconst const struct x86_pmu intel_pmu = {
|
|
.name = "Intel",
|
|
.handle_irq = intel_pmu_handle_irq,
|
|
.disable_all = intel_pmu_disable_all,
|
|
.enable_all = intel_pmu_enable_all,
|
|
.enable = intel_pmu_enable_event,
|
|
.disable = intel_pmu_disable_event,
|
|
.add = intel_pmu_add_event,
|
|
.del = intel_pmu_del_event,
|
|
.read = intel_pmu_read_event,
|
|
.set_period = intel_pmu_set_period,
|
|
.update = intel_pmu_update,
|
|
.hw_config = intel_pmu_hw_config,
|
|
.schedule_events = x86_schedule_events,
|
|
.eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
|
|
.perfctr = MSR_ARCH_PERFMON_PERFCTR0,
|
|
.event_map = intel_pmu_event_map,
|
|
.max_events = ARRAY_SIZE(intel_perfmon_event_map),
|
|
.apic = 1,
|
|
.large_pebs_flags = LARGE_PEBS_FLAGS,
|
|
/*
|
|
* Intel PMCs cannot be accessed sanely above 32 bit width,
|
|
* so we install an artificial 1<<31 period regardless of
|
|
* the generic event period:
|
|
*/
|
|
.max_period = (1ULL << 31) - 1,
|
|
.get_event_constraints = intel_get_event_constraints,
|
|
.put_event_constraints = intel_put_event_constraints,
|
|
.pebs_aliases = intel_pebs_aliases_core2,
|
|
|
|
.format_attrs = intel_arch3_formats_attr,
|
|
.events_sysfs_show = intel_event_sysfs_show,
|
|
|
|
.cpu_prepare = intel_pmu_cpu_prepare,
|
|
.cpu_starting = intel_pmu_cpu_starting,
|
|
.cpu_dying = intel_pmu_cpu_dying,
|
|
.cpu_dead = intel_pmu_cpu_dead,
|
|
|
|
.guest_get_msrs = intel_guest_get_msrs,
|
|
.sched_task = intel_pmu_sched_task,
|
|
.swap_task_ctx = intel_pmu_swap_task_ctx,
|
|
|
|
.check_period = intel_pmu_check_period,
|
|
|
|
.aux_output_match = intel_pmu_aux_output_match,
|
|
|
|
.lbr_reset = intel_pmu_lbr_reset_64,
|
|
.lbr_read = intel_pmu_lbr_read_64,
|
|
.lbr_save = intel_pmu_lbr_save,
|
|
.lbr_restore = intel_pmu_lbr_restore,
|
|
|
|
/*
|
|
* SMM has access to all 4 rings and while traditionally SMM code only
|
|
* ran in CPL0, 2021-era firmware is starting to make use of CPL3 in SMM.
|
|
*
|
|
* Since the EVENTSEL.{USR,OS} CPL filtering makes no distinction
|
|
* between SMM or not, this results in what should be pure userspace
|
|
* counters including SMM data.
|
|
*
|
|
* This is a clear privilege issue, therefore globally disable
|
|
* counting SMM by default.
|
|
*/
|
|
.attr_freeze_on_smi = 1,
|
|
};
|
|
|
|
static __init void intel_clovertown_quirk(void)
|
|
{
|
|
/*
|
|
* PEBS is unreliable due to:
|
|
*
|
|
* AJ67 - PEBS may experience CPL leaks
|
|
* AJ68 - PEBS PMI may be delayed by one event
|
|
* AJ69 - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
|
|
* AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
|
|
*
|
|
* AJ67 could be worked around by restricting the OS/USR flags.
|
|
* AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
|
|
*
|
|
* AJ106 could possibly be worked around by not allowing LBR
|
|
* usage from PEBS, including the fixup.
|
|
* AJ68 could possibly be worked around by always programming
|
|
* a pebs_event_reset[0] value and coping with the lost events.
|
|
*
|
|
* But taken together it might just make sense to not enable PEBS on
|
|
* these chips.
|
|
*/
|
|
pr_warn("PEBS disabled due to CPU errata\n");
|
|
x86_pmu.pebs = 0;
|
|
x86_pmu.pebs_constraints = NULL;
|
|
}
|
|
|
|
static const struct x86_cpu_desc isolation_ucodes[] = {
|
|
INTEL_CPU_DESC(INTEL_FAM6_HASWELL, 3, 0x0000001f),
|
|
INTEL_CPU_DESC(INTEL_FAM6_HASWELL_L, 1, 0x0000001e),
|
|
INTEL_CPU_DESC(INTEL_FAM6_HASWELL_G, 1, 0x00000015),
|
|
INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X, 2, 0x00000037),
|
|
INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X, 4, 0x0000000a),
|
|
INTEL_CPU_DESC(INTEL_FAM6_BROADWELL, 4, 0x00000023),
|
|
INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_G, 1, 0x00000014),
|
|
INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D, 2, 0x00000010),
|
|
INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D, 3, 0x07000009),
|
|
INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D, 4, 0x0f000009),
|
|
INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D, 5, 0x0e000002),
|
|
INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_X, 1, 0x0b000014),
|
|
INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X, 3, 0x00000021),
|
|
INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X, 4, 0x00000000),
|
|
INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X, 5, 0x00000000),
|
|
INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X, 6, 0x00000000),
|
|
INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X, 7, 0x00000000),
|
|
INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X, 11, 0x00000000),
|
|
INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_L, 3, 0x0000007c),
|
|
INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE, 3, 0x0000007c),
|
|
INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE, 9, 0x0000004e),
|
|
INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L, 9, 0x0000004e),
|
|
INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L, 10, 0x0000004e),
|
|
INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L, 11, 0x0000004e),
|
|
INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L, 12, 0x0000004e),
|
|
INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE, 10, 0x0000004e),
|
|
INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE, 11, 0x0000004e),
|
|
INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE, 12, 0x0000004e),
|
|
INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE, 13, 0x0000004e),
|
|
{}
|
|
};
|
|
|
|
static void intel_check_pebs_isolation(void)
|
|
{
|
|
x86_pmu.pebs_no_isolation = !x86_cpu_has_min_microcode_rev(isolation_ucodes);
|
|
}
|
|
|
|
static __init void intel_pebs_isolation_quirk(void)
|
|
{
|
|
WARN_ON_ONCE(x86_pmu.check_microcode);
|
|
x86_pmu.check_microcode = intel_check_pebs_isolation;
|
|
intel_check_pebs_isolation();
|
|
}
|
|
|
|
static const struct x86_cpu_desc pebs_ucodes[] = {
|
|
INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE, 7, 0x00000028),
|
|
INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X, 6, 0x00000618),
|
|
INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X, 7, 0x0000070c),
|
|
{}
|
|
};
|
|
|
|
static bool intel_snb_pebs_broken(void)
|
|
{
|
|
return !x86_cpu_has_min_microcode_rev(pebs_ucodes);
|
|
}
|
|
|
|
static void intel_snb_check_microcode(void)
|
|
{
|
|
if (intel_snb_pebs_broken() == x86_pmu.pebs_broken)
|
|
return;
|
|
|
|
/*
|
|
* Serialized by the microcode lock..
|
|
*/
|
|
if (x86_pmu.pebs_broken) {
|
|
pr_info("PEBS enabled due to microcode update\n");
|
|
x86_pmu.pebs_broken = 0;
|
|
} else {
|
|
pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
|
|
x86_pmu.pebs_broken = 1;
|
|
}
|
|
}
|
|
|
|
static bool is_lbr_from(unsigned long msr)
|
|
{
|
|
unsigned long lbr_from_nr = x86_pmu.lbr_from + x86_pmu.lbr_nr;
|
|
|
|
return x86_pmu.lbr_from <= msr && msr < lbr_from_nr;
|
|
}
|
|
|
|
/*
|
|
* Under certain circumstances, access certain MSR may cause #GP.
|
|
* The function tests if the input MSR can be safely accessed.
|
|
*/
|
|
static bool check_msr(unsigned long msr, u64 mask)
|
|
{
|
|
u64 val_old, val_new, val_tmp;
|
|
|
|
/*
|
|
* Disable the check for real HW, so we don't
|
|
* mess with potentially enabled registers:
|
|
*/
|
|
if (!boot_cpu_has(X86_FEATURE_HYPERVISOR))
|
|
return true;
|
|
|
|
/*
|
|
* Read the current value, change it and read it back to see if it
|
|
* matches, this is needed to detect certain hardware emulators
|
|
* (qemu/kvm) that don't trap on the MSR access and always return 0s.
|
|
*/
|
|
if (rdmsrl_safe(msr, &val_old))
|
|
return false;
|
|
|
|
/*
|
|
* Only change the bits which can be updated by wrmsrl.
|
|
*/
|
|
val_tmp = val_old ^ mask;
|
|
|
|
if (is_lbr_from(msr))
|
|
val_tmp = lbr_from_signext_quirk_wr(val_tmp);
|
|
|
|
if (wrmsrl_safe(msr, val_tmp) ||
|
|
rdmsrl_safe(msr, &val_new))
|
|
return false;
|
|
|
|
/*
|
|
* Quirk only affects validation in wrmsr(), so wrmsrl()'s value
|
|
* should equal rdmsrl()'s even with the quirk.
|
|
*/
|
|
if (val_new != val_tmp)
|
|
return false;
|
|
|
|
if (is_lbr_from(msr))
|
|
val_old = lbr_from_signext_quirk_wr(val_old);
|
|
|
|
/* Here it's sure that the MSR can be safely accessed.
|
|
* Restore the old value and return.
|
|
*/
|
|
wrmsrl(msr, val_old);
|
|
|
|
return true;
|
|
}
|
|
|
|
static __init void intel_sandybridge_quirk(void)
|
|
{
|
|
x86_pmu.check_microcode = intel_snb_check_microcode;
|
|
cpus_read_lock();
|
|
intel_snb_check_microcode();
|
|
cpus_read_unlock();
|
|
}
|
|
|
|
static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
|
|
{ PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
|
|
{ PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
|
|
{ PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
|
|
{ PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
|
|
{ PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
|
|
{ PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
|
|
{ PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
|
|
};
|
|
|
|
static __init void intel_arch_events_quirk(void)
|
|
{
|
|
int bit;
|
|
|
|
/* disable event that reported as not present by cpuid */
|
|
for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
|
|
intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
|
|
pr_warn("CPUID marked event: \'%s\' unavailable\n",
|
|
intel_arch_events_map[bit].name);
|
|
}
|
|
}
|
|
|
|
static __init void intel_nehalem_quirk(void)
|
|
{
|
|
union cpuid10_ebx ebx;
|
|
|
|
ebx.full = x86_pmu.events_maskl;
|
|
if (ebx.split.no_branch_misses_retired) {
|
|
/*
|
|
* Erratum AAJ80 detected, we work it around by using
|
|
* the BR_MISP_EXEC.ANY event. This will over-count
|
|
* branch-misses, but it's still much better than the
|
|
* architectural event which is often completely bogus:
|
|
*/
|
|
intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
|
|
ebx.split.no_branch_misses_retired = 0;
|
|
x86_pmu.events_maskl = ebx.full;
|
|
pr_info("CPU erratum AAJ80 worked around\n");
|
|
}
|
|
}
|
|
|
|
/*
|
|
* enable software workaround for errata:
|
|
* SNB: BJ122
|
|
* IVB: BV98
|
|
* HSW: HSD29
|
|
*
|
|
* Only needed when HT is enabled. However detecting
|
|
* if HT is enabled is difficult (model specific). So instead,
|
|
* we enable the workaround in the early boot, and verify if
|
|
* it is needed in a later initcall phase once we have valid
|
|
* topology information to check if HT is actually enabled
|
|
*/
|
|
static __init void intel_ht_bug(void)
|
|
{
|
|
x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
|
|
|
|
x86_pmu.start_scheduling = intel_start_scheduling;
|
|
x86_pmu.commit_scheduling = intel_commit_scheduling;
|
|
x86_pmu.stop_scheduling = intel_stop_scheduling;
|
|
}
|
|
|
|
EVENT_ATTR_STR(mem-loads, mem_ld_hsw, "event=0xcd,umask=0x1,ldlat=3");
|
|
EVENT_ATTR_STR(mem-stores, mem_st_hsw, "event=0xd0,umask=0x82")
|
|
|
|
/* Haswell special events */
|
|
EVENT_ATTR_STR(tx-start, tx_start, "event=0xc9,umask=0x1");
|
|
EVENT_ATTR_STR(tx-commit, tx_commit, "event=0xc9,umask=0x2");
|
|
EVENT_ATTR_STR(tx-abort, tx_abort, "event=0xc9,umask=0x4");
|
|
EVENT_ATTR_STR(tx-capacity, tx_capacity, "event=0x54,umask=0x2");
|
|
EVENT_ATTR_STR(tx-conflict, tx_conflict, "event=0x54,umask=0x1");
|
|
EVENT_ATTR_STR(el-start, el_start, "event=0xc8,umask=0x1");
|
|
EVENT_ATTR_STR(el-commit, el_commit, "event=0xc8,umask=0x2");
|
|
EVENT_ATTR_STR(el-abort, el_abort, "event=0xc8,umask=0x4");
|
|
EVENT_ATTR_STR(el-capacity, el_capacity, "event=0x54,umask=0x2");
|
|
EVENT_ATTR_STR(el-conflict, el_conflict, "event=0x54,umask=0x1");
|
|
EVENT_ATTR_STR(cycles-t, cycles_t, "event=0x3c,in_tx=1");
|
|
EVENT_ATTR_STR(cycles-ct, cycles_ct, "event=0x3c,in_tx=1,in_tx_cp=1");
|
|
|
|
static struct attribute *hsw_events_attrs[] = {
|
|
EVENT_PTR(td_slots_issued),
|
|
EVENT_PTR(td_slots_retired),
|
|
EVENT_PTR(td_fetch_bubbles),
|
|
EVENT_PTR(td_total_slots),
|
|
EVENT_PTR(td_total_slots_scale),
|
|
EVENT_PTR(td_recovery_bubbles),
|
|
EVENT_PTR(td_recovery_bubbles_scale),
|
|
NULL
|
|
};
|
|
|
|
static struct attribute *hsw_mem_events_attrs[] = {
|
|
EVENT_PTR(mem_ld_hsw),
|
|
EVENT_PTR(mem_st_hsw),
|
|
NULL,
|
|
};
|
|
|
|
static struct attribute *hsw_tsx_events_attrs[] = {
|
|
EVENT_PTR(tx_start),
|
|
EVENT_PTR(tx_commit),
|
|
EVENT_PTR(tx_abort),
|
|
EVENT_PTR(tx_capacity),
|
|
EVENT_PTR(tx_conflict),
|
|
EVENT_PTR(el_start),
|
|
EVENT_PTR(el_commit),
|
|
EVENT_PTR(el_abort),
|
|
EVENT_PTR(el_capacity),
|
|
EVENT_PTR(el_conflict),
|
|
EVENT_PTR(cycles_t),
|
|
EVENT_PTR(cycles_ct),
|
|
NULL
|
|
};
|
|
|
|
EVENT_ATTR_STR(tx-capacity-read, tx_capacity_read, "event=0x54,umask=0x80");
|
|
EVENT_ATTR_STR(tx-capacity-write, tx_capacity_write, "event=0x54,umask=0x2");
|
|
EVENT_ATTR_STR(el-capacity-read, el_capacity_read, "event=0x54,umask=0x80");
|
|
EVENT_ATTR_STR(el-capacity-write, el_capacity_write, "event=0x54,umask=0x2");
|
|
|
|
static struct attribute *icl_events_attrs[] = {
|
|
EVENT_PTR(mem_ld_hsw),
|
|
EVENT_PTR(mem_st_hsw),
|
|
NULL,
|
|
};
|
|
|
|
static struct attribute *icl_td_events_attrs[] = {
|
|
EVENT_PTR(slots),
|
|
EVENT_PTR(td_retiring),
|
|
EVENT_PTR(td_bad_spec),
|
|
EVENT_PTR(td_fe_bound),
|
|
EVENT_PTR(td_be_bound),
|
|
NULL,
|
|
};
|
|
|
|
static struct attribute *icl_tsx_events_attrs[] = {
|
|
EVENT_PTR(tx_start),
|
|
EVENT_PTR(tx_abort),
|
|
EVENT_PTR(tx_commit),
|
|
EVENT_PTR(tx_capacity_read),
|
|
EVENT_PTR(tx_capacity_write),
|
|
EVENT_PTR(tx_conflict),
|
|
EVENT_PTR(el_start),
|
|
EVENT_PTR(el_abort),
|
|
EVENT_PTR(el_commit),
|
|
EVENT_PTR(el_capacity_read),
|
|
EVENT_PTR(el_capacity_write),
|
|
EVENT_PTR(el_conflict),
|
|
EVENT_PTR(cycles_t),
|
|
EVENT_PTR(cycles_ct),
|
|
NULL,
|
|
};
|
|
|
|
|
|
EVENT_ATTR_STR(mem-stores, mem_st_spr, "event=0xcd,umask=0x2");
|
|
EVENT_ATTR_STR(mem-loads-aux, mem_ld_aux, "event=0x03,umask=0x82");
|
|
|
|
static struct attribute *spr_events_attrs[] = {
|
|
EVENT_PTR(mem_ld_hsw),
|
|
EVENT_PTR(mem_st_spr),
|
|
EVENT_PTR(mem_ld_aux),
|
|
NULL,
|
|
};
|
|
|
|
static struct attribute *spr_td_events_attrs[] = {
|
|
EVENT_PTR(slots),
|
|
EVENT_PTR(td_retiring),
|
|
EVENT_PTR(td_bad_spec),
|
|
EVENT_PTR(td_fe_bound),
|
|
EVENT_PTR(td_be_bound),
|
|
EVENT_PTR(td_heavy_ops),
|
|
EVENT_PTR(td_br_mispredict),
|
|
EVENT_PTR(td_fetch_lat),
|
|
EVENT_PTR(td_mem_bound),
|
|
NULL,
|
|
};
|
|
|
|
static struct attribute *spr_tsx_events_attrs[] = {
|
|
EVENT_PTR(tx_start),
|
|
EVENT_PTR(tx_abort),
|
|
EVENT_PTR(tx_commit),
|
|
EVENT_PTR(tx_capacity_read),
|
|
EVENT_PTR(tx_capacity_write),
|
|
EVENT_PTR(tx_conflict),
|
|
EVENT_PTR(cycles_t),
|
|
EVENT_PTR(cycles_ct),
|
|
NULL,
|
|
};
|
|
|
|
static ssize_t freeze_on_smi_show(struct device *cdev,
|
|
struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
return sprintf(buf, "%lu\n", x86_pmu.attr_freeze_on_smi);
|
|
}
|
|
|
|
static DEFINE_MUTEX(freeze_on_smi_mutex);
|
|
|
|
static ssize_t freeze_on_smi_store(struct device *cdev,
|
|
struct device_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
unsigned long val;
|
|
ssize_t ret;
|
|
|
|
ret = kstrtoul(buf, 0, &val);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (val > 1)
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&freeze_on_smi_mutex);
|
|
|
|
if (x86_pmu.attr_freeze_on_smi == val)
|
|
goto done;
|
|
|
|
x86_pmu.attr_freeze_on_smi = val;
|
|
|
|
cpus_read_lock();
|
|
on_each_cpu(flip_smm_bit, &val, 1);
|
|
cpus_read_unlock();
|
|
done:
|
|
mutex_unlock(&freeze_on_smi_mutex);
|
|
|
|
return count;
|
|
}
|
|
|
|
static void update_tfa_sched(void *ignored)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
|
|
/*
|
|
* check if PMC3 is used
|
|
* and if so force schedule out for all event types all contexts
|
|
*/
|
|
if (test_bit(3, cpuc->active_mask))
|
|
perf_pmu_resched(x86_get_pmu(smp_processor_id()));
|
|
}
|
|
|
|
static ssize_t show_sysctl_tfa(struct device *cdev,
|
|
struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
return snprintf(buf, 40, "%d\n", allow_tsx_force_abort);
|
|
}
|
|
|
|
static ssize_t set_sysctl_tfa(struct device *cdev,
|
|
struct device_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
bool val;
|
|
ssize_t ret;
|
|
|
|
ret = kstrtobool(buf, &val);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* no change */
|
|
if (val == allow_tsx_force_abort)
|
|
return count;
|
|
|
|
allow_tsx_force_abort = val;
|
|
|
|
cpus_read_lock();
|
|
on_each_cpu(update_tfa_sched, NULL, 1);
|
|
cpus_read_unlock();
|
|
|
|
return count;
|
|
}
|
|
|
|
|
|
static DEVICE_ATTR_RW(freeze_on_smi);
|
|
|
|
static ssize_t branches_show(struct device *cdev,
|
|
struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr);
|
|
}
|
|
|
|
static DEVICE_ATTR_RO(branches);
|
|
|
|
static struct attribute *lbr_attrs[] = {
|
|
&dev_attr_branches.attr,
|
|
NULL
|
|
};
|
|
|
|
static char pmu_name_str[30];
|
|
|
|
static ssize_t pmu_name_show(struct device *cdev,
|
|
struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
return snprintf(buf, PAGE_SIZE, "%s\n", pmu_name_str);
|
|
}
|
|
|
|
static DEVICE_ATTR_RO(pmu_name);
|
|
|
|
static struct attribute *intel_pmu_caps_attrs[] = {
|
|
&dev_attr_pmu_name.attr,
|
|
NULL
|
|
};
|
|
|
|
static DEVICE_ATTR(allow_tsx_force_abort, 0644,
|
|
show_sysctl_tfa,
|
|
set_sysctl_tfa);
|
|
|
|
static struct attribute *intel_pmu_attrs[] = {
|
|
&dev_attr_freeze_on_smi.attr,
|
|
&dev_attr_allow_tsx_force_abort.attr,
|
|
NULL,
|
|
};
|
|
|
|
static umode_t
|
|
tsx_is_visible(struct kobject *kobj, struct attribute *attr, int i)
|
|
{
|
|
return boot_cpu_has(X86_FEATURE_RTM) ? attr->mode : 0;
|
|
}
|
|
|
|
static umode_t
|
|
pebs_is_visible(struct kobject *kobj, struct attribute *attr, int i)
|
|
{
|
|
return x86_pmu.pebs ? attr->mode : 0;
|
|
}
|
|
|
|
static umode_t
|
|
lbr_is_visible(struct kobject *kobj, struct attribute *attr, int i)
|
|
{
|
|
return x86_pmu.lbr_nr ? attr->mode : 0;
|
|
}
|
|
|
|
static umode_t
|
|
exra_is_visible(struct kobject *kobj, struct attribute *attr, int i)
|
|
{
|
|
return x86_pmu.version >= 2 ? attr->mode : 0;
|
|
}
|
|
|
|
static umode_t
|
|
default_is_visible(struct kobject *kobj, struct attribute *attr, int i)
|
|
{
|
|
if (attr == &dev_attr_allow_tsx_force_abort.attr)
|
|
return x86_pmu.flags & PMU_FL_TFA ? attr->mode : 0;
|
|
|
|
return attr->mode;
|
|
}
|
|
|
|
static struct attribute_group group_events_td = {
|
|
.name = "events",
|
|
};
|
|
|
|
static struct attribute_group group_events_mem = {
|
|
.name = "events",
|
|
.is_visible = pebs_is_visible,
|
|
};
|
|
|
|
static struct attribute_group group_events_tsx = {
|
|
.name = "events",
|
|
.is_visible = tsx_is_visible,
|
|
};
|
|
|
|
static struct attribute_group group_caps_gen = {
|
|
.name = "caps",
|
|
.attrs = intel_pmu_caps_attrs,
|
|
};
|
|
|
|
static struct attribute_group group_caps_lbr = {
|
|
.name = "caps",
|
|
.attrs = lbr_attrs,
|
|
.is_visible = lbr_is_visible,
|
|
};
|
|
|
|
static struct attribute_group group_format_extra = {
|
|
.name = "format",
|
|
.is_visible = exra_is_visible,
|
|
};
|
|
|
|
static struct attribute_group group_format_extra_skl = {
|
|
.name = "format",
|
|
.is_visible = exra_is_visible,
|
|
};
|
|
|
|
static struct attribute_group group_default = {
|
|
.attrs = intel_pmu_attrs,
|
|
.is_visible = default_is_visible,
|
|
};
|
|
|
|
static const struct attribute_group *attr_update[] = {
|
|
&group_events_td,
|
|
&group_events_mem,
|
|
&group_events_tsx,
|
|
&group_caps_gen,
|
|
&group_caps_lbr,
|
|
&group_format_extra,
|
|
&group_format_extra_skl,
|
|
&group_default,
|
|
NULL,
|
|
};
|
|
|
|
EVENT_ATTR_STR_HYBRID(slots, slots_adl, "event=0x00,umask=0x4", hybrid_big);
|
|
EVENT_ATTR_STR_HYBRID(topdown-retiring, td_retiring_adl, "event=0xc2,umask=0x0;event=0x00,umask=0x80", hybrid_big_small);
|
|
EVENT_ATTR_STR_HYBRID(topdown-bad-spec, td_bad_spec_adl, "event=0x73,umask=0x0;event=0x00,umask=0x81", hybrid_big_small);
|
|
EVENT_ATTR_STR_HYBRID(topdown-fe-bound, td_fe_bound_adl, "event=0x71,umask=0x0;event=0x00,umask=0x82", hybrid_big_small);
|
|
EVENT_ATTR_STR_HYBRID(topdown-be-bound, td_be_bound_adl, "event=0x74,umask=0x0;event=0x00,umask=0x83", hybrid_big_small);
|
|
EVENT_ATTR_STR_HYBRID(topdown-heavy-ops, td_heavy_ops_adl, "event=0x00,umask=0x84", hybrid_big);
|
|
EVENT_ATTR_STR_HYBRID(topdown-br-mispredict, td_br_mis_adl, "event=0x00,umask=0x85", hybrid_big);
|
|
EVENT_ATTR_STR_HYBRID(topdown-fetch-lat, td_fetch_lat_adl, "event=0x00,umask=0x86", hybrid_big);
|
|
EVENT_ATTR_STR_HYBRID(topdown-mem-bound, td_mem_bound_adl, "event=0x00,umask=0x87", hybrid_big);
|
|
|
|
static struct attribute *adl_hybrid_events_attrs[] = {
|
|
EVENT_PTR(slots_adl),
|
|
EVENT_PTR(td_retiring_adl),
|
|
EVENT_PTR(td_bad_spec_adl),
|
|
EVENT_PTR(td_fe_bound_adl),
|
|
EVENT_PTR(td_be_bound_adl),
|
|
EVENT_PTR(td_heavy_ops_adl),
|
|
EVENT_PTR(td_br_mis_adl),
|
|
EVENT_PTR(td_fetch_lat_adl),
|
|
EVENT_PTR(td_mem_bound_adl),
|
|
NULL,
|
|
};
|
|
|
|
/* Must be in IDX order */
|
|
EVENT_ATTR_STR_HYBRID(mem-loads, mem_ld_adl, "event=0xd0,umask=0x5,ldlat=3;event=0xcd,umask=0x1,ldlat=3", hybrid_big_small);
|
|
EVENT_ATTR_STR_HYBRID(mem-stores, mem_st_adl, "event=0xd0,umask=0x6;event=0xcd,umask=0x2", hybrid_big_small);
|
|
EVENT_ATTR_STR_HYBRID(mem-loads-aux, mem_ld_aux_adl, "event=0x03,umask=0x82", hybrid_big);
|
|
|
|
static struct attribute *adl_hybrid_mem_attrs[] = {
|
|
EVENT_PTR(mem_ld_adl),
|
|
EVENT_PTR(mem_st_adl),
|
|
EVENT_PTR(mem_ld_aux_adl),
|
|
NULL,
|
|
};
|
|
|
|
static struct attribute *mtl_hybrid_mem_attrs[] = {
|
|
EVENT_PTR(mem_ld_adl),
|
|
EVENT_PTR(mem_st_adl),
|
|
NULL
|
|
};
|
|
|
|
EVENT_ATTR_STR_HYBRID(tx-start, tx_start_adl, "event=0xc9,umask=0x1", hybrid_big);
|
|
EVENT_ATTR_STR_HYBRID(tx-commit, tx_commit_adl, "event=0xc9,umask=0x2", hybrid_big);
|
|
EVENT_ATTR_STR_HYBRID(tx-abort, tx_abort_adl, "event=0xc9,umask=0x4", hybrid_big);
|
|
EVENT_ATTR_STR_HYBRID(tx-conflict, tx_conflict_adl, "event=0x54,umask=0x1", hybrid_big);
|
|
EVENT_ATTR_STR_HYBRID(cycles-t, cycles_t_adl, "event=0x3c,in_tx=1", hybrid_big);
|
|
EVENT_ATTR_STR_HYBRID(cycles-ct, cycles_ct_adl, "event=0x3c,in_tx=1,in_tx_cp=1", hybrid_big);
|
|
EVENT_ATTR_STR_HYBRID(tx-capacity-read, tx_capacity_read_adl, "event=0x54,umask=0x80", hybrid_big);
|
|
EVENT_ATTR_STR_HYBRID(tx-capacity-write, tx_capacity_write_adl, "event=0x54,umask=0x2", hybrid_big);
|
|
|
|
static struct attribute *adl_hybrid_tsx_attrs[] = {
|
|
EVENT_PTR(tx_start_adl),
|
|
EVENT_PTR(tx_abort_adl),
|
|
EVENT_PTR(tx_commit_adl),
|
|
EVENT_PTR(tx_capacity_read_adl),
|
|
EVENT_PTR(tx_capacity_write_adl),
|
|
EVENT_PTR(tx_conflict_adl),
|
|
EVENT_PTR(cycles_t_adl),
|
|
EVENT_PTR(cycles_ct_adl),
|
|
NULL,
|
|
};
|
|
|
|
FORMAT_ATTR_HYBRID(in_tx, hybrid_big);
|
|
FORMAT_ATTR_HYBRID(in_tx_cp, hybrid_big);
|
|
FORMAT_ATTR_HYBRID(offcore_rsp, hybrid_big_small);
|
|
FORMAT_ATTR_HYBRID(ldlat, hybrid_big_small);
|
|
FORMAT_ATTR_HYBRID(frontend, hybrid_big);
|
|
|
|
#define ADL_HYBRID_RTM_FORMAT_ATTR \
|
|
FORMAT_HYBRID_PTR(in_tx), \
|
|
FORMAT_HYBRID_PTR(in_tx_cp)
|
|
|
|
#define ADL_HYBRID_FORMAT_ATTR \
|
|
FORMAT_HYBRID_PTR(offcore_rsp), \
|
|
FORMAT_HYBRID_PTR(ldlat), \
|
|
FORMAT_HYBRID_PTR(frontend)
|
|
|
|
static struct attribute *adl_hybrid_extra_attr_rtm[] = {
|
|
ADL_HYBRID_RTM_FORMAT_ATTR,
|
|
ADL_HYBRID_FORMAT_ATTR,
|
|
NULL
|
|
};
|
|
|
|
static struct attribute *adl_hybrid_extra_attr[] = {
|
|
ADL_HYBRID_FORMAT_ATTR,
|
|
NULL
|
|
};
|
|
|
|
PMU_FORMAT_ATTR_SHOW(snoop_rsp, "config1:0-63");
|
|
FORMAT_ATTR_HYBRID(snoop_rsp, hybrid_small);
|
|
|
|
static struct attribute *mtl_hybrid_extra_attr_rtm[] = {
|
|
ADL_HYBRID_RTM_FORMAT_ATTR,
|
|
ADL_HYBRID_FORMAT_ATTR,
|
|
FORMAT_HYBRID_PTR(snoop_rsp),
|
|
NULL
|
|
};
|
|
|
|
static struct attribute *mtl_hybrid_extra_attr[] = {
|
|
ADL_HYBRID_FORMAT_ATTR,
|
|
FORMAT_HYBRID_PTR(snoop_rsp),
|
|
NULL
|
|
};
|
|
|
|
static bool is_attr_for_this_pmu(struct kobject *kobj, struct attribute *attr)
|
|
{
|
|
struct device *dev = kobj_to_dev(kobj);
|
|
struct x86_hybrid_pmu *pmu =
|
|
container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
|
|
struct perf_pmu_events_hybrid_attr *pmu_attr =
|
|
container_of(attr, struct perf_pmu_events_hybrid_attr, attr.attr);
|
|
|
|
return pmu->cpu_type & pmu_attr->pmu_type;
|
|
}
|
|
|
|
static umode_t hybrid_events_is_visible(struct kobject *kobj,
|
|
struct attribute *attr, int i)
|
|
{
|
|
return is_attr_for_this_pmu(kobj, attr) ? attr->mode : 0;
|
|
}
|
|
|
|
static inline int hybrid_find_supported_cpu(struct x86_hybrid_pmu *pmu)
|
|
{
|
|
int cpu = cpumask_first(&pmu->supported_cpus);
|
|
|
|
return (cpu >= nr_cpu_ids) ? -1 : cpu;
|
|
}
|
|
|
|
static umode_t hybrid_tsx_is_visible(struct kobject *kobj,
|
|
struct attribute *attr, int i)
|
|
{
|
|
struct device *dev = kobj_to_dev(kobj);
|
|
struct x86_hybrid_pmu *pmu =
|
|
container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
|
|
int cpu = hybrid_find_supported_cpu(pmu);
|
|
|
|
return (cpu >= 0) && is_attr_for_this_pmu(kobj, attr) && cpu_has(&cpu_data(cpu), X86_FEATURE_RTM) ? attr->mode : 0;
|
|
}
|
|
|
|
static umode_t hybrid_format_is_visible(struct kobject *kobj,
|
|
struct attribute *attr, int i)
|
|
{
|
|
struct device *dev = kobj_to_dev(kobj);
|
|
struct x86_hybrid_pmu *pmu =
|
|
container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
|
|
struct perf_pmu_format_hybrid_attr *pmu_attr =
|
|
container_of(attr, struct perf_pmu_format_hybrid_attr, attr.attr);
|
|
int cpu = hybrid_find_supported_cpu(pmu);
|
|
|
|
return (cpu >= 0) && (pmu->cpu_type & pmu_attr->pmu_type) ? attr->mode : 0;
|
|
}
|
|
|
|
static struct attribute_group hybrid_group_events_td = {
|
|
.name = "events",
|
|
.is_visible = hybrid_events_is_visible,
|
|
};
|
|
|
|
static struct attribute_group hybrid_group_events_mem = {
|
|
.name = "events",
|
|
.is_visible = hybrid_events_is_visible,
|
|
};
|
|
|
|
static struct attribute_group hybrid_group_events_tsx = {
|
|
.name = "events",
|
|
.is_visible = hybrid_tsx_is_visible,
|
|
};
|
|
|
|
static struct attribute_group hybrid_group_format_extra = {
|
|
.name = "format",
|
|
.is_visible = hybrid_format_is_visible,
|
|
};
|
|
|
|
static ssize_t intel_hybrid_get_attr_cpus(struct device *dev,
|
|
struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
struct x86_hybrid_pmu *pmu =
|
|
container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
|
|
|
|
return cpumap_print_to_pagebuf(true, buf, &pmu->supported_cpus);
|
|
}
|
|
|
|
static DEVICE_ATTR(cpus, S_IRUGO, intel_hybrid_get_attr_cpus, NULL);
|
|
static struct attribute *intel_hybrid_cpus_attrs[] = {
|
|
&dev_attr_cpus.attr,
|
|
NULL,
|
|
};
|
|
|
|
static struct attribute_group hybrid_group_cpus = {
|
|
.attrs = intel_hybrid_cpus_attrs,
|
|
};
|
|
|
|
static const struct attribute_group *hybrid_attr_update[] = {
|
|
&hybrid_group_events_td,
|
|
&hybrid_group_events_mem,
|
|
&hybrid_group_events_tsx,
|
|
&group_caps_gen,
|
|
&group_caps_lbr,
|
|
&hybrid_group_format_extra,
|
|
&group_default,
|
|
&hybrid_group_cpus,
|
|
NULL,
|
|
};
|
|
|
|
static struct attribute *empty_attrs;
|
|
|
|
static void intel_pmu_check_num_counters(int *num_counters,
|
|
int *num_counters_fixed,
|
|
u64 *intel_ctrl, u64 fixed_mask)
|
|
{
|
|
if (*num_counters > INTEL_PMC_MAX_GENERIC) {
|
|
WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
|
|
*num_counters, INTEL_PMC_MAX_GENERIC);
|
|
*num_counters = INTEL_PMC_MAX_GENERIC;
|
|
}
|
|
*intel_ctrl = (1ULL << *num_counters) - 1;
|
|
|
|
if (*num_counters_fixed > INTEL_PMC_MAX_FIXED) {
|
|
WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
|
|
*num_counters_fixed, INTEL_PMC_MAX_FIXED);
|
|
*num_counters_fixed = INTEL_PMC_MAX_FIXED;
|
|
}
|
|
|
|
*intel_ctrl |= fixed_mask << INTEL_PMC_IDX_FIXED;
|
|
}
|
|
|
|
static void intel_pmu_check_event_constraints(struct event_constraint *event_constraints,
|
|
int num_counters,
|
|
int num_counters_fixed,
|
|
u64 intel_ctrl)
|
|
{
|
|
struct event_constraint *c;
|
|
|
|
if (!event_constraints)
|
|
return;
|
|
|
|
/*
|
|
* event on fixed counter2 (REF_CYCLES) only works on this
|
|
* counter, so do not extend mask to generic counters
|
|
*/
|
|
for_each_event_constraint(c, event_constraints) {
|
|
/*
|
|
* Don't extend the topdown slots and metrics
|
|
* events to the generic counters.
|
|
*/
|
|
if (c->idxmsk64 & INTEL_PMC_MSK_TOPDOWN) {
|
|
/*
|
|
* Disable topdown slots and metrics events,
|
|
* if slots event is not in CPUID.
|
|
*/
|
|
if (!(INTEL_PMC_MSK_FIXED_SLOTS & intel_ctrl))
|
|
c->idxmsk64 = 0;
|
|
c->weight = hweight64(c->idxmsk64);
|
|
continue;
|
|
}
|
|
|
|
if (c->cmask == FIXED_EVENT_FLAGS) {
|
|
/* Disabled fixed counters which are not in CPUID */
|
|
c->idxmsk64 &= intel_ctrl;
|
|
|
|
/*
|
|
* Don't extend the pseudo-encoding to the
|
|
* generic counters
|
|
*/
|
|
if (!use_fixed_pseudo_encoding(c->code))
|
|
c->idxmsk64 |= (1ULL << num_counters) - 1;
|
|
}
|
|
c->idxmsk64 &=
|
|
~(~0ULL << (INTEL_PMC_IDX_FIXED + num_counters_fixed));
|
|
c->weight = hweight64(c->idxmsk64);
|
|
}
|
|
}
|
|
|
|
static void intel_pmu_check_extra_regs(struct extra_reg *extra_regs)
|
|
{
|
|
struct extra_reg *er;
|
|
|
|
/*
|
|
* Access extra MSR may cause #GP under certain circumstances.
|
|
* E.g. KVM doesn't support offcore event
|
|
* Check all extra_regs here.
|
|
*/
|
|
if (!extra_regs)
|
|
return;
|
|
|
|
for (er = extra_regs; er->msr; er++) {
|
|
er->extra_msr_access = check_msr(er->msr, 0x11UL);
|
|
/* Disable LBR select mapping */
|
|
if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
|
|
x86_pmu.lbr_sel_map = NULL;
|
|
}
|
|
}
|
|
|
|
static void intel_pmu_check_hybrid_pmus(u64 fixed_mask)
|
|
{
|
|
struct x86_hybrid_pmu *pmu;
|
|
int i;
|
|
|
|
for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
|
|
pmu = &x86_pmu.hybrid_pmu[i];
|
|
|
|
intel_pmu_check_num_counters(&pmu->num_counters,
|
|
&pmu->num_counters_fixed,
|
|
&pmu->intel_ctrl,
|
|
fixed_mask);
|
|
|
|
if (pmu->intel_cap.perf_metrics) {
|
|
pmu->intel_ctrl |= 1ULL << GLOBAL_CTRL_EN_PERF_METRICS;
|
|
pmu->intel_ctrl |= INTEL_PMC_MSK_FIXED_SLOTS;
|
|
}
|
|
|
|
if (pmu->intel_cap.pebs_output_pt_available)
|
|
pmu->pmu.capabilities |= PERF_PMU_CAP_AUX_OUTPUT;
|
|
|
|
intel_pmu_check_event_constraints(pmu->event_constraints,
|
|
pmu->num_counters,
|
|
pmu->num_counters_fixed,
|
|
pmu->intel_ctrl);
|
|
|
|
intel_pmu_check_extra_regs(pmu->extra_regs);
|
|
}
|
|
}
|
|
|
|
static __always_inline bool is_mtl(u8 x86_model)
|
|
{
|
|
return (x86_model == INTEL_FAM6_METEORLAKE) ||
|
|
(x86_model == INTEL_FAM6_METEORLAKE_L);
|
|
}
|
|
|
|
__init int intel_pmu_init(void)
|
|
{
|
|
struct attribute **extra_skl_attr = &empty_attrs;
|
|
struct attribute **extra_attr = &empty_attrs;
|
|
struct attribute **td_attr = &empty_attrs;
|
|
struct attribute **mem_attr = &empty_attrs;
|
|
struct attribute **tsx_attr = &empty_attrs;
|
|
union cpuid10_edx edx;
|
|
union cpuid10_eax eax;
|
|
union cpuid10_ebx ebx;
|
|
unsigned int fixed_mask;
|
|
bool pmem = false;
|
|
int version, i;
|
|
char *name;
|
|
struct x86_hybrid_pmu *pmu;
|
|
|
|
if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
|
|
switch (boot_cpu_data.x86) {
|
|
case 0x6:
|
|
return p6_pmu_init();
|
|
case 0xb:
|
|
return knc_pmu_init();
|
|
case 0xf:
|
|
return p4_pmu_init();
|
|
}
|
|
return -ENODEV;
|
|
}
|
|
|
|
/*
|
|
* Check whether the Architectural PerfMon supports
|
|
* Branch Misses Retired hw_event or not.
|
|
*/
|
|
cpuid(10, &eax.full, &ebx.full, &fixed_mask, &edx.full);
|
|
if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
|
|
return -ENODEV;
|
|
|
|
version = eax.split.version_id;
|
|
if (version < 2)
|
|
x86_pmu = core_pmu;
|
|
else
|
|
x86_pmu = intel_pmu;
|
|
|
|
x86_pmu.version = version;
|
|
x86_pmu.num_counters = eax.split.num_counters;
|
|
x86_pmu.cntval_bits = eax.split.bit_width;
|
|
x86_pmu.cntval_mask = (1ULL << eax.split.bit_width) - 1;
|
|
|
|
x86_pmu.events_maskl = ebx.full;
|
|
x86_pmu.events_mask_len = eax.split.mask_length;
|
|
|
|
x86_pmu.max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
|
|
x86_pmu.pebs_capable = PEBS_COUNTER_MASK;
|
|
|
|
/*
|
|
* Quirk: v2 perfmon does not report fixed-purpose events, so
|
|
* assume at least 3 events, when not running in a hypervisor:
|
|
*/
|
|
if (version > 1 && version < 5) {
|
|
int assume = 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR);
|
|
|
|
x86_pmu.num_counters_fixed =
|
|
max((int)edx.split.num_counters_fixed, assume);
|
|
|
|
fixed_mask = (1L << x86_pmu.num_counters_fixed) - 1;
|
|
} else if (version >= 5)
|
|
x86_pmu.num_counters_fixed = fls(fixed_mask);
|
|
|
|
if (boot_cpu_has(X86_FEATURE_PDCM)) {
|
|
u64 capabilities;
|
|
|
|
rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
|
|
x86_pmu.intel_cap.capabilities = capabilities;
|
|
}
|
|
|
|
if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32) {
|
|
x86_pmu.lbr_reset = intel_pmu_lbr_reset_32;
|
|
x86_pmu.lbr_read = intel_pmu_lbr_read_32;
|
|
}
|
|
|
|
if (boot_cpu_has(X86_FEATURE_ARCH_LBR))
|
|
intel_pmu_arch_lbr_init();
|
|
|
|
intel_ds_init();
|
|
|
|
x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
|
|
|
|
if (version >= 5) {
|
|
x86_pmu.intel_cap.anythread_deprecated = edx.split.anythread_deprecated;
|
|
if (x86_pmu.intel_cap.anythread_deprecated)
|
|
pr_cont(" AnyThread deprecated, ");
|
|
}
|
|
|
|
/*
|
|
* Install the hw-cache-events table:
|
|
*/
|
|
switch (boot_cpu_data.x86_model) {
|
|
case INTEL_FAM6_CORE_YONAH:
|
|
pr_cont("Core events, ");
|
|
name = "core";
|
|
break;
|
|
|
|
case INTEL_FAM6_CORE2_MEROM:
|
|
x86_add_quirk(intel_clovertown_quirk);
|
|
fallthrough;
|
|
|
|
case INTEL_FAM6_CORE2_MEROM_L:
|
|
case INTEL_FAM6_CORE2_PENRYN:
|
|
case INTEL_FAM6_CORE2_DUNNINGTON:
|
|
memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
|
|
sizeof(hw_cache_event_ids));
|
|
|
|
intel_pmu_lbr_init_core();
|
|
|
|
x86_pmu.event_constraints = intel_core2_event_constraints;
|
|
x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
|
|
pr_cont("Core2 events, ");
|
|
name = "core2";
|
|
break;
|
|
|
|
case INTEL_FAM6_NEHALEM:
|
|
case INTEL_FAM6_NEHALEM_EP:
|
|
case INTEL_FAM6_NEHALEM_EX:
|
|
memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
|
|
sizeof(hw_cache_event_ids));
|
|
memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
|
|
sizeof(hw_cache_extra_regs));
|
|
|
|
intel_pmu_lbr_init_nhm();
|
|
|
|
x86_pmu.event_constraints = intel_nehalem_event_constraints;
|
|
x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
|
|
x86_pmu.enable_all = intel_pmu_nhm_enable_all;
|
|
x86_pmu.extra_regs = intel_nehalem_extra_regs;
|
|
x86_pmu.limit_period = nhm_limit_period;
|
|
|
|
mem_attr = nhm_mem_events_attrs;
|
|
|
|
/* UOPS_ISSUED.STALLED_CYCLES */
|
|
intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
|
|
X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
|
|
/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
|
|
intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
|
|
X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
|
|
|
|
intel_pmu_pebs_data_source_nhm();
|
|
x86_add_quirk(intel_nehalem_quirk);
|
|
x86_pmu.pebs_no_tlb = 1;
|
|
extra_attr = nhm_format_attr;
|
|
|
|
pr_cont("Nehalem events, ");
|
|
name = "nehalem";
|
|
break;
|
|
|
|
case INTEL_FAM6_ATOM_BONNELL:
|
|
case INTEL_FAM6_ATOM_BONNELL_MID:
|
|
case INTEL_FAM6_ATOM_SALTWELL:
|
|
case INTEL_FAM6_ATOM_SALTWELL_MID:
|
|
case INTEL_FAM6_ATOM_SALTWELL_TABLET:
|
|
memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
|
|
sizeof(hw_cache_event_ids));
|
|
|
|
intel_pmu_lbr_init_atom();
|
|
|
|
x86_pmu.event_constraints = intel_gen_event_constraints;
|
|
x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
|
|
x86_pmu.pebs_aliases = intel_pebs_aliases_core2;
|
|
pr_cont("Atom events, ");
|
|
name = "bonnell";
|
|
break;
|
|
|
|
case INTEL_FAM6_ATOM_SILVERMONT:
|
|
case INTEL_FAM6_ATOM_SILVERMONT_D:
|
|
case INTEL_FAM6_ATOM_SILVERMONT_MID:
|
|
case INTEL_FAM6_ATOM_AIRMONT:
|
|
case INTEL_FAM6_ATOM_AIRMONT_MID:
|
|
memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
|
|
sizeof(hw_cache_event_ids));
|
|
memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
|
|
sizeof(hw_cache_extra_regs));
|
|
|
|
intel_pmu_lbr_init_slm();
|
|
|
|
x86_pmu.event_constraints = intel_slm_event_constraints;
|
|
x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
|
|
x86_pmu.extra_regs = intel_slm_extra_regs;
|
|
x86_pmu.flags |= PMU_FL_HAS_RSP_1;
|
|
td_attr = slm_events_attrs;
|
|
extra_attr = slm_format_attr;
|
|
pr_cont("Silvermont events, ");
|
|
name = "silvermont";
|
|
break;
|
|
|
|
case INTEL_FAM6_ATOM_GOLDMONT:
|
|
case INTEL_FAM6_ATOM_GOLDMONT_D:
|
|
memcpy(hw_cache_event_ids, glm_hw_cache_event_ids,
|
|
sizeof(hw_cache_event_ids));
|
|
memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs,
|
|
sizeof(hw_cache_extra_regs));
|
|
|
|
intel_pmu_lbr_init_skl();
|
|
|
|
x86_pmu.event_constraints = intel_slm_event_constraints;
|
|
x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints;
|
|
x86_pmu.extra_regs = intel_glm_extra_regs;
|
|
/*
|
|
* It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
|
|
* for precise cycles.
|
|
* :pp is identical to :ppp
|
|
*/
|
|
x86_pmu.pebs_aliases = NULL;
|
|
x86_pmu.pebs_prec_dist = true;
|
|
x86_pmu.lbr_pt_coexist = true;
|
|
x86_pmu.flags |= PMU_FL_HAS_RSP_1;
|
|
td_attr = glm_events_attrs;
|
|
extra_attr = slm_format_attr;
|
|
pr_cont("Goldmont events, ");
|
|
name = "goldmont";
|
|
break;
|
|
|
|
case INTEL_FAM6_ATOM_GOLDMONT_PLUS:
|
|
memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
|
|
sizeof(hw_cache_event_ids));
|
|
memcpy(hw_cache_extra_regs, glp_hw_cache_extra_regs,
|
|
sizeof(hw_cache_extra_regs));
|
|
|
|
intel_pmu_lbr_init_skl();
|
|
|
|
x86_pmu.event_constraints = intel_slm_event_constraints;
|
|
x86_pmu.extra_regs = intel_glm_extra_regs;
|
|
/*
|
|
* It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
|
|
* for precise cycles.
|
|
*/
|
|
x86_pmu.pebs_aliases = NULL;
|
|
x86_pmu.pebs_prec_dist = true;
|
|
x86_pmu.lbr_pt_coexist = true;
|
|
x86_pmu.pebs_capable = ~0ULL;
|
|
x86_pmu.flags |= PMU_FL_HAS_RSP_1;
|
|
x86_pmu.flags |= PMU_FL_PEBS_ALL;
|
|
x86_pmu.get_event_constraints = glp_get_event_constraints;
|
|
td_attr = glm_events_attrs;
|
|
/* Goldmont Plus has 4-wide pipeline */
|
|
event_attr_td_total_slots_scale_glm.event_str = "4";
|
|
extra_attr = slm_format_attr;
|
|
pr_cont("Goldmont plus events, ");
|
|
name = "goldmont_plus";
|
|
break;
|
|
|
|
case INTEL_FAM6_ATOM_TREMONT_D:
|
|
case INTEL_FAM6_ATOM_TREMONT:
|
|
case INTEL_FAM6_ATOM_TREMONT_L:
|
|
x86_pmu.late_ack = true;
|
|
memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
|
|
sizeof(hw_cache_event_ids));
|
|
memcpy(hw_cache_extra_regs, tnt_hw_cache_extra_regs,
|
|
sizeof(hw_cache_extra_regs));
|
|
hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
|
|
|
|
intel_pmu_lbr_init_skl();
|
|
|
|
x86_pmu.event_constraints = intel_slm_event_constraints;
|
|
x86_pmu.extra_regs = intel_tnt_extra_regs;
|
|
/*
|
|
* It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
|
|
* for precise cycles.
|
|
*/
|
|
x86_pmu.pebs_aliases = NULL;
|
|
x86_pmu.pebs_prec_dist = true;
|
|
x86_pmu.lbr_pt_coexist = true;
|
|
x86_pmu.flags |= PMU_FL_HAS_RSP_1;
|
|
x86_pmu.get_event_constraints = tnt_get_event_constraints;
|
|
td_attr = tnt_events_attrs;
|
|
extra_attr = slm_format_attr;
|
|
pr_cont("Tremont events, ");
|
|
name = "Tremont";
|
|
break;
|
|
|
|
case INTEL_FAM6_ALDERLAKE_N:
|
|
x86_pmu.mid_ack = true;
|
|
memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
|
|
sizeof(hw_cache_event_ids));
|
|
memcpy(hw_cache_extra_regs, tnt_hw_cache_extra_regs,
|
|
sizeof(hw_cache_extra_regs));
|
|
hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
|
|
|
|
x86_pmu.event_constraints = intel_slm_event_constraints;
|
|
x86_pmu.pebs_constraints = intel_grt_pebs_event_constraints;
|
|
x86_pmu.extra_regs = intel_grt_extra_regs;
|
|
|
|
x86_pmu.pebs_aliases = NULL;
|
|
x86_pmu.pebs_prec_dist = true;
|
|
x86_pmu.pebs_block = true;
|
|
x86_pmu.lbr_pt_coexist = true;
|
|
x86_pmu.flags |= PMU_FL_HAS_RSP_1;
|
|
x86_pmu.flags |= PMU_FL_INSTR_LATENCY;
|
|
|
|
intel_pmu_pebs_data_source_grt();
|
|
x86_pmu.pebs_latency_data = adl_latency_data_small;
|
|
x86_pmu.get_event_constraints = tnt_get_event_constraints;
|
|
x86_pmu.limit_period = spr_limit_period;
|
|
td_attr = tnt_events_attrs;
|
|
mem_attr = grt_mem_attrs;
|
|
extra_attr = nhm_format_attr;
|
|
pr_cont("Gracemont events, ");
|
|
name = "gracemont";
|
|
break;
|
|
|
|
case INTEL_FAM6_WESTMERE:
|
|
case INTEL_FAM6_WESTMERE_EP:
|
|
case INTEL_FAM6_WESTMERE_EX:
|
|
memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
|
|
sizeof(hw_cache_event_ids));
|
|
memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
|
|
sizeof(hw_cache_extra_regs));
|
|
|
|
intel_pmu_lbr_init_nhm();
|
|
|
|
x86_pmu.event_constraints = intel_westmere_event_constraints;
|
|
x86_pmu.enable_all = intel_pmu_nhm_enable_all;
|
|
x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
|
|
x86_pmu.extra_regs = intel_westmere_extra_regs;
|
|
x86_pmu.flags |= PMU_FL_HAS_RSP_1;
|
|
|
|
mem_attr = nhm_mem_events_attrs;
|
|
|
|
/* UOPS_ISSUED.STALLED_CYCLES */
|
|
intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
|
|
X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
|
|
/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
|
|
intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
|
|
X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
|
|
|
|
intel_pmu_pebs_data_source_nhm();
|
|
extra_attr = nhm_format_attr;
|
|
pr_cont("Westmere events, ");
|
|
name = "westmere";
|
|
break;
|
|
|
|
case INTEL_FAM6_SANDYBRIDGE:
|
|
case INTEL_FAM6_SANDYBRIDGE_X:
|
|
x86_add_quirk(intel_sandybridge_quirk);
|
|
x86_add_quirk(intel_ht_bug);
|
|
memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
|
|
sizeof(hw_cache_event_ids));
|
|
memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
|
|
sizeof(hw_cache_extra_regs));
|
|
|
|
intel_pmu_lbr_init_snb();
|
|
|
|
x86_pmu.event_constraints = intel_snb_event_constraints;
|
|
x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
|
|
x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
|
|
if (boot_cpu_data.x86_model == INTEL_FAM6_SANDYBRIDGE_X)
|
|
x86_pmu.extra_regs = intel_snbep_extra_regs;
|
|
else
|
|
x86_pmu.extra_regs = intel_snb_extra_regs;
|
|
|
|
|
|
/* all extra regs are per-cpu when HT is on */
|
|
x86_pmu.flags |= PMU_FL_HAS_RSP_1;
|
|
x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
|
|
|
|
td_attr = snb_events_attrs;
|
|
mem_attr = snb_mem_events_attrs;
|
|
|
|
/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
|
|
intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
|
|
X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
|
|
/* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
|
|
intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
|
|
X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
|
|
|
|
extra_attr = nhm_format_attr;
|
|
|
|
pr_cont("SandyBridge events, ");
|
|
name = "sandybridge";
|
|
break;
|
|
|
|
case INTEL_FAM6_IVYBRIDGE:
|
|
case INTEL_FAM6_IVYBRIDGE_X:
|
|
x86_add_quirk(intel_ht_bug);
|
|
memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
|
|
sizeof(hw_cache_event_ids));
|
|
/* dTLB-load-misses on IVB is different than SNB */
|
|
hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
|
|
|
|
memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
|
|
sizeof(hw_cache_extra_regs));
|
|
|
|
intel_pmu_lbr_init_snb();
|
|
|
|
x86_pmu.event_constraints = intel_ivb_event_constraints;
|
|
x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
|
|
x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
|
|
x86_pmu.pebs_prec_dist = true;
|
|
if (boot_cpu_data.x86_model == INTEL_FAM6_IVYBRIDGE_X)
|
|
x86_pmu.extra_regs = intel_snbep_extra_regs;
|
|
else
|
|
x86_pmu.extra_regs = intel_snb_extra_regs;
|
|
/* all extra regs are per-cpu when HT is on */
|
|
x86_pmu.flags |= PMU_FL_HAS_RSP_1;
|
|
x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
|
|
|
|
td_attr = snb_events_attrs;
|
|
mem_attr = snb_mem_events_attrs;
|
|
|
|
/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
|
|
intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
|
|
X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
|
|
|
|
extra_attr = nhm_format_attr;
|
|
|
|
pr_cont("IvyBridge events, ");
|
|
name = "ivybridge";
|
|
break;
|
|
|
|
|
|
case INTEL_FAM6_HASWELL:
|
|
case INTEL_FAM6_HASWELL_X:
|
|
case INTEL_FAM6_HASWELL_L:
|
|
case INTEL_FAM6_HASWELL_G:
|
|
x86_add_quirk(intel_ht_bug);
|
|
x86_add_quirk(intel_pebs_isolation_quirk);
|
|
x86_pmu.late_ack = true;
|
|
memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
|
|
memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
|
|
|
|
intel_pmu_lbr_init_hsw();
|
|
|
|
x86_pmu.event_constraints = intel_hsw_event_constraints;
|
|
x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
|
|
x86_pmu.extra_regs = intel_snbep_extra_regs;
|
|
x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
|
|
x86_pmu.pebs_prec_dist = true;
|
|
/* all extra regs are per-cpu when HT is on */
|
|
x86_pmu.flags |= PMU_FL_HAS_RSP_1;
|
|
x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
|
|
|
|
x86_pmu.hw_config = hsw_hw_config;
|
|
x86_pmu.get_event_constraints = hsw_get_event_constraints;
|
|
x86_pmu.lbr_double_abort = true;
|
|
extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
|
|
hsw_format_attr : nhm_format_attr;
|
|
td_attr = hsw_events_attrs;
|
|
mem_attr = hsw_mem_events_attrs;
|
|
tsx_attr = hsw_tsx_events_attrs;
|
|
pr_cont("Haswell events, ");
|
|
name = "haswell";
|
|
break;
|
|
|
|
case INTEL_FAM6_BROADWELL:
|
|
case INTEL_FAM6_BROADWELL_D:
|
|
case INTEL_FAM6_BROADWELL_G:
|
|
case INTEL_FAM6_BROADWELL_X:
|
|
x86_add_quirk(intel_pebs_isolation_quirk);
|
|
x86_pmu.late_ack = true;
|
|
memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
|
|
memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
|
|
|
|
/* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
|
|
hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
|
|
BDW_L3_MISS|HSW_SNOOP_DRAM;
|
|
hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
|
|
HSW_SNOOP_DRAM;
|
|
hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
|
|
BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
|
|
hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
|
|
BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
|
|
|
|
intel_pmu_lbr_init_hsw();
|
|
|
|
x86_pmu.event_constraints = intel_bdw_event_constraints;
|
|
x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints;
|
|
x86_pmu.extra_regs = intel_snbep_extra_regs;
|
|
x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
|
|
x86_pmu.pebs_prec_dist = true;
|
|
/* all extra regs are per-cpu when HT is on */
|
|
x86_pmu.flags |= PMU_FL_HAS_RSP_1;
|
|
x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
|
|
|
|
x86_pmu.hw_config = hsw_hw_config;
|
|
x86_pmu.get_event_constraints = hsw_get_event_constraints;
|
|
x86_pmu.limit_period = bdw_limit_period;
|
|
extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
|
|
hsw_format_attr : nhm_format_attr;
|
|
td_attr = hsw_events_attrs;
|
|
mem_attr = hsw_mem_events_attrs;
|
|
tsx_attr = hsw_tsx_events_attrs;
|
|
pr_cont("Broadwell events, ");
|
|
name = "broadwell";
|
|
break;
|
|
|
|
case INTEL_FAM6_XEON_PHI_KNL:
|
|
case INTEL_FAM6_XEON_PHI_KNM:
|
|
memcpy(hw_cache_event_ids,
|
|
slm_hw_cache_event_ids, sizeof(hw_cache_event_ids));
|
|
memcpy(hw_cache_extra_regs,
|
|
knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
|
|
intel_pmu_lbr_init_knl();
|
|
|
|
x86_pmu.event_constraints = intel_slm_event_constraints;
|
|
x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
|
|
x86_pmu.extra_regs = intel_knl_extra_regs;
|
|
|
|
/* all extra regs are per-cpu when HT is on */
|
|
x86_pmu.flags |= PMU_FL_HAS_RSP_1;
|
|
x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
|
|
extra_attr = slm_format_attr;
|
|
pr_cont("Knights Landing/Mill events, ");
|
|
name = "knights-landing";
|
|
break;
|
|
|
|
case INTEL_FAM6_SKYLAKE_X:
|
|
pmem = true;
|
|
fallthrough;
|
|
case INTEL_FAM6_SKYLAKE_L:
|
|
case INTEL_FAM6_SKYLAKE:
|
|
case INTEL_FAM6_KABYLAKE_L:
|
|
case INTEL_FAM6_KABYLAKE:
|
|
case INTEL_FAM6_COMETLAKE_L:
|
|
case INTEL_FAM6_COMETLAKE:
|
|
x86_add_quirk(intel_pebs_isolation_quirk);
|
|
x86_pmu.late_ack = true;
|
|
memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
|
|
memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
|
|
intel_pmu_lbr_init_skl();
|
|
|
|
/* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */
|
|
event_attr_td_recovery_bubbles.event_str_noht =
|
|
"event=0xd,umask=0x1,cmask=1";
|
|
event_attr_td_recovery_bubbles.event_str_ht =
|
|
"event=0xd,umask=0x1,cmask=1,any=1";
|
|
|
|
x86_pmu.event_constraints = intel_skl_event_constraints;
|
|
x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
|
|
x86_pmu.extra_regs = intel_skl_extra_regs;
|
|
x86_pmu.pebs_aliases = intel_pebs_aliases_skl;
|
|
x86_pmu.pebs_prec_dist = true;
|
|
/* all extra regs are per-cpu when HT is on */
|
|
x86_pmu.flags |= PMU_FL_HAS_RSP_1;
|
|
x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
|
|
|
|
x86_pmu.hw_config = hsw_hw_config;
|
|
x86_pmu.get_event_constraints = hsw_get_event_constraints;
|
|
extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
|
|
hsw_format_attr : nhm_format_attr;
|
|
extra_skl_attr = skl_format_attr;
|
|
td_attr = hsw_events_attrs;
|
|
mem_attr = hsw_mem_events_attrs;
|
|
tsx_attr = hsw_tsx_events_attrs;
|
|
intel_pmu_pebs_data_source_skl(pmem);
|
|
|
|
/*
|
|
* Processors with CPUID.RTM_ALWAYS_ABORT have TSX deprecated by default.
|
|
* TSX force abort hooks are not required on these systems. Only deploy
|
|
* workaround when microcode has not enabled X86_FEATURE_RTM_ALWAYS_ABORT.
|
|
*/
|
|
if (boot_cpu_has(X86_FEATURE_TSX_FORCE_ABORT) &&
|
|
!boot_cpu_has(X86_FEATURE_RTM_ALWAYS_ABORT)) {
|
|
x86_pmu.flags |= PMU_FL_TFA;
|
|
x86_pmu.get_event_constraints = tfa_get_event_constraints;
|
|
x86_pmu.enable_all = intel_tfa_pmu_enable_all;
|
|
x86_pmu.commit_scheduling = intel_tfa_commit_scheduling;
|
|
}
|
|
|
|
pr_cont("Skylake events, ");
|
|
name = "skylake";
|
|
break;
|
|
|
|
case INTEL_FAM6_ICELAKE_X:
|
|
case INTEL_FAM6_ICELAKE_D:
|
|
x86_pmu.pebs_ept = 1;
|
|
pmem = true;
|
|
fallthrough;
|
|
case INTEL_FAM6_ICELAKE_L:
|
|
case INTEL_FAM6_ICELAKE:
|
|
case INTEL_FAM6_TIGERLAKE_L:
|
|
case INTEL_FAM6_TIGERLAKE:
|
|
case INTEL_FAM6_ROCKETLAKE:
|
|
x86_pmu.late_ack = true;
|
|
memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
|
|
memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
|
|
hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
|
|
intel_pmu_lbr_init_skl();
|
|
|
|
x86_pmu.event_constraints = intel_icl_event_constraints;
|
|
x86_pmu.pebs_constraints = intel_icl_pebs_event_constraints;
|
|
x86_pmu.extra_regs = intel_icl_extra_regs;
|
|
x86_pmu.pebs_aliases = NULL;
|
|
x86_pmu.pebs_prec_dist = true;
|
|
x86_pmu.flags |= PMU_FL_HAS_RSP_1;
|
|
x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
|
|
|
|
x86_pmu.hw_config = hsw_hw_config;
|
|
x86_pmu.get_event_constraints = icl_get_event_constraints;
|
|
extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
|
|
hsw_format_attr : nhm_format_attr;
|
|
extra_skl_attr = skl_format_attr;
|
|
mem_attr = icl_events_attrs;
|
|
td_attr = icl_td_events_attrs;
|
|
tsx_attr = icl_tsx_events_attrs;
|
|
x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
|
|
x86_pmu.lbr_pt_coexist = true;
|
|
intel_pmu_pebs_data_source_skl(pmem);
|
|
x86_pmu.num_topdown_events = 4;
|
|
static_call_update(intel_pmu_update_topdown_event,
|
|
&icl_update_topdown_event);
|
|
static_call_update(intel_pmu_set_topdown_event_period,
|
|
&icl_set_topdown_event_period);
|
|
pr_cont("Icelake events, ");
|
|
name = "icelake";
|
|
break;
|
|
|
|
case INTEL_FAM6_SAPPHIRERAPIDS_X:
|
|
case INTEL_FAM6_EMERALDRAPIDS_X:
|
|
pmem = true;
|
|
x86_pmu.late_ack = true;
|
|
memcpy(hw_cache_event_ids, spr_hw_cache_event_ids, sizeof(hw_cache_event_ids));
|
|
memcpy(hw_cache_extra_regs, spr_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
|
|
|
|
x86_pmu.event_constraints = intel_spr_event_constraints;
|
|
x86_pmu.pebs_constraints = intel_spr_pebs_event_constraints;
|
|
x86_pmu.extra_regs = intel_spr_extra_regs;
|
|
x86_pmu.limit_period = spr_limit_period;
|
|
x86_pmu.pebs_ept = 1;
|
|
x86_pmu.pebs_aliases = NULL;
|
|
x86_pmu.pebs_prec_dist = true;
|
|
x86_pmu.pebs_block = true;
|
|
x86_pmu.flags |= PMU_FL_HAS_RSP_1;
|
|
x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
|
|
x86_pmu.flags |= PMU_FL_INSTR_LATENCY;
|
|
x86_pmu.flags |= PMU_FL_MEM_LOADS_AUX;
|
|
|
|
x86_pmu.hw_config = hsw_hw_config;
|
|
x86_pmu.get_event_constraints = spr_get_event_constraints;
|
|
extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
|
|
hsw_format_attr : nhm_format_attr;
|
|
extra_skl_attr = skl_format_attr;
|
|
mem_attr = spr_events_attrs;
|
|
td_attr = spr_td_events_attrs;
|
|
tsx_attr = spr_tsx_events_attrs;
|
|
x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
|
|
x86_pmu.lbr_pt_coexist = true;
|
|
intel_pmu_pebs_data_source_skl(pmem);
|
|
x86_pmu.num_topdown_events = 8;
|
|
static_call_update(intel_pmu_update_topdown_event,
|
|
&icl_update_topdown_event);
|
|
static_call_update(intel_pmu_set_topdown_event_period,
|
|
&icl_set_topdown_event_period);
|
|
pr_cont("Sapphire Rapids events, ");
|
|
name = "sapphire_rapids";
|
|
break;
|
|
|
|
case INTEL_FAM6_ALDERLAKE:
|
|
case INTEL_FAM6_ALDERLAKE_L:
|
|
case INTEL_FAM6_RAPTORLAKE:
|
|
case INTEL_FAM6_RAPTORLAKE_P:
|
|
case INTEL_FAM6_RAPTORLAKE_S:
|
|
case INTEL_FAM6_METEORLAKE:
|
|
case INTEL_FAM6_METEORLAKE_L:
|
|
/*
|
|
* Alder Lake has 2 types of CPU, core and atom.
|
|
*
|
|
* Initialize the common PerfMon capabilities here.
|
|
*/
|
|
x86_pmu.hybrid_pmu = kcalloc(X86_HYBRID_NUM_PMUS,
|
|
sizeof(struct x86_hybrid_pmu),
|
|
GFP_KERNEL);
|
|
if (!x86_pmu.hybrid_pmu)
|
|
return -ENOMEM;
|
|
static_branch_enable(&perf_is_hybrid);
|
|
x86_pmu.num_hybrid_pmus = X86_HYBRID_NUM_PMUS;
|
|
|
|
x86_pmu.pebs_aliases = NULL;
|
|
x86_pmu.pebs_prec_dist = true;
|
|
x86_pmu.pebs_block = true;
|
|
x86_pmu.flags |= PMU_FL_HAS_RSP_1;
|
|
x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
|
|
x86_pmu.flags |= PMU_FL_INSTR_LATENCY;
|
|
x86_pmu.lbr_pt_coexist = true;
|
|
x86_pmu.pebs_latency_data = adl_latency_data_small;
|
|
x86_pmu.num_topdown_events = 8;
|
|
static_call_update(intel_pmu_update_topdown_event,
|
|
&adl_update_topdown_event);
|
|
static_call_update(intel_pmu_set_topdown_event_period,
|
|
&adl_set_topdown_event_period);
|
|
|
|
x86_pmu.filter = intel_pmu_filter;
|
|
x86_pmu.get_event_constraints = adl_get_event_constraints;
|
|
x86_pmu.hw_config = adl_hw_config;
|
|
x86_pmu.limit_period = spr_limit_period;
|
|
x86_pmu.get_hybrid_cpu_type = adl_get_hybrid_cpu_type;
|
|
/*
|
|
* The rtm_abort_event is used to check whether to enable GPRs
|
|
* for the RTM abort event. Atom doesn't have the RTM abort
|
|
* event. There is no harmful to set it in the common
|
|
* x86_pmu.rtm_abort_event.
|
|
*/
|
|
x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
|
|
|
|
td_attr = adl_hybrid_events_attrs;
|
|
mem_attr = adl_hybrid_mem_attrs;
|
|
tsx_attr = adl_hybrid_tsx_attrs;
|
|
extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
|
|
adl_hybrid_extra_attr_rtm : adl_hybrid_extra_attr;
|
|
|
|
/* Initialize big core specific PerfMon capabilities.*/
|
|
pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX];
|
|
pmu->name = "cpu_core";
|
|
pmu->cpu_type = hybrid_big;
|
|
pmu->late_ack = true;
|
|
if (cpu_feature_enabled(X86_FEATURE_HYBRID_CPU)) {
|
|
pmu->num_counters = x86_pmu.num_counters + 2;
|
|
pmu->num_counters_fixed = x86_pmu.num_counters_fixed + 1;
|
|
} else {
|
|
pmu->num_counters = x86_pmu.num_counters;
|
|
pmu->num_counters_fixed = x86_pmu.num_counters_fixed;
|
|
}
|
|
|
|
/*
|
|
* Quirk: For some Alder Lake machine, when all E-cores are disabled in
|
|
* a BIOS, the leaf 0xA will enumerate all counters of P-cores. However,
|
|
* the X86_FEATURE_HYBRID_CPU is still set. The above codes will
|
|
* mistakenly add extra counters for P-cores. Correct the number of
|
|
* counters here.
|
|
*/
|
|
if ((pmu->num_counters > 8) || (pmu->num_counters_fixed > 4)) {
|
|
pmu->num_counters = x86_pmu.num_counters;
|
|
pmu->num_counters_fixed = x86_pmu.num_counters_fixed;
|
|
}
|
|
|
|
pmu->max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, pmu->num_counters);
|
|
pmu->unconstrained = (struct event_constraint)
|
|
__EVENT_CONSTRAINT(0, (1ULL << pmu->num_counters) - 1,
|
|
0, pmu->num_counters, 0, 0);
|
|
pmu->intel_cap.capabilities = x86_pmu.intel_cap.capabilities;
|
|
pmu->intel_cap.perf_metrics = 1;
|
|
pmu->intel_cap.pebs_output_pt_available = 0;
|
|
|
|
memcpy(pmu->hw_cache_event_ids, spr_hw_cache_event_ids, sizeof(pmu->hw_cache_event_ids));
|
|
memcpy(pmu->hw_cache_extra_regs, spr_hw_cache_extra_regs, sizeof(pmu->hw_cache_extra_regs));
|
|
pmu->event_constraints = intel_spr_event_constraints;
|
|
pmu->pebs_constraints = intel_spr_pebs_event_constraints;
|
|
pmu->extra_regs = intel_spr_extra_regs;
|
|
|
|
/* Initialize Atom core specific PerfMon capabilities.*/
|
|
pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX];
|
|
pmu->name = "cpu_atom";
|
|
pmu->cpu_type = hybrid_small;
|
|
pmu->mid_ack = true;
|
|
pmu->num_counters = x86_pmu.num_counters;
|
|
pmu->num_counters_fixed = x86_pmu.num_counters_fixed;
|
|
pmu->max_pebs_events = x86_pmu.max_pebs_events;
|
|
pmu->unconstrained = (struct event_constraint)
|
|
__EVENT_CONSTRAINT(0, (1ULL << pmu->num_counters) - 1,
|
|
0, pmu->num_counters, 0, 0);
|
|
pmu->intel_cap.capabilities = x86_pmu.intel_cap.capabilities;
|
|
pmu->intel_cap.perf_metrics = 0;
|
|
pmu->intel_cap.pebs_output_pt_available = 1;
|
|
|
|
memcpy(pmu->hw_cache_event_ids, glp_hw_cache_event_ids, sizeof(pmu->hw_cache_event_ids));
|
|
memcpy(pmu->hw_cache_extra_regs, tnt_hw_cache_extra_regs, sizeof(pmu->hw_cache_extra_regs));
|
|
pmu->hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
|
|
pmu->event_constraints = intel_slm_event_constraints;
|
|
pmu->pebs_constraints = intel_grt_pebs_event_constraints;
|
|
pmu->extra_regs = intel_grt_extra_regs;
|
|
if (is_mtl(boot_cpu_data.x86_model)) {
|
|
x86_pmu.pebs_latency_data = mtl_latency_data_small;
|
|
extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
|
|
mtl_hybrid_extra_attr_rtm : mtl_hybrid_extra_attr;
|
|
mem_attr = mtl_hybrid_mem_attrs;
|
|
intel_pmu_pebs_data_source_mtl();
|
|
x86_pmu.get_event_constraints = mtl_get_event_constraints;
|
|
pmu->extra_regs = intel_cmt_extra_regs;
|
|
pr_cont("Meteorlake Hybrid events, ");
|
|
name = "meteorlake_hybrid";
|
|
} else {
|
|
x86_pmu.flags |= PMU_FL_MEM_LOADS_AUX;
|
|
intel_pmu_pebs_data_source_adl();
|
|
pr_cont("Alderlake Hybrid events, ");
|
|
name = "alderlake_hybrid";
|
|
}
|
|
break;
|
|
|
|
default:
|
|
switch (x86_pmu.version) {
|
|
case 1:
|
|
x86_pmu.event_constraints = intel_v1_event_constraints;
|
|
pr_cont("generic architected perfmon v1, ");
|
|
name = "generic_arch_v1";
|
|
break;
|
|
case 2:
|
|
case 3:
|
|
case 4:
|
|
/*
|
|
* default constraints for v2 and up
|
|
*/
|
|
x86_pmu.event_constraints = intel_gen_event_constraints;
|
|
pr_cont("generic architected perfmon, ");
|
|
name = "generic_arch_v2+";
|
|
break;
|
|
default:
|
|
/*
|
|
* The default constraints for v5 and up can support up to
|
|
* 16 fixed counters. For the fixed counters 4 and later,
|
|
* the pseudo-encoding is applied.
|
|
* The constraints may be cut according to the CPUID enumeration
|
|
* by inserting the EVENT_CONSTRAINT_END.
|
|
*/
|
|
if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED)
|
|
x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
|
|
intel_v5_gen_event_constraints[x86_pmu.num_counters_fixed].weight = -1;
|
|
x86_pmu.event_constraints = intel_v5_gen_event_constraints;
|
|
pr_cont("generic architected perfmon, ");
|
|
name = "generic_arch_v5+";
|
|
break;
|
|
}
|
|
}
|
|
|
|
snprintf(pmu_name_str, sizeof(pmu_name_str), "%s", name);
|
|
|
|
if (!is_hybrid()) {
|
|
group_events_td.attrs = td_attr;
|
|
group_events_mem.attrs = mem_attr;
|
|
group_events_tsx.attrs = tsx_attr;
|
|
group_format_extra.attrs = extra_attr;
|
|
group_format_extra_skl.attrs = extra_skl_attr;
|
|
|
|
x86_pmu.attr_update = attr_update;
|
|
} else {
|
|
hybrid_group_events_td.attrs = td_attr;
|
|
hybrid_group_events_mem.attrs = mem_attr;
|
|
hybrid_group_events_tsx.attrs = tsx_attr;
|
|
hybrid_group_format_extra.attrs = extra_attr;
|
|
|
|
x86_pmu.attr_update = hybrid_attr_update;
|
|
}
|
|
|
|
intel_pmu_check_num_counters(&x86_pmu.num_counters,
|
|
&x86_pmu.num_counters_fixed,
|
|
&x86_pmu.intel_ctrl,
|
|
(u64)fixed_mask);
|
|
|
|
/* AnyThread may be deprecated on arch perfmon v5 or later */
|
|
if (x86_pmu.intel_cap.anythread_deprecated)
|
|
x86_pmu.format_attrs = intel_arch_formats_attr;
|
|
|
|
intel_pmu_check_event_constraints(x86_pmu.event_constraints,
|
|
x86_pmu.num_counters,
|
|
x86_pmu.num_counters_fixed,
|
|
x86_pmu.intel_ctrl);
|
|
/*
|
|
* Access LBR MSR may cause #GP under certain circumstances.
|
|
* Check all LBR MSR here.
|
|
* Disable LBR access if any LBR MSRs can not be accessed.
|
|
*/
|
|
if (x86_pmu.lbr_tos && !check_msr(x86_pmu.lbr_tos, 0x3UL))
|
|
x86_pmu.lbr_nr = 0;
|
|
for (i = 0; i < x86_pmu.lbr_nr; i++) {
|
|
if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
|
|
check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
|
|
x86_pmu.lbr_nr = 0;
|
|
}
|
|
|
|
if (x86_pmu.lbr_nr) {
|
|
intel_pmu_lbr_init();
|
|
|
|
pr_cont("%d-deep LBR, ", x86_pmu.lbr_nr);
|
|
|
|
/* only support branch_stack snapshot for perfmon >= v2 */
|
|
if (x86_pmu.disable_all == intel_pmu_disable_all) {
|
|
if (boot_cpu_has(X86_FEATURE_ARCH_LBR)) {
|
|
static_call_update(perf_snapshot_branch_stack,
|
|
intel_pmu_snapshot_arch_branch_stack);
|
|
} else {
|
|
static_call_update(perf_snapshot_branch_stack,
|
|
intel_pmu_snapshot_branch_stack);
|
|
}
|
|
}
|
|
}
|
|
|
|
intel_pmu_check_extra_regs(x86_pmu.extra_regs);
|
|
|
|
/* Support full width counters using alternative MSR range */
|
|
if (x86_pmu.intel_cap.full_width_write) {
|
|
x86_pmu.max_period = x86_pmu.cntval_mask >> 1;
|
|
x86_pmu.perfctr = MSR_IA32_PMC0;
|
|
pr_cont("full-width counters, ");
|
|
}
|
|
|
|
if (!is_hybrid() && x86_pmu.intel_cap.perf_metrics)
|
|
x86_pmu.intel_ctrl |= 1ULL << GLOBAL_CTRL_EN_PERF_METRICS;
|
|
|
|
if (is_hybrid())
|
|
intel_pmu_check_hybrid_pmus((u64)fixed_mask);
|
|
|
|
if (x86_pmu.intel_cap.pebs_timing_info)
|
|
x86_pmu.flags |= PMU_FL_RETIRE_LATENCY;
|
|
|
|
intel_aux_output_init();
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* HT bug: phase 2 init
|
|
* Called once we have valid topology information to check
|
|
* whether or not HT is enabled
|
|
* If HT is off, then we disable the workaround
|
|
*/
|
|
static __init int fixup_ht_bug(void)
|
|
{
|
|
int c;
|
|
/*
|
|
* problem not present on this CPU model, nothing to do
|
|
*/
|
|
if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
|
|
return 0;
|
|
|
|
if (topology_max_smt_threads() > 1) {
|
|
pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
|
|
return 0;
|
|
}
|
|
|
|
cpus_read_lock();
|
|
|
|
hardlockup_detector_perf_stop();
|
|
|
|
x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
|
|
|
|
x86_pmu.start_scheduling = NULL;
|
|
x86_pmu.commit_scheduling = NULL;
|
|
x86_pmu.stop_scheduling = NULL;
|
|
|
|
hardlockup_detector_perf_restart();
|
|
|
|
for_each_online_cpu(c)
|
|
free_excl_cntrs(&per_cpu(cpu_hw_events, c));
|
|
|
|
cpus_read_unlock();
|
|
pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
|
|
return 0;
|
|
}
|
|
subsys_initcall(fixup_ht_bug)
|