1570 lines
43 KiB
C
1570 lines
43 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
#include <linux/kernel.h>
|
|
#include <linux/pgtable.h>
|
|
|
|
#include <linux/string.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/sched/clock.h>
|
|
#include <linux/semaphore.h>
|
|
#include <linux/thread_info.h>
|
|
#include <linux/init.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/workqueue.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/cpuhotplug.h>
|
|
|
|
#include <asm/cpufeature.h>
|
|
#include <asm/msr.h>
|
|
#include <asm/bugs.h>
|
|
#include <asm/cpu.h>
|
|
#include <asm/intel-family.h>
|
|
#include <asm/microcode_intel.h>
|
|
#include <asm/hwcap2.h>
|
|
#include <asm/elf.h>
|
|
#include <asm/cpu_device_id.h>
|
|
#include <asm/cmdline.h>
|
|
#include <asm/traps.h>
|
|
#include <asm/resctrl.h>
|
|
#include <asm/numa.h>
|
|
#include <asm/thermal.h>
|
|
|
|
#ifdef CONFIG_X86_64
|
|
#include <linux/topology.h>
|
|
#endif
|
|
|
|
#include "cpu.h"
|
|
|
|
#ifdef CONFIG_X86_LOCAL_APIC
|
|
#include <asm/mpspec.h>
|
|
#include <asm/apic.h>
|
|
#endif
|
|
|
|
enum split_lock_detect_state {
|
|
sld_off = 0,
|
|
sld_warn,
|
|
sld_fatal,
|
|
sld_ratelimit,
|
|
};
|
|
|
|
/*
|
|
* Default to sld_off because most systems do not support split lock detection.
|
|
* sld_state_setup() will switch this to sld_warn on systems that support
|
|
* split lock/bus lock detect, unless there is a command line override.
|
|
*/
|
|
static enum split_lock_detect_state sld_state __ro_after_init = sld_off;
|
|
static u64 msr_test_ctrl_cache __ro_after_init;
|
|
|
|
/*
|
|
* With a name like MSR_TEST_CTL it should go without saying, but don't touch
|
|
* MSR_TEST_CTL unless the CPU is one of the whitelisted models. Writing it
|
|
* on CPUs that do not support SLD can cause fireworks, even when writing '0'.
|
|
*/
|
|
static bool cpu_model_supports_sld __ro_after_init;
|
|
|
|
/*
|
|
* Processors which have self-snooping capability can handle conflicting
|
|
* memory type across CPUs by snooping its own cache. However, there exists
|
|
* CPU models in which having conflicting memory types still leads to
|
|
* unpredictable behavior, machine check errors, or hangs. Clear this
|
|
* feature to prevent its use on machines with known erratas.
|
|
*/
|
|
static void check_memory_type_self_snoop_errata(struct cpuinfo_x86 *c)
|
|
{
|
|
switch (c->x86_model) {
|
|
case INTEL_FAM6_CORE_YONAH:
|
|
case INTEL_FAM6_CORE2_MEROM:
|
|
case INTEL_FAM6_CORE2_MEROM_L:
|
|
case INTEL_FAM6_CORE2_PENRYN:
|
|
case INTEL_FAM6_CORE2_DUNNINGTON:
|
|
case INTEL_FAM6_NEHALEM:
|
|
case INTEL_FAM6_NEHALEM_G:
|
|
case INTEL_FAM6_NEHALEM_EP:
|
|
case INTEL_FAM6_NEHALEM_EX:
|
|
case INTEL_FAM6_WESTMERE:
|
|
case INTEL_FAM6_WESTMERE_EP:
|
|
case INTEL_FAM6_SANDYBRIDGE:
|
|
setup_clear_cpu_cap(X86_FEATURE_SELFSNOOP);
|
|
}
|
|
}
|
|
|
|
static bool ring3mwait_disabled __read_mostly;
|
|
|
|
static int __init ring3mwait_disable(char *__unused)
|
|
{
|
|
ring3mwait_disabled = true;
|
|
return 1;
|
|
}
|
|
__setup("ring3mwait=disable", ring3mwait_disable);
|
|
|
|
static void probe_xeon_phi_r3mwait(struct cpuinfo_x86 *c)
|
|
{
|
|
/*
|
|
* Ring 3 MONITOR/MWAIT feature cannot be detected without
|
|
* cpu model and family comparison.
|
|
*/
|
|
if (c->x86 != 6)
|
|
return;
|
|
switch (c->x86_model) {
|
|
case INTEL_FAM6_XEON_PHI_KNL:
|
|
case INTEL_FAM6_XEON_PHI_KNM:
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
|
|
if (ring3mwait_disabled)
|
|
return;
|
|
|
|
set_cpu_cap(c, X86_FEATURE_RING3MWAIT);
|
|
this_cpu_or(msr_misc_features_shadow,
|
|
1UL << MSR_MISC_FEATURES_ENABLES_RING3MWAIT_BIT);
|
|
|
|
if (c == &boot_cpu_data)
|
|
ELF_HWCAP2 |= HWCAP2_RING3MWAIT;
|
|
}
|
|
|
|
/*
|
|
* Early microcode releases for the Spectre v2 mitigation were broken.
|
|
* Information taken from;
|
|
* - https://newsroom.intel.com/wp-content/uploads/sites/11/2018/03/microcode-update-guidance.pdf
|
|
* - https://kb.vmware.com/s/article/52345
|
|
* - Microcode revisions observed in the wild
|
|
* - Release note from 20180108 microcode release
|
|
*/
|
|
struct sku_microcode {
|
|
u8 model;
|
|
u8 stepping;
|
|
u32 microcode;
|
|
};
|
|
static const struct sku_microcode spectre_bad_microcodes[] = {
|
|
{ INTEL_FAM6_KABYLAKE, 0x0B, 0x80 },
|
|
{ INTEL_FAM6_KABYLAKE, 0x0A, 0x80 },
|
|
{ INTEL_FAM6_KABYLAKE, 0x09, 0x80 },
|
|
{ INTEL_FAM6_KABYLAKE_L, 0x0A, 0x80 },
|
|
{ INTEL_FAM6_KABYLAKE_L, 0x09, 0x80 },
|
|
{ INTEL_FAM6_SKYLAKE_X, 0x03, 0x0100013e },
|
|
{ INTEL_FAM6_SKYLAKE_X, 0x04, 0x0200003c },
|
|
{ INTEL_FAM6_BROADWELL, 0x04, 0x28 },
|
|
{ INTEL_FAM6_BROADWELL_G, 0x01, 0x1b },
|
|
{ INTEL_FAM6_BROADWELL_D, 0x02, 0x14 },
|
|
{ INTEL_FAM6_BROADWELL_D, 0x03, 0x07000011 },
|
|
{ INTEL_FAM6_BROADWELL_X, 0x01, 0x0b000025 },
|
|
{ INTEL_FAM6_HASWELL_L, 0x01, 0x21 },
|
|
{ INTEL_FAM6_HASWELL_G, 0x01, 0x18 },
|
|
{ INTEL_FAM6_HASWELL, 0x03, 0x23 },
|
|
{ INTEL_FAM6_HASWELL_X, 0x02, 0x3b },
|
|
{ INTEL_FAM6_HASWELL_X, 0x04, 0x10 },
|
|
{ INTEL_FAM6_IVYBRIDGE_X, 0x04, 0x42a },
|
|
/* Observed in the wild */
|
|
{ INTEL_FAM6_SANDYBRIDGE_X, 0x06, 0x61b },
|
|
{ INTEL_FAM6_SANDYBRIDGE_X, 0x07, 0x712 },
|
|
};
|
|
|
|
static bool bad_spectre_microcode(struct cpuinfo_x86 *c)
|
|
{
|
|
int i;
|
|
|
|
/*
|
|
* We know that the hypervisor lie to us on the microcode version so
|
|
* we may as well hope that it is running the correct version.
|
|
*/
|
|
if (cpu_has(c, X86_FEATURE_HYPERVISOR))
|
|
return false;
|
|
|
|
if (c->x86 != 6)
|
|
return false;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(spectre_bad_microcodes); i++) {
|
|
if (c->x86_model == spectre_bad_microcodes[i].model &&
|
|
c->x86_stepping == spectre_bad_microcodes[i].stepping)
|
|
return (c->microcode <= spectre_bad_microcodes[i].microcode);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
int intel_cpu_collect_info(struct ucode_cpu_info *uci)
|
|
{
|
|
unsigned int val[2];
|
|
unsigned int family, model;
|
|
struct cpu_signature csig = { 0 };
|
|
unsigned int eax, ebx, ecx, edx;
|
|
|
|
memset(uci, 0, sizeof(*uci));
|
|
|
|
eax = 0x00000001;
|
|
ecx = 0;
|
|
native_cpuid(&eax, &ebx, &ecx, &edx);
|
|
csig.sig = eax;
|
|
|
|
family = x86_family(eax);
|
|
model = x86_model(eax);
|
|
|
|
if (model >= 5 || family > 6) {
|
|
/* get processor flags from MSR 0x17 */
|
|
native_rdmsr(MSR_IA32_PLATFORM_ID, val[0], val[1]);
|
|
csig.pf = 1 << ((val[1] >> 18) & 7);
|
|
}
|
|
|
|
csig.rev = intel_get_microcode_revision();
|
|
|
|
uci->cpu_sig = csig;
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(intel_cpu_collect_info);
|
|
|
|
/*
|
|
* Returns 1 if update has been found, 0 otherwise.
|
|
*/
|
|
int intel_find_matching_signature(void *mc, unsigned int csig, int cpf)
|
|
{
|
|
struct microcode_header_intel *mc_hdr = mc;
|
|
struct extended_sigtable *ext_hdr;
|
|
struct extended_signature *ext_sig;
|
|
int i;
|
|
|
|
if (intel_cpu_signatures_match(csig, cpf, mc_hdr->sig, mc_hdr->pf))
|
|
return 1;
|
|
|
|
/* Look for ext. headers: */
|
|
if (get_totalsize(mc_hdr) <= get_datasize(mc_hdr) + MC_HEADER_SIZE)
|
|
return 0;
|
|
|
|
ext_hdr = mc + get_datasize(mc_hdr) + MC_HEADER_SIZE;
|
|
ext_sig = (void *)ext_hdr + EXT_HEADER_SIZE;
|
|
|
|
for (i = 0; i < ext_hdr->count; i++) {
|
|
if (intel_cpu_signatures_match(csig, cpf, ext_sig->sig, ext_sig->pf))
|
|
return 1;
|
|
ext_sig++;
|
|
}
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(intel_find_matching_signature);
|
|
|
|
/**
|
|
* intel_microcode_sanity_check() - Sanity check microcode file.
|
|
* @mc: Pointer to the microcode file contents.
|
|
* @print_err: Display failure reason if true, silent if false.
|
|
* @hdr_type: Type of file, i.e. normal microcode file or In Field Scan file.
|
|
* Validate if the microcode header type matches with the type
|
|
* specified here.
|
|
*
|
|
* Validate certain header fields and verify if computed checksum matches
|
|
* with the one specified in the header.
|
|
*
|
|
* Return: 0 if the file passes all the checks, -EINVAL if any of the checks
|
|
* fail.
|
|
*/
|
|
int intel_microcode_sanity_check(void *mc, bool print_err, int hdr_type)
|
|
{
|
|
unsigned long total_size, data_size, ext_table_size;
|
|
struct microcode_header_intel *mc_header = mc;
|
|
struct extended_sigtable *ext_header = NULL;
|
|
u32 sum, orig_sum, ext_sigcount = 0, i;
|
|
struct extended_signature *ext_sig;
|
|
|
|
total_size = get_totalsize(mc_header);
|
|
data_size = get_datasize(mc_header);
|
|
|
|
if (data_size + MC_HEADER_SIZE > total_size) {
|
|
if (print_err)
|
|
pr_err("Error: bad microcode data file size.\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (mc_header->ldrver != 1 || mc_header->hdrver != hdr_type) {
|
|
if (print_err)
|
|
pr_err("Error: invalid/unknown microcode update format. Header type %d\n",
|
|
mc_header->hdrver);
|
|
return -EINVAL;
|
|
}
|
|
|
|
ext_table_size = total_size - (MC_HEADER_SIZE + data_size);
|
|
if (ext_table_size) {
|
|
u32 ext_table_sum = 0;
|
|
u32 *ext_tablep;
|
|
|
|
if (ext_table_size < EXT_HEADER_SIZE ||
|
|
((ext_table_size - EXT_HEADER_SIZE) % EXT_SIGNATURE_SIZE)) {
|
|
if (print_err)
|
|
pr_err("Error: truncated extended signature table.\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
ext_header = mc + MC_HEADER_SIZE + data_size;
|
|
if (ext_table_size != exttable_size(ext_header)) {
|
|
if (print_err)
|
|
pr_err("Error: extended signature table size mismatch.\n");
|
|
return -EFAULT;
|
|
}
|
|
|
|
ext_sigcount = ext_header->count;
|
|
|
|
/*
|
|
* Check extended table checksum: the sum of all dwords that
|
|
* comprise a valid table must be 0.
|
|
*/
|
|
ext_tablep = (u32 *)ext_header;
|
|
|
|
i = ext_table_size / sizeof(u32);
|
|
while (i--)
|
|
ext_table_sum += ext_tablep[i];
|
|
|
|
if (ext_table_sum) {
|
|
if (print_err)
|
|
pr_warn("Bad extended signature table checksum, aborting.\n");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Calculate the checksum of update data and header. The checksum of
|
|
* valid update data and header including the extended signature table
|
|
* must be 0.
|
|
*/
|
|
orig_sum = 0;
|
|
i = (MC_HEADER_SIZE + data_size) / sizeof(u32);
|
|
while (i--)
|
|
orig_sum += ((u32 *)mc)[i];
|
|
|
|
if (orig_sum) {
|
|
if (print_err)
|
|
pr_err("Bad microcode data checksum, aborting.\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!ext_table_size)
|
|
return 0;
|
|
|
|
/*
|
|
* Check extended signature checksum: 0 => valid.
|
|
*/
|
|
for (i = 0; i < ext_sigcount; i++) {
|
|
ext_sig = (void *)ext_header + EXT_HEADER_SIZE +
|
|
EXT_SIGNATURE_SIZE * i;
|
|
|
|
sum = (mc_header->sig + mc_header->pf + mc_header->cksum) -
|
|
(ext_sig->sig + ext_sig->pf + ext_sig->cksum);
|
|
if (sum) {
|
|
if (print_err)
|
|
pr_err("Bad extended signature checksum, aborting.\n");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(intel_microcode_sanity_check);
|
|
|
|
static void early_init_intel(struct cpuinfo_x86 *c)
|
|
{
|
|
u64 misc_enable;
|
|
|
|
/* Unmask CPUID levels if masked: */
|
|
if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
|
|
if (msr_clear_bit(MSR_IA32_MISC_ENABLE,
|
|
MSR_IA32_MISC_ENABLE_LIMIT_CPUID_BIT) > 0) {
|
|
c->cpuid_level = cpuid_eax(0);
|
|
get_cpu_cap(c);
|
|
}
|
|
}
|
|
|
|
if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
|
|
(c->x86 == 0x6 && c->x86_model >= 0x0e))
|
|
set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
|
|
|
|
if (c->x86 >= 6 && !cpu_has(c, X86_FEATURE_IA64))
|
|
c->microcode = intel_get_microcode_revision();
|
|
|
|
/* Now if any of them are set, check the blacklist and clear the lot */
|
|
if ((cpu_has(c, X86_FEATURE_SPEC_CTRL) ||
|
|
cpu_has(c, X86_FEATURE_INTEL_STIBP) ||
|
|
cpu_has(c, X86_FEATURE_IBRS) || cpu_has(c, X86_FEATURE_IBPB) ||
|
|
cpu_has(c, X86_FEATURE_STIBP)) && bad_spectre_microcode(c)) {
|
|
pr_warn("Intel Spectre v2 broken microcode detected; disabling Speculation Control\n");
|
|
setup_clear_cpu_cap(X86_FEATURE_IBRS);
|
|
setup_clear_cpu_cap(X86_FEATURE_IBPB);
|
|
setup_clear_cpu_cap(X86_FEATURE_STIBP);
|
|
setup_clear_cpu_cap(X86_FEATURE_SPEC_CTRL);
|
|
setup_clear_cpu_cap(X86_FEATURE_MSR_SPEC_CTRL);
|
|
setup_clear_cpu_cap(X86_FEATURE_INTEL_STIBP);
|
|
setup_clear_cpu_cap(X86_FEATURE_SSBD);
|
|
setup_clear_cpu_cap(X86_FEATURE_SPEC_CTRL_SSBD);
|
|
}
|
|
|
|
/*
|
|
* Atom erratum AAE44/AAF40/AAG38/AAH41:
|
|
*
|
|
* A race condition between speculative fetches and invalidating
|
|
* a large page. This is worked around in microcode, but we
|
|
* need the microcode to have already been loaded... so if it is
|
|
* not, recommend a BIOS update and disable large pages.
|
|
*/
|
|
if (c->x86 == 6 && c->x86_model == 0x1c && c->x86_stepping <= 2 &&
|
|
c->microcode < 0x20e) {
|
|
pr_warn("Atom PSE erratum detected, BIOS microcode update recommended\n");
|
|
clear_cpu_cap(c, X86_FEATURE_PSE);
|
|
}
|
|
|
|
#ifdef CONFIG_X86_64
|
|
set_cpu_cap(c, X86_FEATURE_SYSENTER32);
|
|
#else
|
|
/* Netburst reports 64 bytes clflush size, but does IO in 128 bytes */
|
|
if (c->x86 == 15 && c->x86_cache_alignment == 64)
|
|
c->x86_cache_alignment = 128;
|
|
#endif
|
|
|
|
/* CPUID workaround for 0F33/0F34 CPU */
|
|
if (c->x86 == 0xF && c->x86_model == 0x3
|
|
&& (c->x86_stepping == 0x3 || c->x86_stepping == 0x4))
|
|
c->x86_phys_bits = 36;
|
|
|
|
/*
|
|
* c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate
|
|
* with P/T states and does not stop in deep C-states.
|
|
*
|
|
* It is also reliable across cores and sockets. (but not across
|
|
* cabinets - we turn it off in that case explicitly.)
|
|
*/
|
|
if (c->x86_power & (1 << 8)) {
|
|
set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
|
|
set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC);
|
|
}
|
|
|
|
/* Penwell and Cloverview have the TSC which doesn't sleep on S3 */
|
|
if (c->x86 == 6) {
|
|
switch (c->x86_model) {
|
|
case INTEL_FAM6_ATOM_SALTWELL_MID:
|
|
case INTEL_FAM6_ATOM_SALTWELL_TABLET:
|
|
case INTEL_FAM6_ATOM_SILVERMONT_MID:
|
|
case INTEL_FAM6_ATOM_AIRMONT_NP:
|
|
set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC_S3);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* There is a known erratum on Pentium III and Core Solo
|
|
* and Core Duo CPUs.
|
|
* " Page with PAT set to WC while associated MTRR is UC
|
|
* may consolidate to UC "
|
|
* Because of this erratum, it is better to stick with
|
|
* setting WC in MTRR rather than using PAT on these CPUs.
|
|
*
|
|
* Enable PAT WC only on P4, Core 2 or later CPUs.
|
|
*/
|
|
if (c->x86 == 6 && c->x86_model < 15)
|
|
clear_cpu_cap(c, X86_FEATURE_PAT);
|
|
|
|
/*
|
|
* If fast string is not enabled in IA32_MISC_ENABLE for any reason,
|
|
* clear the fast string and enhanced fast string CPU capabilities.
|
|
*/
|
|
if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
|
|
rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
|
|
if (!(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING)) {
|
|
pr_info("Disabled fast string operations\n");
|
|
setup_clear_cpu_cap(X86_FEATURE_REP_GOOD);
|
|
setup_clear_cpu_cap(X86_FEATURE_ERMS);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Intel Quark Core DevMan_001.pdf section 6.4.11
|
|
* "The operating system also is required to invalidate (i.e., flush)
|
|
* the TLB when any changes are made to any of the page table entries.
|
|
* The operating system must reload CR3 to cause the TLB to be flushed"
|
|
*
|
|
* As a result, boot_cpu_has(X86_FEATURE_PGE) in arch/x86/include/asm/tlbflush.h
|
|
* should be false so that __flush_tlb_all() causes CR3 instead of CR4.PGE
|
|
* to be modified.
|
|
*/
|
|
if (c->x86 == 5 && c->x86_model == 9) {
|
|
pr_info("Disabling PGE capability bit\n");
|
|
setup_clear_cpu_cap(X86_FEATURE_PGE);
|
|
}
|
|
|
|
if (c->cpuid_level >= 0x00000001) {
|
|
u32 eax, ebx, ecx, edx;
|
|
|
|
cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
|
|
/*
|
|
* If HTT (EDX[28]) is set EBX[16:23] contain the number of
|
|
* apicids which are reserved per package. Store the resulting
|
|
* shift value for the package management code.
|
|
*/
|
|
if (edx & (1U << 28))
|
|
c->x86_coreid_bits = get_count_order((ebx >> 16) & 0xff);
|
|
}
|
|
|
|
check_memory_type_self_snoop_errata(c);
|
|
|
|
/*
|
|
* Get the number of SMT siblings early from the extended topology
|
|
* leaf, if available. Otherwise try the legacy SMT detection.
|
|
*/
|
|
if (detect_extended_topology_early(c) < 0)
|
|
detect_ht_early(c);
|
|
}
|
|
|
|
static void bsp_init_intel(struct cpuinfo_x86 *c)
|
|
{
|
|
resctrl_cpu_detect(c);
|
|
}
|
|
|
|
#ifdef CONFIG_X86_32
|
|
/*
|
|
* Early probe support logic for ppro memory erratum #50
|
|
*
|
|
* This is called before we do cpu ident work
|
|
*/
|
|
|
|
int ppro_with_ram_bug(void)
|
|
{
|
|
/* Uses data from early_cpu_detect now */
|
|
if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
|
|
boot_cpu_data.x86 == 6 &&
|
|
boot_cpu_data.x86_model == 1 &&
|
|
boot_cpu_data.x86_stepping < 8) {
|
|
pr_info("Pentium Pro with Errata#50 detected. Taking evasive action.\n");
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void intel_smp_check(struct cpuinfo_x86 *c)
|
|
{
|
|
/* calling is from identify_secondary_cpu() ? */
|
|
if (!c->cpu_index)
|
|
return;
|
|
|
|
/*
|
|
* Mask B, Pentium, but not Pentium MMX
|
|
*/
|
|
if (c->x86 == 5 &&
|
|
c->x86_stepping >= 1 && c->x86_stepping <= 4 &&
|
|
c->x86_model <= 3) {
|
|
/*
|
|
* Remember we have B step Pentia with bugs
|
|
*/
|
|
WARN_ONCE(1, "WARNING: SMP operation may be unreliable"
|
|
"with B stepping processors.\n");
|
|
}
|
|
}
|
|
|
|
static int forcepae;
|
|
static int __init forcepae_setup(char *__unused)
|
|
{
|
|
forcepae = 1;
|
|
return 1;
|
|
}
|
|
__setup("forcepae", forcepae_setup);
|
|
|
|
static void intel_workarounds(struct cpuinfo_x86 *c)
|
|
{
|
|
#ifdef CONFIG_X86_F00F_BUG
|
|
/*
|
|
* All models of Pentium and Pentium with MMX technology CPUs
|
|
* have the F0 0F bug, which lets nonprivileged users lock up the
|
|
* system. Announce that the fault handler will be checking for it.
|
|
* The Quark is also family 5, but does not have the same bug.
|
|
*/
|
|
clear_cpu_bug(c, X86_BUG_F00F);
|
|
if (c->x86 == 5 && c->x86_model < 9) {
|
|
static int f00f_workaround_enabled;
|
|
|
|
set_cpu_bug(c, X86_BUG_F00F);
|
|
if (!f00f_workaround_enabled) {
|
|
pr_notice("Intel Pentium with F0 0F bug - workaround enabled.\n");
|
|
f00f_workaround_enabled = 1;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* SEP CPUID bug: Pentium Pro reports SEP but doesn't have it until
|
|
* model 3 mask 3
|
|
*/
|
|
if ((c->x86<<8 | c->x86_model<<4 | c->x86_stepping) < 0x633)
|
|
clear_cpu_cap(c, X86_FEATURE_SEP);
|
|
|
|
/*
|
|
* PAE CPUID issue: many Pentium M report no PAE but may have a
|
|
* functionally usable PAE implementation.
|
|
* Forcefully enable PAE if kernel parameter "forcepae" is present.
|
|
*/
|
|
if (forcepae) {
|
|
pr_warn("PAE forced!\n");
|
|
set_cpu_cap(c, X86_FEATURE_PAE);
|
|
add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE);
|
|
}
|
|
|
|
/*
|
|
* P4 Xeon erratum 037 workaround.
|
|
* Hardware prefetcher may cause stale data to be loaded into the cache.
|
|
*/
|
|
if ((c->x86 == 15) && (c->x86_model == 1) && (c->x86_stepping == 1)) {
|
|
if (msr_set_bit(MSR_IA32_MISC_ENABLE,
|
|
MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE_BIT) > 0) {
|
|
pr_info("CPU: C0 stepping P4 Xeon detected.\n");
|
|
pr_info("CPU: Disabling hardware prefetching (Erratum 037)\n");
|
|
}
|
|
}
|
|
|
|
/*
|
|
* See if we have a good local APIC by checking for buggy Pentia,
|
|
* i.e. all B steppings and the C2 stepping of P54C when using their
|
|
* integrated APIC (see 11AP erratum in "Pentium Processor
|
|
* Specification Update").
|
|
*/
|
|
if (boot_cpu_has(X86_FEATURE_APIC) && (c->x86<<8 | c->x86_model<<4) == 0x520 &&
|
|
(c->x86_stepping < 0x6 || c->x86_stepping == 0xb))
|
|
set_cpu_bug(c, X86_BUG_11AP);
|
|
|
|
|
|
#ifdef CONFIG_X86_INTEL_USERCOPY
|
|
/*
|
|
* Set up the preferred alignment for movsl bulk memory moves
|
|
*/
|
|
switch (c->x86) {
|
|
case 4: /* 486: untested */
|
|
break;
|
|
case 5: /* Old Pentia: untested */
|
|
break;
|
|
case 6: /* PII/PIII only like movsl with 8-byte alignment */
|
|
movsl_mask.mask = 7;
|
|
break;
|
|
case 15: /* P4 is OK down to 8-byte alignment */
|
|
movsl_mask.mask = 7;
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
intel_smp_check(c);
|
|
}
|
|
#else
|
|
static void intel_workarounds(struct cpuinfo_x86 *c)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
static void srat_detect_node(struct cpuinfo_x86 *c)
|
|
{
|
|
#ifdef CONFIG_NUMA
|
|
unsigned node;
|
|
int cpu = smp_processor_id();
|
|
|
|
/* Don't do the funky fallback heuristics the AMD version employs
|
|
for now. */
|
|
node = numa_cpu_node(cpu);
|
|
if (node == NUMA_NO_NODE || !node_online(node)) {
|
|
/* reuse the value from init_cpu_to_node() */
|
|
node = cpu_to_node(cpu);
|
|
}
|
|
numa_set_node(cpu, node);
|
|
#endif
|
|
}
|
|
|
|
#define MSR_IA32_TME_ACTIVATE 0x982
|
|
|
|
/* Helpers to access TME_ACTIVATE MSR */
|
|
#define TME_ACTIVATE_LOCKED(x) (x & 0x1)
|
|
#define TME_ACTIVATE_ENABLED(x) (x & 0x2)
|
|
|
|
#define TME_ACTIVATE_POLICY(x) ((x >> 4) & 0xf) /* Bits 7:4 */
|
|
#define TME_ACTIVATE_POLICY_AES_XTS_128 0
|
|
|
|
#define TME_ACTIVATE_KEYID_BITS(x) ((x >> 32) & 0xf) /* Bits 35:32 */
|
|
|
|
#define TME_ACTIVATE_CRYPTO_ALGS(x) ((x >> 48) & 0xffff) /* Bits 63:48 */
|
|
#define TME_ACTIVATE_CRYPTO_AES_XTS_128 1
|
|
|
|
/* Values for mktme_status (SW only construct) */
|
|
#define MKTME_ENABLED 0
|
|
#define MKTME_DISABLED 1
|
|
#define MKTME_UNINITIALIZED 2
|
|
static int mktme_status = MKTME_UNINITIALIZED;
|
|
|
|
static void detect_tme(struct cpuinfo_x86 *c)
|
|
{
|
|
u64 tme_activate, tme_policy, tme_crypto_algs;
|
|
int keyid_bits = 0, nr_keyids = 0;
|
|
static u64 tme_activate_cpu0 = 0;
|
|
|
|
rdmsrl(MSR_IA32_TME_ACTIVATE, tme_activate);
|
|
|
|
if (mktme_status != MKTME_UNINITIALIZED) {
|
|
if (tme_activate != tme_activate_cpu0) {
|
|
/* Broken BIOS? */
|
|
pr_err_once("x86/tme: configuration is inconsistent between CPUs\n");
|
|
pr_err_once("x86/tme: MKTME is not usable\n");
|
|
mktme_status = MKTME_DISABLED;
|
|
|
|
/* Proceed. We may need to exclude bits from x86_phys_bits. */
|
|
}
|
|
} else {
|
|
tme_activate_cpu0 = tme_activate;
|
|
}
|
|
|
|
if (!TME_ACTIVATE_LOCKED(tme_activate) || !TME_ACTIVATE_ENABLED(tme_activate)) {
|
|
pr_info_once("x86/tme: not enabled by BIOS\n");
|
|
mktme_status = MKTME_DISABLED;
|
|
return;
|
|
}
|
|
|
|
if (mktme_status != MKTME_UNINITIALIZED)
|
|
goto detect_keyid_bits;
|
|
|
|
pr_info("x86/tme: enabled by BIOS\n");
|
|
|
|
tme_policy = TME_ACTIVATE_POLICY(tme_activate);
|
|
if (tme_policy != TME_ACTIVATE_POLICY_AES_XTS_128)
|
|
pr_warn("x86/tme: Unknown policy is active: %#llx\n", tme_policy);
|
|
|
|
tme_crypto_algs = TME_ACTIVATE_CRYPTO_ALGS(tme_activate);
|
|
if (!(tme_crypto_algs & TME_ACTIVATE_CRYPTO_AES_XTS_128)) {
|
|
pr_err("x86/mktme: No known encryption algorithm is supported: %#llx\n",
|
|
tme_crypto_algs);
|
|
mktme_status = MKTME_DISABLED;
|
|
}
|
|
detect_keyid_bits:
|
|
keyid_bits = TME_ACTIVATE_KEYID_BITS(tme_activate);
|
|
nr_keyids = (1UL << keyid_bits) - 1;
|
|
if (nr_keyids) {
|
|
pr_info_once("x86/mktme: enabled by BIOS\n");
|
|
pr_info_once("x86/mktme: %d KeyIDs available\n", nr_keyids);
|
|
} else {
|
|
pr_info_once("x86/mktme: disabled by BIOS\n");
|
|
}
|
|
|
|
if (mktme_status == MKTME_UNINITIALIZED) {
|
|
/* MKTME is usable */
|
|
mktme_status = MKTME_ENABLED;
|
|
}
|
|
|
|
/*
|
|
* KeyID bits effectively lower the number of physical address
|
|
* bits. Update cpuinfo_x86::x86_phys_bits accordingly.
|
|
*/
|
|
c->x86_phys_bits -= keyid_bits;
|
|
}
|
|
|
|
static void init_cpuid_fault(struct cpuinfo_x86 *c)
|
|
{
|
|
u64 msr;
|
|
|
|
if (!rdmsrl_safe(MSR_PLATFORM_INFO, &msr)) {
|
|
if (msr & MSR_PLATFORM_INFO_CPUID_FAULT)
|
|
set_cpu_cap(c, X86_FEATURE_CPUID_FAULT);
|
|
}
|
|
}
|
|
|
|
static void init_intel_misc_features(struct cpuinfo_x86 *c)
|
|
{
|
|
u64 msr;
|
|
|
|
if (rdmsrl_safe(MSR_MISC_FEATURES_ENABLES, &msr))
|
|
return;
|
|
|
|
/* Clear all MISC features */
|
|
this_cpu_write(msr_misc_features_shadow, 0);
|
|
|
|
/* Check features and update capabilities and shadow control bits */
|
|
init_cpuid_fault(c);
|
|
probe_xeon_phi_r3mwait(c);
|
|
|
|
msr = this_cpu_read(msr_misc_features_shadow);
|
|
wrmsrl(MSR_MISC_FEATURES_ENABLES, msr);
|
|
}
|
|
|
|
static void split_lock_init(void);
|
|
static void bus_lock_init(void);
|
|
|
|
static void init_intel(struct cpuinfo_x86 *c)
|
|
{
|
|
early_init_intel(c);
|
|
|
|
intel_workarounds(c);
|
|
|
|
/*
|
|
* Detect the extended topology information if available. This
|
|
* will reinitialise the initial_apicid which will be used
|
|
* in init_intel_cacheinfo()
|
|
*/
|
|
detect_extended_topology(c);
|
|
|
|
if (!cpu_has(c, X86_FEATURE_XTOPOLOGY)) {
|
|
/*
|
|
* let's use the legacy cpuid vector 0x1 and 0x4 for topology
|
|
* detection.
|
|
*/
|
|
detect_num_cpu_cores(c);
|
|
#ifdef CONFIG_X86_32
|
|
detect_ht(c);
|
|
#endif
|
|
}
|
|
|
|
init_intel_cacheinfo(c);
|
|
|
|
if (c->cpuid_level > 9) {
|
|
unsigned eax = cpuid_eax(10);
|
|
/* Check for version and the number of counters */
|
|
if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
|
|
set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON);
|
|
}
|
|
|
|
if (cpu_has(c, X86_FEATURE_XMM2))
|
|
set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
|
|
|
|
if (boot_cpu_has(X86_FEATURE_DS)) {
|
|
unsigned int l1, l2;
|
|
|
|
rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
|
|
if (!(l1 & MSR_IA32_MISC_ENABLE_BTS_UNAVAIL))
|
|
set_cpu_cap(c, X86_FEATURE_BTS);
|
|
if (!(l1 & MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL))
|
|
set_cpu_cap(c, X86_FEATURE_PEBS);
|
|
}
|
|
|
|
if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_CLFLUSH) &&
|
|
(c->x86_model == 29 || c->x86_model == 46 || c->x86_model == 47))
|
|
set_cpu_bug(c, X86_BUG_CLFLUSH_MONITOR);
|
|
|
|
if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_MWAIT) &&
|
|
((c->x86_model == INTEL_FAM6_ATOM_GOLDMONT)))
|
|
set_cpu_bug(c, X86_BUG_MONITOR);
|
|
|
|
#ifdef CONFIG_X86_64
|
|
if (c->x86 == 15)
|
|
c->x86_cache_alignment = c->x86_clflush_size * 2;
|
|
if (c->x86 == 6)
|
|
set_cpu_cap(c, X86_FEATURE_REP_GOOD);
|
|
#else
|
|
/*
|
|
* Names for the Pentium II/Celeron processors
|
|
* detectable only by also checking the cache size.
|
|
* Dixon is NOT a Celeron.
|
|
*/
|
|
if (c->x86 == 6) {
|
|
unsigned int l2 = c->x86_cache_size;
|
|
char *p = NULL;
|
|
|
|
switch (c->x86_model) {
|
|
case 5:
|
|
if (l2 == 0)
|
|
p = "Celeron (Covington)";
|
|
else if (l2 == 256)
|
|
p = "Mobile Pentium II (Dixon)";
|
|
break;
|
|
|
|
case 6:
|
|
if (l2 == 128)
|
|
p = "Celeron (Mendocino)";
|
|
else if (c->x86_stepping == 0 || c->x86_stepping == 5)
|
|
p = "Celeron-A";
|
|
break;
|
|
|
|
case 8:
|
|
if (l2 == 128)
|
|
p = "Celeron (Coppermine)";
|
|
break;
|
|
}
|
|
|
|
if (p)
|
|
strcpy(c->x86_model_id, p);
|
|
}
|
|
|
|
if (c->x86 == 15)
|
|
set_cpu_cap(c, X86_FEATURE_P4);
|
|
if (c->x86 == 6)
|
|
set_cpu_cap(c, X86_FEATURE_P3);
|
|
#endif
|
|
|
|
/* Work around errata */
|
|
srat_detect_node(c);
|
|
|
|
init_ia32_feat_ctl(c);
|
|
|
|
if (cpu_has(c, X86_FEATURE_TME))
|
|
detect_tme(c);
|
|
|
|
init_intel_misc_features(c);
|
|
|
|
split_lock_init();
|
|
bus_lock_init();
|
|
|
|
intel_init_thermal(c);
|
|
}
|
|
|
|
#ifdef CONFIG_X86_32
|
|
static unsigned int intel_size_cache(struct cpuinfo_x86 *c, unsigned int size)
|
|
{
|
|
/*
|
|
* Intel PIII Tualatin. This comes in two flavours.
|
|
* One has 256kb of cache, the other 512. We have no way
|
|
* to determine which, so we use a boottime override
|
|
* for the 512kb model, and assume 256 otherwise.
|
|
*/
|
|
if ((c->x86 == 6) && (c->x86_model == 11) && (size == 0))
|
|
size = 256;
|
|
|
|
/*
|
|
* Intel Quark SoC X1000 contains a 4-way set associative
|
|
* 16K cache with a 16 byte cache line and 256 lines per tag
|
|
*/
|
|
if ((c->x86 == 5) && (c->x86_model == 9))
|
|
size = 16;
|
|
return size;
|
|
}
|
|
#endif
|
|
|
|
#define TLB_INST_4K 0x01
|
|
#define TLB_INST_4M 0x02
|
|
#define TLB_INST_2M_4M 0x03
|
|
|
|
#define TLB_INST_ALL 0x05
|
|
#define TLB_INST_1G 0x06
|
|
|
|
#define TLB_DATA_4K 0x11
|
|
#define TLB_DATA_4M 0x12
|
|
#define TLB_DATA_2M_4M 0x13
|
|
#define TLB_DATA_4K_4M 0x14
|
|
|
|
#define TLB_DATA_1G 0x16
|
|
|
|
#define TLB_DATA0_4K 0x21
|
|
#define TLB_DATA0_4M 0x22
|
|
#define TLB_DATA0_2M_4M 0x23
|
|
|
|
#define STLB_4K 0x41
|
|
#define STLB_4K_2M 0x42
|
|
|
|
static const struct _tlb_table intel_tlb_table[] = {
|
|
{ 0x01, TLB_INST_4K, 32, " TLB_INST 4 KByte pages, 4-way set associative" },
|
|
{ 0x02, TLB_INST_4M, 2, " TLB_INST 4 MByte pages, full associative" },
|
|
{ 0x03, TLB_DATA_4K, 64, " TLB_DATA 4 KByte pages, 4-way set associative" },
|
|
{ 0x04, TLB_DATA_4M, 8, " TLB_DATA 4 MByte pages, 4-way set associative" },
|
|
{ 0x05, TLB_DATA_4M, 32, " TLB_DATA 4 MByte pages, 4-way set associative" },
|
|
{ 0x0b, TLB_INST_4M, 4, " TLB_INST 4 MByte pages, 4-way set associative" },
|
|
{ 0x4f, TLB_INST_4K, 32, " TLB_INST 4 KByte pages" },
|
|
{ 0x50, TLB_INST_ALL, 64, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
|
|
{ 0x51, TLB_INST_ALL, 128, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
|
|
{ 0x52, TLB_INST_ALL, 256, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
|
|
{ 0x55, TLB_INST_2M_4M, 7, " TLB_INST 2-MByte or 4-MByte pages, fully associative" },
|
|
{ 0x56, TLB_DATA0_4M, 16, " TLB_DATA0 4 MByte pages, 4-way set associative" },
|
|
{ 0x57, TLB_DATA0_4K, 16, " TLB_DATA0 4 KByte pages, 4-way associative" },
|
|
{ 0x59, TLB_DATA0_4K, 16, " TLB_DATA0 4 KByte pages, fully associative" },
|
|
{ 0x5a, TLB_DATA0_2M_4M, 32, " TLB_DATA0 2-MByte or 4 MByte pages, 4-way set associative" },
|
|
{ 0x5b, TLB_DATA_4K_4M, 64, " TLB_DATA 4 KByte and 4 MByte pages" },
|
|
{ 0x5c, TLB_DATA_4K_4M, 128, " TLB_DATA 4 KByte and 4 MByte pages" },
|
|
{ 0x5d, TLB_DATA_4K_4M, 256, " TLB_DATA 4 KByte and 4 MByte pages" },
|
|
{ 0x61, TLB_INST_4K, 48, " TLB_INST 4 KByte pages, full associative" },
|
|
{ 0x63, TLB_DATA_1G, 4, " TLB_DATA 1 GByte pages, 4-way set associative" },
|
|
{ 0x6b, TLB_DATA_4K, 256, " TLB_DATA 4 KByte pages, 8-way associative" },
|
|
{ 0x6c, TLB_DATA_2M_4M, 128, " TLB_DATA 2 MByte or 4 MByte pages, 8-way associative" },
|
|
{ 0x6d, TLB_DATA_1G, 16, " TLB_DATA 1 GByte pages, fully associative" },
|
|
{ 0x76, TLB_INST_2M_4M, 8, " TLB_INST 2-MByte or 4-MByte pages, fully associative" },
|
|
{ 0xb0, TLB_INST_4K, 128, " TLB_INST 4 KByte pages, 4-way set associative" },
|
|
{ 0xb1, TLB_INST_2M_4M, 4, " TLB_INST 2M pages, 4-way, 8 entries or 4M pages, 4-way entries" },
|
|
{ 0xb2, TLB_INST_4K, 64, " TLB_INST 4KByte pages, 4-way set associative" },
|
|
{ 0xb3, TLB_DATA_4K, 128, " TLB_DATA 4 KByte pages, 4-way set associative" },
|
|
{ 0xb4, TLB_DATA_4K, 256, " TLB_DATA 4 KByte pages, 4-way associative" },
|
|
{ 0xb5, TLB_INST_4K, 64, " TLB_INST 4 KByte pages, 8-way set associative" },
|
|
{ 0xb6, TLB_INST_4K, 128, " TLB_INST 4 KByte pages, 8-way set associative" },
|
|
{ 0xba, TLB_DATA_4K, 64, " TLB_DATA 4 KByte pages, 4-way associative" },
|
|
{ 0xc0, TLB_DATA_4K_4M, 8, " TLB_DATA 4 KByte and 4 MByte pages, 4-way associative" },
|
|
{ 0xc1, STLB_4K_2M, 1024, " STLB 4 KByte and 2 MByte pages, 8-way associative" },
|
|
{ 0xc2, TLB_DATA_2M_4M, 16, " TLB_DATA 2 MByte/4MByte pages, 4-way associative" },
|
|
{ 0xca, STLB_4K, 512, " STLB 4 KByte pages, 4-way associative" },
|
|
{ 0x00, 0, 0 }
|
|
};
|
|
|
|
static void intel_tlb_lookup(const unsigned char desc)
|
|
{
|
|
unsigned char k;
|
|
if (desc == 0)
|
|
return;
|
|
|
|
/* look up this descriptor in the table */
|
|
for (k = 0; intel_tlb_table[k].descriptor != desc &&
|
|
intel_tlb_table[k].descriptor != 0; k++)
|
|
;
|
|
|
|
if (intel_tlb_table[k].tlb_type == 0)
|
|
return;
|
|
|
|
switch (intel_tlb_table[k].tlb_type) {
|
|
case STLB_4K:
|
|
if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
|
|
tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
|
|
if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
|
|
tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
|
|
break;
|
|
case STLB_4K_2M:
|
|
if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
|
|
tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
|
|
if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
|
|
tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
|
|
if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
|
|
tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
|
|
if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
|
|
tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
|
|
if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
|
|
tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
|
|
if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
|
|
tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
|
|
break;
|
|
case TLB_INST_ALL:
|
|
if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
|
|
tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
|
|
if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
|
|
tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
|
|
if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
|
|
tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
|
|
break;
|
|
case TLB_INST_4K:
|
|
if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
|
|
tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
|
|
break;
|
|
case TLB_INST_4M:
|
|
if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
|
|
tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
|
|
break;
|
|
case TLB_INST_2M_4M:
|
|
if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
|
|
tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
|
|
if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
|
|
tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
|
|
break;
|
|
case TLB_DATA_4K:
|
|
case TLB_DATA0_4K:
|
|
if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
|
|
tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
|
|
break;
|
|
case TLB_DATA_4M:
|
|
case TLB_DATA0_4M:
|
|
if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
|
|
tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
|
|
break;
|
|
case TLB_DATA_2M_4M:
|
|
case TLB_DATA0_2M_4M:
|
|
if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
|
|
tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
|
|
if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
|
|
tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
|
|
break;
|
|
case TLB_DATA_4K_4M:
|
|
if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
|
|
tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
|
|
if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
|
|
tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
|
|
break;
|
|
case TLB_DATA_1G:
|
|
if (tlb_lld_1g[ENTRIES] < intel_tlb_table[k].entries)
|
|
tlb_lld_1g[ENTRIES] = intel_tlb_table[k].entries;
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void intel_detect_tlb(struct cpuinfo_x86 *c)
|
|
{
|
|
int i, j, n;
|
|
unsigned int regs[4];
|
|
unsigned char *desc = (unsigned char *)regs;
|
|
|
|
if (c->cpuid_level < 2)
|
|
return;
|
|
|
|
/* Number of times to iterate */
|
|
n = cpuid_eax(2) & 0xFF;
|
|
|
|
for (i = 0 ; i < n ; i++) {
|
|
cpuid(2, ®s[0], ®s[1], ®s[2], ®s[3]);
|
|
|
|
/* If bit 31 is set, this is an unknown format */
|
|
for (j = 0 ; j < 3 ; j++)
|
|
if (regs[j] & (1 << 31))
|
|
regs[j] = 0;
|
|
|
|
/* Byte 0 is level count, not a descriptor */
|
|
for (j = 1 ; j < 16 ; j++)
|
|
intel_tlb_lookup(desc[j]);
|
|
}
|
|
}
|
|
|
|
static const struct cpu_dev intel_cpu_dev = {
|
|
.c_vendor = "Intel",
|
|
.c_ident = { "GenuineIntel" },
|
|
#ifdef CONFIG_X86_32
|
|
.legacy_models = {
|
|
{ .family = 4, .model_names =
|
|
{
|
|
[0] = "486 DX-25/33",
|
|
[1] = "486 DX-50",
|
|
[2] = "486 SX",
|
|
[3] = "486 DX/2",
|
|
[4] = "486 SL",
|
|
[5] = "486 SX/2",
|
|
[7] = "486 DX/2-WB",
|
|
[8] = "486 DX/4",
|
|
[9] = "486 DX/4-WB"
|
|
}
|
|
},
|
|
{ .family = 5, .model_names =
|
|
{
|
|
[0] = "Pentium 60/66 A-step",
|
|
[1] = "Pentium 60/66",
|
|
[2] = "Pentium 75 - 200",
|
|
[3] = "OverDrive PODP5V83",
|
|
[4] = "Pentium MMX",
|
|
[7] = "Mobile Pentium 75 - 200",
|
|
[8] = "Mobile Pentium MMX",
|
|
[9] = "Quark SoC X1000",
|
|
}
|
|
},
|
|
{ .family = 6, .model_names =
|
|
{
|
|
[0] = "Pentium Pro A-step",
|
|
[1] = "Pentium Pro",
|
|
[3] = "Pentium II (Klamath)",
|
|
[4] = "Pentium II (Deschutes)",
|
|
[5] = "Pentium II (Deschutes)",
|
|
[6] = "Mobile Pentium II",
|
|
[7] = "Pentium III (Katmai)",
|
|
[8] = "Pentium III (Coppermine)",
|
|
[10] = "Pentium III (Cascades)",
|
|
[11] = "Pentium III (Tualatin)",
|
|
}
|
|
},
|
|
{ .family = 15, .model_names =
|
|
{
|
|
[0] = "Pentium 4 (Unknown)",
|
|
[1] = "Pentium 4 (Willamette)",
|
|
[2] = "Pentium 4 (Northwood)",
|
|
[4] = "Pentium 4 (Foster)",
|
|
[5] = "Pentium 4 (Foster)",
|
|
}
|
|
},
|
|
},
|
|
.legacy_cache_size = intel_size_cache,
|
|
#endif
|
|
.c_detect_tlb = intel_detect_tlb,
|
|
.c_early_init = early_init_intel,
|
|
.c_bsp_init = bsp_init_intel,
|
|
.c_init = init_intel,
|
|
.c_x86_vendor = X86_VENDOR_INTEL,
|
|
};
|
|
|
|
cpu_dev_register(intel_cpu_dev);
|
|
|
|
#undef pr_fmt
|
|
#define pr_fmt(fmt) "x86/split lock detection: " fmt
|
|
|
|
static const struct {
|
|
const char *option;
|
|
enum split_lock_detect_state state;
|
|
} sld_options[] __initconst = {
|
|
{ "off", sld_off },
|
|
{ "warn", sld_warn },
|
|
{ "fatal", sld_fatal },
|
|
{ "ratelimit:", sld_ratelimit },
|
|
};
|
|
|
|
static struct ratelimit_state bld_ratelimit;
|
|
|
|
static unsigned int sysctl_sld_mitigate = 1;
|
|
static DEFINE_SEMAPHORE(buslock_sem);
|
|
|
|
#ifdef CONFIG_PROC_SYSCTL
|
|
static struct ctl_table sld_sysctls[] = {
|
|
{
|
|
.procname = "split_lock_mitigate",
|
|
.data = &sysctl_sld_mitigate,
|
|
.maxlen = sizeof(unsigned int),
|
|
.mode = 0644,
|
|
.proc_handler = proc_douintvec_minmax,
|
|
.extra1 = SYSCTL_ZERO,
|
|
.extra2 = SYSCTL_ONE,
|
|
},
|
|
{}
|
|
};
|
|
|
|
static int __init sld_mitigate_sysctl_init(void)
|
|
{
|
|
register_sysctl_init("kernel", sld_sysctls);
|
|
return 0;
|
|
}
|
|
|
|
late_initcall(sld_mitigate_sysctl_init);
|
|
#endif
|
|
|
|
static inline bool match_option(const char *arg, int arglen, const char *opt)
|
|
{
|
|
int len = strlen(opt), ratelimit;
|
|
|
|
if (strncmp(arg, opt, len))
|
|
return false;
|
|
|
|
/*
|
|
* Min ratelimit is 1 bus lock/sec.
|
|
* Max ratelimit is 1000 bus locks/sec.
|
|
*/
|
|
if (sscanf(arg, "ratelimit:%d", &ratelimit) == 1 &&
|
|
ratelimit > 0 && ratelimit <= 1000) {
|
|
ratelimit_state_init(&bld_ratelimit, HZ, ratelimit);
|
|
ratelimit_set_flags(&bld_ratelimit, RATELIMIT_MSG_ON_RELEASE);
|
|
return true;
|
|
}
|
|
|
|
return len == arglen;
|
|
}
|
|
|
|
static bool split_lock_verify_msr(bool on)
|
|
{
|
|
u64 ctrl, tmp;
|
|
|
|
if (rdmsrl_safe(MSR_TEST_CTRL, &ctrl))
|
|
return false;
|
|
if (on)
|
|
ctrl |= MSR_TEST_CTRL_SPLIT_LOCK_DETECT;
|
|
else
|
|
ctrl &= ~MSR_TEST_CTRL_SPLIT_LOCK_DETECT;
|
|
if (wrmsrl_safe(MSR_TEST_CTRL, ctrl))
|
|
return false;
|
|
rdmsrl(MSR_TEST_CTRL, tmp);
|
|
return ctrl == tmp;
|
|
}
|
|
|
|
static void __init sld_state_setup(void)
|
|
{
|
|
enum split_lock_detect_state state = sld_warn;
|
|
char arg[20];
|
|
int i, ret;
|
|
|
|
if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT) &&
|
|
!boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT))
|
|
return;
|
|
|
|
ret = cmdline_find_option(boot_command_line, "split_lock_detect",
|
|
arg, sizeof(arg));
|
|
if (ret >= 0) {
|
|
for (i = 0; i < ARRAY_SIZE(sld_options); i++) {
|
|
if (match_option(arg, ret, sld_options[i].option)) {
|
|
state = sld_options[i].state;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
sld_state = state;
|
|
}
|
|
|
|
static void __init __split_lock_setup(void)
|
|
{
|
|
if (!split_lock_verify_msr(false)) {
|
|
pr_info("MSR access failed: Disabled\n");
|
|
return;
|
|
}
|
|
|
|
rdmsrl(MSR_TEST_CTRL, msr_test_ctrl_cache);
|
|
|
|
if (!split_lock_verify_msr(true)) {
|
|
pr_info("MSR access failed: Disabled\n");
|
|
return;
|
|
}
|
|
|
|
/* Restore the MSR to its cached value. */
|
|
wrmsrl(MSR_TEST_CTRL, msr_test_ctrl_cache);
|
|
|
|
setup_force_cpu_cap(X86_FEATURE_SPLIT_LOCK_DETECT);
|
|
}
|
|
|
|
/*
|
|
* MSR_TEST_CTRL is per core, but we treat it like a per CPU MSR. Locking
|
|
* is not implemented as one thread could undo the setting of the other
|
|
* thread immediately after dropping the lock anyway.
|
|
*/
|
|
static void sld_update_msr(bool on)
|
|
{
|
|
u64 test_ctrl_val = msr_test_ctrl_cache;
|
|
|
|
if (on)
|
|
test_ctrl_val |= MSR_TEST_CTRL_SPLIT_LOCK_DETECT;
|
|
|
|
wrmsrl(MSR_TEST_CTRL, test_ctrl_val);
|
|
}
|
|
|
|
static void split_lock_init(void)
|
|
{
|
|
/*
|
|
* #DB for bus lock handles ratelimit and #AC for split lock is
|
|
* disabled.
|
|
*/
|
|
if (sld_state == sld_ratelimit) {
|
|
split_lock_verify_msr(false);
|
|
return;
|
|
}
|
|
|
|
if (cpu_model_supports_sld)
|
|
split_lock_verify_msr(sld_state != sld_off);
|
|
}
|
|
|
|
static void __split_lock_reenable_unlock(struct work_struct *work)
|
|
{
|
|
sld_update_msr(true);
|
|
up(&buslock_sem);
|
|
}
|
|
|
|
static DECLARE_DELAYED_WORK(sl_reenable_unlock, __split_lock_reenable_unlock);
|
|
|
|
static void __split_lock_reenable(struct work_struct *work)
|
|
{
|
|
sld_update_msr(true);
|
|
}
|
|
static DECLARE_DELAYED_WORK(sl_reenable, __split_lock_reenable);
|
|
|
|
/*
|
|
* If a CPU goes offline with pending delayed work to re-enable split lock
|
|
* detection then the delayed work will be executed on some other CPU. That
|
|
* handles releasing the buslock_sem, but because it executes on a
|
|
* different CPU probably won't re-enable split lock detection. This is a
|
|
* problem on HT systems since the sibling CPU on the same core may then be
|
|
* left running with split lock detection disabled.
|
|
*
|
|
* Unconditionally re-enable detection here.
|
|
*/
|
|
static int splitlock_cpu_offline(unsigned int cpu)
|
|
{
|
|
sld_update_msr(true);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void split_lock_warn(unsigned long ip)
|
|
{
|
|
struct delayed_work *work;
|
|
int cpu;
|
|
|
|
if (!current->reported_split_lock)
|
|
pr_warn_ratelimited("#AC: %s/%d took a split_lock trap at address: 0x%lx\n",
|
|
current->comm, current->pid, ip);
|
|
current->reported_split_lock = 1;
|
|
|
|
if (sysctl_sld_mitigate) {
|
|
/*
|
|
* misery factor #1:
|
|
* sleep 10ms before trying to execute split lock.
|
|
*/
|
|
if (msleep_interruptible(10) > 0)
|
|
return;
|
|
/*
|
|
* Misery factor #2:
|
|
* only allow one buslocked disabled core at a time.
|
|
*/
|
|
if (down_interruptible(&buslock_sem) == -EINTR)
|
|
return;
|
|
work = &sl_reenable_unlock;
|
|
} else {
|
|
work = &sl_reenable;
|
|
}
|
|
|
|
cpu = get_cpu();
|
|
schedule_delayed_work_on(cpu, work, 2);
|
|
|
|
/* Disable split lock detection on this CPU to make progress */
|
|
sld_update_msr(false);
|
|
put_cpu();
|
|
}
|
|
|
|
bool handle_guest_split_lock(unsigned long ip)
|
|
{
|
|
if (sld_state == sld_warn) {
|
|
split_lock_warn(ip);
|
|
return true;
|
|
}
|
|
|
|
pr_warn_once("#AC: %s/%d %s split_lock trap at address: 0x%lx\n",
|
|
current->comm, current->pid,
|
|
sld_state == sld_fatal ? "fatal" : "bogus", ip);
|
|
|
|
current->thread.error_code = 0;
|
|
current->thread.trap_nr = X86_TRAP_AC;
|
|
force_sig_fault(SIGBUS, BUS_ADRALN, NULL);
|
|
return false;
|
|
}
|
|
EXPORT_SYMBOL_GPL(handle_guest_split_lock);
|
|
|
|
static void bus_lock_init(void)
|
|
{
|
|
u64 val;
|
|
|
|
if (!boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT))
|
|
return;
|
|
|
|
rdmsrl(MSR_IA32_DEBUGCTLMSR, val);
|
|
|
|
if ((boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT) &&
|
|
(sld_state == sld_warn || sld_state == sld_fatal)) ||
|
|
sld_state == sld_off) {
|
|
/*
|
|
* Warn and fatal are handled by #AC for split lock if #AC for
|
|
* split lock is supported.
|
|
*/
|
|
val &= ~DEBUGCTLMSR_BUS_LOCK_DETECT;
|
|
} else {
|
|
val |= DEBUGCTLMSR_BUS_LOCK_DETECT;
|
|
}
|
|
|
|
wrmsrl(MSR_IA32_DEBUGCTLMSR, val);
|
|
}
|
|
|
|
bool handle_user_split_lock(struct pt_regs *regs, long error_code)
|
|
{
|
|
if ((regs->flags & X86_EFLAGS_AC) || sld_state == sld_fatal)
|
|
return false;
|
|
split_lock_warn(regs->ip);
|
|
return true;
|
|
}
|
|
|
|
void handle_bus_lock(struct pt_regs *regs)
|
|
{
|
|
switch (sld_state) {
|
|
case sld_off:
|
|
break;
|
|
case sld_ratelimit:
|
|
/* Enforce no more than bld_ratelimit bus locks/sec. */
|
|
while (!__ratelimit(&bld_ratelimit))
|
|
msleep(20);
|
|
/* Warn on the bus lock. */
|
|
fallthrough;
|
|
case sld_warn:
|
|
pr_warn_ratelimited("#DB: %s/%d took a bus_lock trap at address: 0x%lx\n",
|
|
current->comm, current->pid, regs->ip);
|
|
break;
|
|
case sld_fatal:
|
|
force_sig_fault(SIGBUS, BUS_ADRALN, NULL);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Bits in the IA32_CORE_CAPABILITIES are not architectural, so they should
|
|
* only be trusted if it is confirmed that a CPU model implements a
|
|
* specific feature at a particular bit position.
|
|
*
|
|
* The possible driver data field values:
|
|
*
|
|
* - 0: CPU models that are known to have the per-core split-lock detection
|
|
* feature even though they do not enumerate IA32_CORE_CAPABILITIES.
|
|
*
|
|
* - 1: CPU models which may enumerate IA32_CORE_CAPABILITIES and if so use
|
|
* bit 5 to enumerate the per-core split-lock detection feature.
|
|
*/
|
|
static const struct x86_cpu_id split_lock_cpu_ids[] __initconst = {
|
|
X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X, 0),
|
|
X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_L, 0),
|
|
X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D, 0),
|
|
X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT, 1),
|
|
X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT_D, 1),
|
|
X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT_L, 1),
|
|
X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE_L, 1),
|
|
X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE, 1),
|
|
X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, 1),
|
|
X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE, 1),
|
|
X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE_L, 1),
|
|
X86_MATCH_INTEL_FAM6_MODEL(RAPTORLAKE, 1),
|
|
{}
|
|
};
|
|
|
|
static void __init split_lock_setup(struct cpuinfo_x86 *c)
|
|
{
|
|
const struct x86_cpu_id *m;
|
|
u64 ia32_core_caps;
|
|
|
|
if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
|
|
return;
|
|
|
|
m = x86_match_cpu(split_lock_cpu_ids);
|
|
if (!m)
|
|
return;
|
|
|
|
switch (m->driver_data) {
|
|
case 0:
|
|
break;
|
|
case 1:
|
|
if (!cpu_has(c, X86_FEATURE_CORE_CAPABILITIES))
|
|
return;
|
|
rdmsrl(MSR_IA32_CORE_CAPS, ia32_core_caps);
|
|
if (!(ia32_core_caps & MSR_IA32_CORE_CAPS_SPLIT_LOCK_DETECT))
|
|
return;
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
|
|
cpu_model_supports_sld = true;
|
|
__split_lock_setup();
|
|
}
|
|
|
|
static void sld_state_show(void)
|
|
{
|
|
if (!boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT) &&
|
|
!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
|
|
return;
|
|
|
|
switch (sld_state) {
|
|
case sld_off:
|
|
pr_info("disabled\n");
|
|
break;
|
|
case sld_warn:
|
|
if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) {
|
|
pr_info("#AC: crashing the kernel on kernel split_locks and warning on user-space split_locks\n");
|
|
if (cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
|
|
"x86/splitlock", NULL, splitlock_cpu_offline) < 0)
|
|
pr_warn("No splitlock CPU offline handler\n");
|
|
} else if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT)) {
|
|
pr_info("#DB: warning on user-space bus_locks\n");
|
|
}
|
|
break;
|
|
case sld_fatal:
|
|
if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) {
|
|
pr_info("#AC: crashing the kernel on kernel split_locks and sending SIGBUS on user-space split_locks\n");
|
|
} else if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT)) {
|
|
pr_info("#DB: sending SIGBUS on user-space bus_locks%s\n",
|
|
boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT) ?
|
|
" from non-WB" : "");
|
|
}
|
|
break;
|
|
case sld_ratelimit:
|
|
if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT))
|
|
pr_info("#DB: setting system wide bus lock rate limit to %u/sec\n", bld_ratelimit.burst);
|
|
break;
|
|
}
|
|
}
|
|
|
|
void __init sld_setup(struct cpuinfo_x86 *c)
|
|
{
|
|
split_lock_setup(c);
|
|
sld_state_setup();
|
|
sld_state_show();
|
|
}
|
|
|
|
#define X86_HYBRID_CPU_TYPE_ID_SHIFT 24
|
|
|
|
/**
|
|
* get_this_hybrid_cpu_type() - Get the type of this hybrid CPU
|
|
*
|
|
* Returns the CPU type [31:24] (i.e., Atom or Core) of a CPU in
|
|
* a hybrid processor. If the processor is not hybrid, returns 0.
|
|
*/
|
|
u8 get_this_hybrid_cpu_type(void)
|
|
{
|
|
if (!cpu_feature_enabled(X86_FEATURE_HYBRID_CPU))
|
|
return 0;
|
|
|
|
return cpuid_eax(0x0000001a) >> X86_HYBRID_CPU_TYPE_ID_SHIFT;
|
|
}
|