1837 lines
51 KiB
C
1837 lines
51 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* xsave/xrstor support.
|
|
*
|
|
* Author: Suresh Siddha <suresh.b.siddha@intel.com>
|
|
*/
|
|
#include <linux/bitops.h>
|
|
#include <linux/compat.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/mman.h>
|
|
#include <linux/nospec.h>
|
|
#include <linux/pkeys.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/vmalloc.h>
|
|
|
|
#include <asm/fpu/api.h>
|
|
#include <asm/fpu/regset.h>
|
|
#include <asm/fpu/signal.h>
|
|
#include <asm/fpu/xcr.h>
|
|
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/prctl.h>
|
|
#include <asm/elf.h>
|
|
|
|
#include "context.h"
|
|
#include "internal.h"
|
|
#include "legacy.h"
|
|
#include "xstate.h"
|
|
|
|
#define for_each_extended_xfeature(bit, mask) \
|
|
(bit) = FIRST_EXTENDED_XFEATURE; \
|
|
for_each_set_bit_from(bit, (unsigned long *)&(mask), 8 * sizeof(mask))
|
|
|
|
/*
|
|
* Although we spell it out in here, the Processor Trace
|
|
* xfeature is completely unused. We use other mechanisms
|
|
* to save/restore PT state in Linux.
|
|
*/
|
|
static const char *xfeature_names[] =
|
|
{
|
|
"x87 floating point registers" ,
|
|
"SSE registers" ,
|
|
"AVX registers" ,
|
|
"MPX bounds registers" ,
|
|
"MPX CSR" ,
|
|
"AVX-512 opmask" ,
|
|
"AVX-512 Hi256" ,
|
|
"AVX-512 ZMM_Hi256" ,
|
|
"Processor Trace (unused)" ,
|
|
"Protection Keys User registers",
|
|
"PASID state",
|
|
"unknown xstate feature" ,
|
|
"unknown xstate feature" ,
|
|
"unknown xstate feature" ,
|
|
"unknown xstate feature" ,
|
|
"unknown xstate feature" ,
|
|
"unknown xstate feature" ,
|
|
"AMX Tile config" ,
|
|
"AMX Tile data" ,
|
|
"unknown xstate feature" ,
|
|
};
|
|
|
|
static unsigned short xsave_cpuid_features[] __initdata = {
|
|
[XFEATURE_FP] = X86_FEATURE_FPU,
|
|
[XFEATURE_SSE] = X86_FEATURE_XMM,
|
|
[XFEATURE_YMM] = X86_FEATURE_AVX,
|
|
[XFEATURE_BNDREGS] = X86_FEATURE_MPX,
|
|
[XFEATURE_BNDCSR] = X86_FEATURE_MPX,
|
|
[XFEATURE_OPMASK] = X86_FEATURE_AVX512F,
|
|
[XFEATURE_ZMM_Hi256] = X86_FEATURE_AVX512F,
|
|
[XFEATURE_Hi16_ZMM] = X86_FEATURE_AVX512F,
|
|
[XFEATURE_PT_UNIMPLEMENTED_SO_FAR] = X86_FEATURE_INTEL_PT,
|
|
[XFEATURE_PKRU] = X86_FEATURE_PKU,
|
|
[XFEATURE_PASID] = X86_FEATURE_ENQCMD,
|
|
[XFEATURE_XTILE_CFG] = X86_FEATURE_AMX_TILE,
|
|
[XFEATURE_XTILE_DATA] = X86_FEATURE_AMX_TILE,
|
|
};
|
|
|
|
static unsigned int xstate_offsets[XFEATURE_MAX] __ro_after_init =
|
|
{ [ 0 ... XFEATURE_MAX - 1] = -1};
|
|
static unsigned int xstate_sizes[XFEATURE_MAX] __ro_after_init =
|
|
{ [ 0 ... XFEATURE_MAX - 1] = -1};
|
|
static unsigned int xstate_flags[XFEATURE_MAX] __ro_after_init;
|
|
|
|
#define XSTATE_FLAG_SUPERVISOR BIT(0)
|
|
#define XSTATE_FLAG_ALIGNED64 BIT(1)
|
|
|
|
/*
|
|
* Return whether the system supports a given xfeature.
|
|
*
|
|
* Also return the name of the (most advanced) feature that the caller requested:
|
|
*/
|
|
int cpu_has_xfeatures(u64 xfeatures_needed, const char **feature_name)
|
|
{
|
|
u64 xfeatures_missing = xfeatures_needed & ~fpu_kernel_cfg.max_features;
|
|
|
|
if (unlikely(feature_name)) {
|
|
long xfeature_idx, max_idx;
|
|
u64 xfeatures_print;
|
|
/*
|
|
* So we use FLS here to be able to print the most advanced
|
|
* feature that was requested but is missing. So if a driver
|
|
* asks about "XFEATURE_MASK_SSE | XFEATURE_MASK_YMM" we'll print the
|
|
* missing AVX feature - this is the most informative message
|
|
* to users:
|
|
*/
|
|
if (xfeatures_missing)
|
|
xfeatures_print = xfeatures_missing;
|
|
else
|
|
xfeatures_print = xfeatures_needed;
|
|
|
|
xfeature_idx = fls64(xfeatures_print)-1;
|
|
max_idx = ARRAY_SIZE(xfeature_names)-1;
|
|
xfeature_idx = min(xfeature_idx, max_idx);
|
|
|
|
*feature_name = xfeature_names[xfeature_idx];
|
|
}
|
|
|
|
if (xfeatures_missing)
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
EXPORT_SYMBOL_GPL(cpu_has_xfeatures);
|
|
|
|
static bool xfeature_is_aligned64(int xfeature_nr)
|
|
{
|
|
return xstate_flags[xfeature_nr] & XSTATE_FLAG_ALIGNED64;
|
|
}
|
|
|
|
static bool xfeature_is_supervisor(int xfeature_nr)
|
|
{
|
|
return xstate_flags[xfeature_nr] & XSTATE_FLAG_SUPERVISOR;
|
|
}
|
|
|
|
static unsigned int xfeature_get_offset(u64 xcomp_bv, int xfeature)
|
|
{
|
|
unsigned int offs, i;
|
|
|
|
/*
|
|
* Non-compacted format and legacy features use the cached fixed
|
|
* offsets.
|
|
*/
|
|
if (!cpu_feature_enabled(X86_FEATURE_XCOMPACTED) ||
|
|
xfeature <= XFEATURE_SSE)
|
|
return xstate_offsets[xfeature];
|
|
|
|
/*
|
|
* Compacted format offsets depend on the actual content of the
|
|
* compacted xsave area which is determined by the xcomp_bv header
|
|
* field.
|
|
*/
|
|
offs = FXSAVE_SIZE + XSAVE_HDR_SIZE;
|
|
for_each_extended_xfeature(i, xcomp_bv) {
|
|
if (xfeature_is_aligned64(i))
|
|
offs = ALIGN(offs, 64);
|
|
if (i == xfeature)
|
|
break;
|
|
offs += xstate_sizes[i];
|
|
}
|
|
return offs;
|
|
}
|
|
|
|
/*
|
|
* Enable the extended processor state save/restore feature.
|
|
* Called once per CPU onlining.
|
|
*/
|
|
void fpu__init_cpu_xstate(void)
|
|
{
|
|
if (!boot_cpu_has(X86_FEATURE_XSAVE) || !fpu_kernel_cfg.max_features)
|
|
return;
|
|
|
|
cr4_set_bits(X86_CR4_OSXSAVE);
|
|
|
|
/*
|
|
* Must happen after CR4 setup and before xsetbv() to allow KVM
|
|
* lazy passthrough. Write independent of the dynamic state static
|
|
* key as that does not work on the boot CPU. This also ensures
|
|
* that any stale state is wiped out from XFD.
|
|
*/
|
|
if (cpu_feature_enabled(X86_FEATURE_XFD))
|
|
wrmsrl(MSR_IA32_XFD, init_fpstate.xfd);
|
|
|
|
/*
|
|
* XCR_XFEATURE_ENABLED_MASK (aka. XCR0) sets user features
|
|
* managed by XSAVE{C, OPT, S} and XRSTOR{S}. Only XSAVE user
|
|
* states can be set here.
|
|
*/
|
|
xsetbv(XCR_XFEATURE_ENABLED_MASK, fpu_user_cfg.max_features);
|
|
|
|
/*
|
|
* MSR_IA32_XSS sets supervisor states managed by XSAVES.
|
|
*/
|
|
if (boot_cpu_has(X86_FEATURE_XSAVES)) {
|
|
wrmsrl(MSR_IA32_XSS, xfeatures_mask_supervisor() |
|
|
xfeatures_mask_independent());
|
|
}
|
|
}
|
|
|
|
static bool xfeature_enabled(enum xfeature xfeature)
|
|
{
|
|
return fpu_kernel_cfg.max_features & BIT_ULL(xfeature);
|
|
}
|
|
|
|
/*
|
|
* Record the offsets and sizes of various xstates contained
|
|
* in the XSAVE state memory layout.
|
|
*/
|
|
static void __init setup_xstate_cache(void)
|
|
{
|
|
u32 eax, ebx, ecx, edx, i;
|
|
/* start at the beginning of the "extended state" */
|
|
unsigned int last_good_offset = offsetof(struct xregs_state,
|
|
extended_state_area);
|
|
/*
|
|
* The FP xstates and SSE xstates are legacy states. They are always
|
|
* in the fixed offsets in the xsave area in either compacted form
|
|
* or standard form.
|
|
*/
|
|
xstate_offsets[XFEATURE_FP] = 0;
|
|
xstate_sizes[XFEATURE_FP] = offsetof(struct fxregs_state,
|
|
xmm_space);
|
|
|
|
xstate_offsets[XFEATURE_SSE] = xstate_sizes[XFEATURE_FP];
|
|
xstate_sizes[XFEATURE_SSE] = sizeof_field(struct fxregs_state,
|
|
xmm_space);
|
|
|
|
for_each_extended_xfeature(i, fpu_kernel_cfg.max_features) {
|
|
cpuid_count(XSTATE_CPUID, i, &eax, &ebx, &ecx, &edx);
|
|
|
|
xstate_sizes[i] = eax;
|
|
xstate_flags[i] = ecx;
|
|
|
|
/*
|
|
* If an xfeature is supervisor state, the offset in EBX is
|
|
* invalid, leave it to -1.
|
|
*/
|
|
if (xfeature_is_supervisor(i))
|
|
continue;
|
|
|
|
xstate_offsets[i] = ebx;
|
|
|
|
/*
|
|
* In our xstate size checks, we assume that the highest-numbered
|
|
* xstate feature has the highest offset in the buffer. Ensure
|
|
* it does.
|
|
*/
|
|
WARN_ONCE(last_good_offset > xstate_offsets[i],
|
|
"x86/fpu: misordered xstate at %d\n", last_good_offset);
|
|
|
|
last_good_offset = xstate_offsets[i];
|
|
}
|
|
}
|
|
|
|
static void __init print_xstate_feature(u64 xstate_mask)
|
|
{
|
|
const char *feature_name;
|
|
|
|
if (cpu_has_xfeatures(xstate_mask, &feature_name))
|
|
pr_info("x86/fpu: Supporting XSAVE feature 0x%03Lx: '%s'\n", xstate_mask, feature_name);
|
|
}
|
|
|
|
/*
|
|
* Print out all the supported xstate features:
|
|
*/
|
|
static void __init print_xstate_features(void)
|
|
{
|
|
print_xstate_feature(XFEATURE_MASK_FP);
|
|
print_xstate_feature(XFEATURE_MASK_SSE);
|
|
print_xstate_feature(XFEATURE_MASK_YMM);
|
|
print_xstate_feature(XFEATURE_MASK_BNDREGS);
|
|
print_xstate_feature(XFEATURE_MASK_BNDCSR);
|
|
print_xstate_feature(XFEATURE_MASK_OPMASK);
|
|
print_xstate_feature(XFEATURE_MASK_ZMM_Hi256);
|
|
print_xstate_feature(XFEATURE_MASK_Hi16_ZMM);
|
|
print_xstate_feature(XFEATURE_MASK_PKRU);
|
|
print_xstate_feature(XFEATURE_MASK_PASID);
|
|
print_xstate_feature(XFEATURE_MASK_XTILE_CFG);
|
|
print_xstate_feature(XFEATURE_MASK_XTILE_DATA);
|
|
}
|
|
|
|
/*
|
|
* This check is important because it is easy to get XSTATE_*
|
|
* confused with XSTATE_BIT_*.
|
|
*/
|
|
#define CHECK_XFEATURE(nr) do { \
|
|
WARN_ON(nr < FIRST_EXTENDED_XFEATURE); \
|
|
WARN_ON(nr >= XFEATURE_MAX); \
|
|
} while (0)
|
|
|
|
/*
|
|
* Print out xstate component offsets and sizes
|
|
*/
|
|
static void __init print_xstate_offset_size(void)
|
|
{
|
|
int i;
|
|
|
|
for_each_extended_xfeature(i, fpu_kernel_cfg.max_features) {
|
|
pr_info("x86/fpu: xstate_offset[%d]: %4d, xstate_sizes[%d]: %4d\n",
|
|
i, xfeature_get_offset(fpu_kernel_cfg.max_features, i),
|
|
i, xstate_sizes[i]);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This function is called only during boot time when x86 caps are not set
|
|
* up and alternative can not be used yet.
|
|
*/
|
|
static __init void os_xrstor_booting(struct xregs_state *xstate)
|
|
{
|
|
u64 mask = fpu_kernel_cfg.max_features & XFEATURE_MASK_FPSTATE;
|
|
u32 lmask = mask;
|
|
u32 hmask = mask >> 32;
|
|
int err;
|
|
|
|
if (cpu_feature_enabled(X86_FEATURE_XSAVES))
|
|
XSTATE_OP(XRSTORS, xstate, lmask, hmask, err);
|
|
else
|
|
XSTATE_OP(XRSTOR, xstate, lmask, hmask, err);
|
|
|
|
/*
|
|
* We should never fault when copying from a kernel buffer, and the FPU
|
|
* state we set at boot time should be valid.
|
|
*/
|
|
WARN_ON_FPU(err);
|
|
}
|
|
|
|
/*
|
|
* All supported features have either init state all zeros or are
|
|
* handled in setup_init_fpu() individually. This is an explicit
|
|
* feature list and does not use XFEATURE_MASK*SUPPORTED to catch
|
|
* newly added supported features at build time and make people
|
|
* actually look at the init state for the new feature.
|
|
*/
|
|
#define XFEATURES_INIT_FPSTATE_HANDLED \
|
|
(XFEATURE_MASK_FP | \
|
|
XFEATURE_MASK_SSE | \
|
|
XFEATURE_MASK_YMM | \
|
|
XFEATURE_MASK_OPMASK | \
|
|
XFEATURE_MASK_ZMM_Hi256 | \
|
|
XFEATURE_MASK_Hi16_ZMM | \
|
|
XFEATURE_MASK_PKRU | \
|
|
XFEATURE_MASK_BNDREGS | \
|
|
XFEATURE_MASK_BNDCSR | \
|
|
XFEATURE_MASK_PASID | \
|
|
XFEATURE_MASK_XTILE)
|
|
|
|
/*
|
|
* setup the xstate image representing the init state
|
|
*/
|
|
static void __init setup_init_fpu_buf(void)
|
|
{
|
|
BUILD_BUG_ON((XFEATURE_MASK_USER_SUPPORTED |
|
|
XFEATURE_MASK_SUPERVISOR_SUPPORTED) !=
|
|
XFEATURES_INIT_FPSTATE_HANDLED);
|
|
|
|
if (!boot_cpu_has(X86_FEATURE_XSAVE))
|
|
return;
|
|
|
|
print_xstate_features();
|
|
|
|
xstate_init_xcomp_bv(&init_fpstate.regs.xsave, init_fpstate.xfeatures);
|
|
|
|
/*
|
|
* Init all the features state with header.xfeatures being 0x0
|
|
*/
|
|
os_xrstor_booting(&init_fpstate.regs.xsave);
|
|
|
|
/*
|
|
* All components are now in init state. Read the state back so
|
|
* that init_fpstate contains all non-zero init state. This only
|
|
* works with XSAVE, but not with XSAVEOPT and XSAVEC/S because
|
|
* those use the init optimization which skips writing data for
|
|
* components in init state.
|
|
*
|
|
* XSAVE could be used, but that would require to reshuffle the
|
|
* data when XSAVEC/S is available because XSAVEC/S uses xstate
|
|
* compaction. But doing so is a pointless exercise because most
|
|
* components have an all zeros init state except for the legacy
|
|
* ones (FP and SSE). Those can be saved with FXSAVE into the
|
|
* legacy area. Adding new features requires to ensure that init
|
|
* state is all zeroes or if not to add the necessary handling
|
|
* here.
|
|
*/
|
|
fxsave(&init_fpstate.regs.fxsave);
|
|
}
|
|
|
|
int xfeature_size(int xfeature_nr)
|
|
{
|
|
u32 eax, ebx, ecx, edx;
|
|
|
|
CHECK_XFEATURE(xfeature_nr);
|
|
cpuid_count(XSTATE_CPUID, xfeature_nr, &eax, &ebx, &ecx, &edx);
|
|
return eax;
|
|
}
|
|
|
|
/* Validate an xstate header supplied by userspace (ptrace or sigreturn) */
|
|
static int validate_user_xstate_header(const struct xstate_header *hdr,
|
|
struct fpstate *fpstate)
|
|
{
|
|
/* No unknown or supervisor features may be set */
|
|
if (hdr->xfeatures & ~fpstate->user_xfeatures)
|
|
return -EINVAL;
|
|
|
|
/* Userspace must use the uncompacted format */
|
|
if (hdr->xcomp_bv)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* If 'reserved' is shrunken to add a new field, make sure to validate
|
|
* that new field here!
|
|
*/
|
|
BUILD_BUG_ON(sizeof(hdr->reserved) != 48);
|
|
|
|
/* No reserved bits may be set */
|
|
if (memchr_inv(hdr->reserved, 0, sizeof(hdr->reserved)))
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void __init __xstate_dump_leaves(void)
|
|
{
|
|
int i;
|
|
u32 eax, ebx, ecx, edx;
|
|
static int should_dump = 1;
|
|
|
|
if (!should_dump)
|
|
return;
|
|
should_dump = 0;
|
|
/*
|
|
* Dump out a few leaves past the ones that we support
|
|
* just in case there are some goodies up there
|
|
*/
|
|
for (i = 0; i < XFEATURE_MAX + 10; i++) {
|
|
cpuid_count(XSTATE_CPUID, i, &eax, &ebx, &ecx, &edx);
|
|
pr_warn("CPUID[%02x, %02x]: eax=%08x ebx=%08x ecx=%08x edx=%08x\n",
|
|
XSTATE_CPUID, i, eax, ebx, ecx, edx);
|
|
}
|
|
}
|
|
|
|
#define XSTATE_WARN_ON(x, fmt, ...) do { \
|
|
if (WARN_ONCE(x, "XSAVE consistency problem: " fmt, ##__VA_ARGS__)) { \
|
|
__xstate_dump_leaves(); \
|
|
} \
|
|
} while (0)
|
|
|
|
#define XCHECK_SZ(sz, nr, nr_macro, __struct) do { \
|
|
if ((nr == nr_macro) && \
|
|
WARN_ONCE(sz != sizeof(__struct), \
|
|
"%s: struct is %zu bytes, cpu state %d bytes\n", \
|
|
__stringify(nr_macro), sizeof(__struct), sz)) { \
|
|
__xstate_dump_leaves(); \
|
|
} \
|
|
} while (0)
|
|
|
|
/**
|
|
* check_xtile_data_against_struct - Check tile data state size.
|
|
*
|
|
* Calculate the state size by multiplying the single tile size which is
|
|
* recorded in a C struct, and the number of tiles that the CPU informs.
|
|
* Compare the provided size with the calculation.
|
|
*
|
|
* @size: The tile data state size
|
|
*
|
|
* Returns: 0 on success, -EINVAL on mismatch.
|
|
*/
|
|
static int __init check_xtile_data_against_struct(int size)
|
|
{
|
|
u32 max_palid, palid, state_size;
|
|
u32 eax, ebx, ecx, edx;
|
|
u16 max_tile;
|
|
|
|
/*
|
|
* Check the maximum palette id:
|
|
* eax: the highest numbered palette subleaf.
|
|
*/
|
|
cpuid_count(TILE_CPUID, 0, &max_palid, &ebx, &ecx, &edx);
|
|
|
|
/*
|
|
* Cross-check each tile size and find the maximum number of
|
|
* supported tiles.
|
|
*/
|
|
for (palid = 1, max_tile = 0; palid <= max_palid; palid++) {
|
|
u16 tile_size, max;
|
|
|
|
/*
|
|
* Check the tile size info:
|
|
* eax[31:16]: bytes per title
|
|
* ebx[31:16]: the max names (or max number of tiles)
|
|
*/
|
|
cpuid_count(TILE_CPUID, palid, &eax, &ebx, &edx, &edx);
|
|
tile_size = eax >> 16;
|
|
max = ebx >> 16;
|
|
|
|
if (tile_size != sizeof(struct xtile_data)) {
|
|
pr_err("%s: struct is %zu bytes, cpu xtile %d bytes\n",
|
|
__stringify(XFEATURE_XTILE_DATA),
|
|
sizeof(struct xtile_data), tile_size);
|
|
__xstate_dump_leaves();
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (max > max_tile)
|
|
max_tile = max;
|
|
}
|
|
|
|
state_size = sizeof(struct xtile_data) * max_tile;
|
|
if (size != state_size) {
|
|
pr_err("%s: calculated size is %u bytes, cpu state %d bytes\n",
|
|
__stringify(XFEATURE_XTILE_DATA), state_size, size);
|
|
__xstate_dump_leaves();
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* We have a C struct for each 'xstate'. We need to ensure
|
|
* that our software representation matches what the CPU
|
|
* tells us about the state's size.
|
|
*/
|
|
static bool __init check_xstate_against_struct(int nr)
|
|
{
|
|
/*
|
|
* Ask the CPU for the size of the state.
|
|
*/
|
|
int sz = xfeature_size(nr);
|
|
/*
|
|
* Match each CPU state with the corresponding software
|
|
* structure.
|
|
*/
|
|
XCHECK_SZ(sz, nr, XFEATURE_YMM, struct ymmh_struct);
|
|
XCHECK_SZ(sz, nr, XFEATURE_BNDREGS, struct mpx_bndreg_state);
|
|
XCHECK_SZ(sz, nr, XFEATURE_BNDCSR, struct mpx_bndcsr_state);
|
|
XCHECK_SZ(sz, nr, XFEATURE_OPMASK, struct avx_512_opmask_state);
|
|
XCHECK_SZ(sz, nr, XFEATURE_ZMM_Hi256, struct avx_512_zmm_uppers_state);
|
|
XCHECK_SZ(sz, nr, XFEATURE_Hi16_ZMM, struct avx_512_hi16_state);
|
|
XCHECK_SZ(sz, nr, XFEATURE_PKRU, struct pkru_state);
|
|
XCHECK_SZ(sz, nr, XFEATURE_PASID, struct ia32_pasid_state);
|
|
XCHECK_SZ(sz, nr, XFEATURE_XTILE_CFG, struct xtile_cfg);
|
|
|
|
/* The tile data size varies between implementations. */
|
|
if (nr == XFEATURE_XTILE_DATA)
|
|
check_xtile_data_against_struct(sz);
|
|
|
|
/*
|
|
* Make *SURE* to add any feature numbers in below if
|
|
* there are "holes" in the xsave state component
|
|
* numbers.
|
|
*/
|
|
if ((nr < XFEATURE_YMM) ||
|
|
(nr >= XFEATURE_MAX) ||
|
|
(nr == XFEATURE_PT_UNIMPLEMENTED_SO_FAR) ||
|
|
((nr >= XFEATURE_RSRVD_COMP_11) && (nr <= XFEATURE_RSRVD_COMP_16))) {
|
|
XSTATE_WARN_ON(1, "No structure for xstate: %d\n", nr);
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static unsigned int xstate_calculate_size(u64 xfeatures, bool compacted)
|
|
{
|
|
unsigned int topmost = fls64(xfeatures) - 1;
|
|
unsigned int offset = xstate_offsets[topmost];
|
|
|
|
if (topmost <= XFEATURE_SSE)
|
|
return sizeof(struct xregs_state);
|
|
|
|
if (compacted)
|
|
offset = xfeature_get_offset(xfeatures, topmost);
|
|
return offset + xstate_sizes[topmost];
|
|
}
|
|
|
|
/*
|
|
* This essentially double-checks what the cpu told us about
|
|
* how large the XSAVE buffer needs to be. We are recalculating
|
|
* it to be safe.
|
|
*
|
|
* Independent XSAVE features allocate their own buffers and are not
|
|
* covered by these checks. Only the size of the buffer for task->fpu
|
|
* is checked here.
|
|
*/
|
|
static bool __init paranoid_xstate_size_valid(unsigned int kernel_size)
|
|
{
|
|
bool compacted = cpu_feature_enabled(X86_FEATURE_XCOMPACTED);
|
|
bool xsaves = cpu_feature_enabled(X86_FEATURE_XSAVES);
|
|
unsigned int size = FXSAVE_SIZE + XSAVE_HDR_SIZE;
|
|
int i;
|
|
|
|
for_each_extended_xfeature(i, fpu_kernel_cfg.max_features) {
|
|
if (!check_xstate_against_struct(i))
|
|
return false;
|
|
/*
|
|
* Supervisor state components can be managed only by
|
|
* XSAVES.
|
|
*/
|
|
if (!xsaves && xfeature_is_supervisor(i)) {
|
|
XSTATE_WARN_ON(1, "Got supervisor feature %d, but XSAVES not advertised\n", i);
|
|
return false;
|
|
}
|
|
}
|
|
size = xstate_calculate_size(fpu_kernel_cfg.max_features, compacted);
|
|
XSTATE_WARN_ON(size != kernel_size,
|
|
"size %u != kernel_size %u\n", size, kernel_size);
|
|
return size == kernel_size;
|
|
}
|
|
|
|
/*
|
|
* Get total size of enabled xstates in XCR0 | IA32_XSS.
|
|
*
|
|
* Note the SDM's wording here. "sub-function 0" only enumerates
|
|
* the size of the *user* states. If we use it to size a buffer
|
|
* that we use 'XSAVES' on, we could potentially overflow the
|
|
* buffer because 'XSAVES' saves system states too.
|
|
*
|
|
* This also takes compaction into account. So this works for
|
|
* XSAVEC as well.
|
|
*/
|
|
static unsigned int __init get_compacted_size(void)
|
|
{
|
|
unsigned int eax, ebx, ecx, edx;
|
|
/*
|
|
* - CPUID function 0DH, sub-function 1:
|
|
* EBX enumerates the size (in bytes) required by
|
|
* the XSAVES instruction for an XSAVE area
|
|
* containing all the state components
|
|
* corresponding to bits currently set in
|
|
* XCR0 | IA32_XSS.
|
|
*
|
|
* When XSAVES is not available but XSAVEC is (virt), then there
|
|
* are no supervisor states, but XSAVEC still uses compacted
|
|
* format.
|
|
*/
|
|
cpuid_count(XSTATE_CPUID, 1, &eax, &ebx, &ecx, &edx);
|
|
return ebx;
|
|
}
|
|
|
|
/*
|
|
* Get the total size of the enabled xstates without the independent supervisor
|
|
* features.
|
|
*/
|
|
static unsigned int __init get_xsave_compacted_size(void)
|
|
{
|
|
u64 mask = xfeatures_mask_independent();
|
|
unsigned int size;
|
|
|
|
if (!mask)
|
|
return get_compacted_size();
|
|
|
|
/* Disable independent features. */
|
|
wrmsrl(MSR_IA32_XSS, xfeatures_mask_supervisor());
|
|
|
|
/*
|
|
* Ask the hardware what size is required of the buffer.
|
|
* This is the size required for the task->fpu buffer.
|
|
*/
|
|
size = get_compacted_size();
|
|
|
|
/* Re-enable independent features so XSAVES will work on them again. */
|
|
wrmsrl(MSR_IA32_XSS, xfeatures_mask_supervisor() | mask);
|
|
|
|
return size;
|
|
}
|
|
|
|
static unsigned int __init get_xsave_size_user(void)
|
|
{
|
|
unsigned int eax, ebx, ecx, edx;
|
|
/*
|
|
* - CPUID function 0DH, sub-function 0:
|
|
* EBX enumerates the size (in bytes) required by
|
|
* the XSAVE instruction for an XSAVE area
|
|
* containing all the *user* state components
|
|
* corresponding to bits currently set in XCR0.
|
|
*/
|
|
cpuid_count(XSTATE_CPUID, 0, &eax, &ebx, &ecx, &edx);
|
|
return ebx;
|
|
}
|
|
|
|
static int __init init_xstate_size(void)
|
|
{
|
|
/* Recompute the context size for enabled features: */
|
|
unsigned int user_size, kernel_size, kernel_default_size;
|
|
bool compacted = cpu_feature_enabled(X86_FEATURE_XCOMPACTED);
|
|
|
|
/* Uncompacted user space size */
|
|
user_size = get_xsave_size_user();
|
|
|
|
/*
|
|
* XSAVES kernel size includes supervisor states and uses compacted
|
|
* format. XSAVEC uses compacted format, but does not save
|
|
* supervisor states.
|
|
*
|
|
* XSAVE[OPT] do not support supervisor states so kernel and user
|
|
* size is identical.
|
|
*/
|
|
if (compacted)
|
|
kernel_size = get_xsave_compacted_size();
|
|
else
|
|
kernel_size = user_size;
|
|
|
|
kernel_default_size =
|
|
xstate_calculate_size(fpu_kernel_cfg.default_features, compacted);
|
|
|
|
if (!paranoid_xstate_size_valid(kernel_size))
|
|
return -EINVAL;
|
|
|
|
fpu_kernel_cfg.max_size = kernel_size;
|
|
fpu_user_cfg.max_size = user_size;
|
|
|
|
fpu_kernel_cfg.default_size = kernel_default_size;
|
|
fpu_user_cfg.default_size =
|
|
xstate_calculate_size(fpu_user_cfg.default_features, false);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* We enabled the XSAVE hardware, but something went wrong and
|
|
* we can not use it. Disable it.
|
|
*/
|
|
static void __init fpu__init_disable_system_xstate(unsigned int legacy_size)
|
|
{
|
|
fpu_kernel_cfg.max_features = 0;
|
|
cr4_clear_bits(X86_CR4_OSXSAVE);
|
|
setup_clear_cpu_cap(X86_FEATURE_XSAVE);
|
|
|
|
/* Restore the legacy size.*/
|
|
fpu_kernel_cfg.max_size = legacy_size;
|
|
fpu_kernel_cfg.default_size = legacy_size;
|
|
fpu_user_cfg.max_size = legacy_size;
|
|
fpu_user_cfg.default_size = legacy_size;
|
|
|
|
/*
|
|
* Prevent enabling the static branch which enables writes to the
|
|
* XFD MSR.
|
|
*/
|
|
init_fpstate.xfd = 0;
|
|
|
|
fpstate_reset(¤t->thread.fpu);
|
|
}
|
|
|
|
/*
|
|
* Enable and initialize the xsave feature.
|
|
* Called once per system bootup.
|
|
*/
|
|
void __init fpu__init_system_xstate(unsigned int legacy_size)
|
|
{
|
|
unsigned int eax, ebx, ecx, edx;
|
|
u64 xfeatures;
|
|
int err;
|
|
int i;
|
|
|
|
if (!boot_cpu_has(X86_FEATURE_FPU)) {
|
|
pr_info("x86/fpu: No FPU detected\n");
|
|
return;
|
|
}
|
|
|
|
if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
|
|
pr_info("x86/fpu: x87 FPU will use %s\n",
|
|
boot_cpu_has(X86_FEATURE_FXSR) ? "FXSAVE" : "FSAVE");
|
|
return;
|
|
}
|
|
|
|
if (boot_cpu_data.cpuid_level < XSTATE_CPUID) {
|
|
WARN_ON_FPU(1);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Find user xstates supported by the processor.
|
|
*/
|
|
cpuid_count(XSTATE_CPUID, 0, &eax, &ebx, &ecx, &edx);
|
|
fpu_kernel_cfg.max_features = eax + ((u64)edx << 32);
|
|
|
|
/*
|
|
* Find supervisor xstates supported by the processor.
|
|
*/
|
|
cpuid_count(XSTATE_CPUID, 1, &eax, &ebx, &ecx, &edx);
|
|
fpu_kernel_cfg.max_features |= ecx + ((u64)edx << 32);
|
|
|
|
if ((fpu_kernel_cfg.max_features & XFEATURE_MASK_FPSSE) != XFEATURE_MASK_FPSSE) {
|
|
/*
|
|
* This indicates that something really unexpected happened
|
|
* with the enumeration. Disable XSAVE and try to continue
|
|
* booting without it. This is too early to BUG().
|
|
*/
|
|
pr_err("x86/fpu: FP/SSE not present amongst the CPU's xstate features: 0x%llx.\n",
|
|
fpu_kernel_cfg.max_features);
|
|
goto out_disable;
|
|
}
|
|
|
|
/*
|
|
* Clear XSAVE features that are disabled in the normal CPUID.
|
|
*/
|
|
for (i = 0; i < ARRAY_SIZE(xsave_cpuid_features); i++) {
|
|
unsigned short cid = xsave_cpuid_features[i];
|
|
|
|
/* Careful: X86_FEATURE_FPU is 0! */
|
|
if ((i != XFEATURE_FP && !cid) || !boot_cpu_has(cid))
|
|
fpu_kernel_cfg.max_features &= ~BIT_ULL(i);
|
|
}
|
|
|
|
if (!cpu_feature_enabled(X86_FEATURE_XFD))
|
|
fpu_kernel_cfg.max_features &= ~XFEATURE_MASK_USER_DYNAMIC;
|
|
|
|
if (!cpu_feature_enabled(X86_FEATURE_XSAVES))
|
|
fpu_kernel_cfg.max_features &= XFEATURE_MASK_USER_SUPPORTED;
|
|
else
|
|
fpu_kernel_cfg.max_features &= XFEATURE_MASK_USER_SUPPORTED |
|
|
XFEATURE_MASK_SUPERVISOR_SUPPORTED;
|
|
|
|
fpu_user_cfg.max_features = fpu_kernel_cfg.max_features;
|
|
fpu_user_cfg.max_features &= XFEATURE_MASK_USER_SUPPORTED;
|
|
|
|
/* Clean out dynamic features from default */
|
|
fpu_kernel_cfg.default_features = fpu_kernel_cfg.max_features;
|
|
fpu_kernel_cfg.default_features &= ~XFEATURE_MASK_USER_DYNAMIC;
|
|
|
|
fpu_user_cfg.default_features = fpu_user_cfg.max_features;
|
|
fpu_user_cfg.default_features &= ~XFEATURE_MASK_USER_DYNAMIC;
|
|
|
|
/* Store it for paranoia check at the end */
|
|
xfeatures = fpu_kernel_cfg.max_features;
|
|
|
|
/*
|
|
* Initialize the default XFD state in initfp_state and enable the
|
|
* dynamic sizing mechanism if dynamic states are available. The
|
|
* static key cannot be enabled here because this runs before
|
|
* jump_label_init(). This is delayed to an initcall.
|
|
*/
|
|
init_fpstate.xfd = fpu_user_cfg.max_features & XFEATURE_MASK_USER_DYNAMIC;
|
|
|
|
/* Set up compaction feature bit */
|
|
if (cpu_feature_enabled(X86_FEATURE_XSAVEC) ||
|
|
cpu_feature_enabled(X86_FEATURE_XSAVES))
|
|
setup_force_cpu_cap(X86_FEATURE_XCOMPACTED);
|
|
|
|
/* Enable xstate instructions to be able to continue with initialization: */
|
|
fpu__init_cpu_xstate();
|
|
|
|
/* Cache size, offset and flags for initialization */
|
|
setup_xstate_cache();
|
|
|
|
err = init_xstate_size();
|
|
if (err)
|
|
goto out_disable;
|
|
|
|
/* Reset the state for the current task */
|
|
fpstate_reset(¤t->thread.fpu);
|
|
|
|
/*
|
|
* Update info used for ptrace frames; use standard-format size and no
|
|
* supervisor xstates:
|
|
*/
|
|
update_regset_xstate_info(fpu_user_cfg.max_size,
|
|
fpu_user_cfg.max_features);
|
|
|
|
/*
|
|
* init_fpstate excludes dynamic states as they are large but init
|
|
* state is zero.
|
|
*/
|
|
init_fpstate.size = fpu_kernel_cfg.default_size;
|
|
init_fpstate.xfeatures = fpu_kernel_cfg.default_features;
|
|
|
|
if (init_fpstate.size > sizeof(init_fpstate.regs)) {
|
|
pr_warn("x86/fpu: init_fpstate buffer too small (%zu < %d), disabling XSAVE\n",
|
|
sizeof(init_fpstate.regs), init_fpstate.size);
|
|
goto out_disable;
|
|
}
|
|
|
|
setup_init_fpu_buf();
|
|
|
|
/*
|
|
* Paranoia check whether something in the setup modified the
|
|
* xfeatures mask.
|
|
*/
|
|
if (xfeatures != fpu_kernel_cfg.max_features) {
|
|
pr_err("x86/fpu: xfeatures modified from 0x%016llx to 0x%016llx during init, disabling XSAVE\n",
|
|
xfeatures, fpu_kernel_cfg.max_features);
|
|
goto out_disable;
|
|
}
|
|
|
|
print_xstate_offset_size();
|
|
pr_info("x86/fpu: Enabled xstate features 0x%llx, context size is %d bytes, using '%s' format.\n",
|
|
fpu_kernel_cfg.max_features,
|
|
fpu_kernel_cfg.max_size,
|
|
boot_cpu_has(X86_FEATURE_XCOMPACTED) ? "compacted" : "standard");
|
|
return;
|
|
|
|
out_disable:
|
|
/* something went wrong, try to boot without any XSAVE support */
|
|
fpu__init_disable_system_xstate(legacy_size);
|
|
}
|
|
|
|
/*
|
|
* Restore minimal FPU state after suspend:
|
|
*/
|
|
void fpu__resume_cpu(void)
|
|
{
|
|
/*
|
|
* Restore XCR0 on xsave capable CPUs:
|
|
*/
|
|
if (cpu_feature_enabled(X86_FEATURE_XSAVE))
|
|
xsetbv(XCR_XFEATURE_ENABLED_MASK, fpu_user_cfg.max_features);
|
|
|
|
/*
|
|
* Restore IA32_XSS. The same CPUID bit enumerates support
|
|
* of XSAVES and MSR_IA32_XSS.
|
|
*/
|
|
if (cpu_feature_enabled(X86_FEATURE_XSAVES)) {
|
|
wrmsrl(MSR_IA32_XSS, xfeatures_mask_supervisor() |
|
|
xfeatures_mask_independent());
|
|
}
|
|
|
|
if (fpu_state_size_dynamic())
|
|
wrmsrl(MSR_IA32_XFD, current->thread.fpu.fpstate->xfd);
|
|
}
|
|
|
|
/*
|
|
* Given an xstate feature nr, calculate where in the xsave
|
|
* buffer the state is. Callers should ensure that the buffer
|
|
* is valid.
|
|
*/
|
|
static void *__raw_xsave_addr(struct xregs_state *xsave, int xfeature_nr)
|
|
{
|
|
u64 xcomp_bv = xsave->header.xcomp_bv;
|
|
|
|
if (WARN_ON_ONCE(!xfeature_enabled(xfeature_nr)))
|
|
return NULL;
|
|
|
|
if (cpu_feature_enabled(X86_FEATURE_XCOMPACTED)) {
|
|
if (WARN_ON_ONCE(!(xcomp_bv & BIT_ULL(xfeature_nr))))
|
|
return NULL;
|
|
}
|
|
|
|
return (void *)xsave + xfeature_get_offset(xcomp_bv, xfeature_nr);
|
|
}
|
|
|
|
/*
|
|
* Given the xsave area and a state inside, this function returns the
|
|
* address of the state.
|
|
*
|
|
* This is the API that is called to get xstate address in either
|
|
* standard format or compacted format of xsave area.
|
|
*
|
|
* Note that if there is no data for the field in the xsave buffer
|
|
* this will return NULL.
|
|
*
|
|
* Inputs:
|
|
* xstate: the thread's storage area for all FPU data
|
|
* xfeature_nr: state which is defined in xsave.h (e.g. XFEATURE_FP,
|
|
* XFEATURE_SSE, etc...)
|
|
* Output:
|
|
* address of the state in the xsave area, or NULL if the
|
|
* field is not present in the xsave buffer.
|
|
*/
|
|
void *get_xsave_addr(struct xregs_state *xsave, int xfeature_nr)
|
|
{
|
|
/*
|
|
* Do we even *have* xsave state?
|
|
*/
|
|
if (!boot_cpu_has(X86_FEATURE_XSAVE))
|
|
return NULL;
|
|
|
|
/*
|
|
* We should not ever be requesting features that we
|
|
* have not enabled.
|
|
*/
|
|
if (WARN_ON_ONCE(!xfeature_enabled(xfeature_nr)))
|
|
return NULL;
|
|
|
|
/*
|
|
* This assumes the last 'xsave*' instruction to
|
|
* have requested that 'xfeature_nr' be saved.
|
|
* If it did not, we might be seeing and old value
|
|
* of the field in the buffer.
|
|
*
|
|
* This can happen because the last 'xsave' did not
|
|
* request that this feature be saved (unlikely)
|
|
* or because the "init optimization" caused it
|
|
* to not be saved.
|
|
*/
|
|
if (!(xsave->header.xfeatures & BIT_ULL(xfeature_nr)))
|
|
return NULL;
|
|
|
|
return __raw_xsave_addr(xsave, xfeature_nr);
|
|
}
|
|
|
|
#ifdef CONFIG_ARCH_HAS_PKEYS
|
|
|
|
/*
|
|
* This will go out and modify PKRU register to set the access
|
|
* rights for @pkey to @init_val.
|
|
*/
|
|
int arch_set_user_pkey_access(struct task_struct *tsk, int pkey,
|
|
unsigned long init_val)
|
|
{
|
|
u32 old_pkru, new_pkru_bits = 0;
|
|
int pkey_shift;
|
|
|
|
/*
|
|
* This check implies XSAVE support. OSPKE only gets
|
|
* set if we enable XSAVE and we enable PKU in XCR0.
|
|
*/
|
|
if (!cpu_feature_enabled(X86_FEATURE_OSPKE))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* This code should only be called with valid 'pkey'
|
|
* values originating from in-kernel users. Complain
|
|
* if a bad value is observed.
|
|
*/
|
|
if (WARN_ON_ONCE(pkey >= arch_max_pkey()))
|
|
return -EINVAL;
|
|
|
|
/* Set the bits we need in PKRU: */
|
|
if (init_val & PKEY_DISABLE_ACCESS)
|
|
new_pkru_bits |= PKRU_AD_BIT;
|
|
if (init_val & PKEY_DISABLE_WRITE)
|
|
new_pkru_bits |= PKRU_WD_BIT;
|
|
|
|
/* Shift the bits in to the correct place in PKRU for pkey: */
|
|
pkey_shift = pkey * PKRU_BITS_PER_PKEY;
|
|
new_pkru_bits <<= pkey_shift;
|
|
|
|
/* Get old PKRU and mask off any old bits in place: */
|
|
old_pkru = read_pkru();
|
|
old_pkru &= ~((PKRU_AD_BIT|PKRU_WD_BIT) << pkey_shift);
|
|
|
|
/* Write old part along with new part: */
|
|
write_pkru(old_pkru | new_pkru_bits);
|
|
|
|
return 0;
|
|
}
|
|
#endif /* ! CONFIG_ARCH_HAS_PKEYS */
|
|
|
|
static void copy_feature(bool from_xstate, struct membuf *to, void *xstate,
|
|
void *init_xstate, unsigned int size)
|
|
{
|
|
membuf_write(to, from_xstate ? xstate : init_xstate, size);
|
|
}
|
|
|
|
/**
|
|
* __copy_xstate_to_uabi_buf - Copy kernel saved xstate to a UABI buffer
|
|
* @to: membuf descriptor
|
|
* @fpstate: The fpstate buffer from which to copy
|
|
* @pkru_val: The PKRU value to store in the PKRU component
|
|
* @copy_mode: The requested copy mode
|
|
*
|
|
* Converts from kernel XSAVE or XSAVES compacted format to UABI conforming
|
|
* format, i.e. from the kernel internal hardware dependent storage format
|
|
* to the requested @mode. UABI XSTATE is always uncompacted!
|
|
*
|
|
* It supports partial copy but @to.pos always starts from zero.
|
|
*/
|
|
void __copy_xstate_to_uabi_buf(struct membuf to, struct fpstate *fpstate,
|
|
u32 pkru_val, enum xstate_copy_mode copy_mode)
|
|
{
|
|
const unsigned int off_mxcsr = offsetof(struct fxregs_state, mxcsr);
|
|
struct xregs_state *xinit = &init_fpstate.regs.xsave;
|
|
struct xregs_state *xsave = &fpstate->regs.xsave;
|
|
struct xstate_header header;
|
|
unsigned int zerofrom;
|
|
u64 mask;
|
|
int i;
|
|
|
|
memset(&header, 0, sizeof(header));
|
|
header.xfeatures = xsave->header.xfeatures;
|
|
|
|
/* Mask out the feature bits depending on copy mode */
|
|
switch (copy_mode) {
|
|
case XSTATE_COPY_FP:
|
|
header.xfeatures &= XFEATURE_MASK_FP;
|
|
break;
|
|
|
|
case XSTATE_COPY_FX:
|
|
header.xfeatures &= XFEATURE_MASK_FP | XFEATURE_MASK_SSE;
|
|
break;
|
|
|
|
case XSTATE_COPY_XSAVE:
|
|
header.xfeatures &= fpstate->user_xfeatures;
|
|
break;
|
|
}
|
|
|
|
/* Copy FP state up to MXCSR */
|
|
copy_feature(header.xfeatures & XFEATURE_MASK_FP, &to, &xsave->i387,
|
|
&xinit->i387, off_mxcsr);
|
|
|
|
/* Copy MXCSR when SSE or YMM are set in the feature mask */
|
|
copy_feature(header.xfeatures & (XFEATURE_MASK_SSE | XFEATURE_MASK_YMM),
|
|
&to, &xsave->i387.mxcsr, &xinit->i387.mxcsr,
|
|
MXCSR_AND_FLAGS_SIZE);
|
|
|
|
/* Copy the remaining FP state */
|
|
copy_feature(header.xfeatures & XFEATURE_MASK_FP,
|
|
&to, &xsave->i387.st_space, &xinit->i387.st_space,
|
|
sizeof(xsave->i387.st_space));
|
|
|
|
/* Copy the SSE state - shared with YMM, but independently managed */
|
|
copy_feature(header.xfeatures & XFEATURE_MASK_SSE,
|
|
&to, &xsave->i387.xmm_space, &xinit->i387.xmm_space,
|
|
sizeof(xsave->i387.xmm_space));
|
|
|
|
if (copy_mode != XSTATE_COPY_XSAVE)
|
|
goto out;
|
|
|
|
/* Zero the padding area */
|
|
membuf_zero(&to, sizeof(xsave->i387.padding));
|
|
|
|
/* Copy xsave->i387.sw_reserved */
|
|
membuf_write(&to, xstate_fx_sw_bytes, sizeof(xsave->i387.sw_reserved));
|
|
|
|
/* Copy the user space relevant state of @xsave->header */
|
|
membuf_write(&to, &header, sizeof(header));
|
|
|
|
zerofrom = offsetof(struct xregs_state, extended_state_area);
|
|
|
|
/*
|
|
* This 'mask' indicates which states to copy from fpstate.
|
|
* Those extended states that are not present in fpstate are
|
|
* either disabled or initialized:
|
|
*
|
|
* In non-compacted format, disabled features still occupy
|
|
* state space but there is no state to copy from in the
|
|
* compacted init_fpstate. The gap tracking will zero these
|
|
* states.
|
|
*
|
|
* The extended features have an all zeroes init state. Thus,
|
|
* remove them from 'mask' to zero those features in the user
|
|
* buffer instead of retrieving them from init_fpstate.
|
|
*/
|
|
mask = header.xfeatures;
|
|
|
|
for_each_extended_xfeature(i, mask) {
|
|
/*
|
|
* If there was a feature or alignment gap, zero the space
|
|
* in the destination buffer.
|
|
*/
|
|
if (zerofrom < xstate_offsets[i])
|
|
membuf_zero(&to, xstate_offsets[i] - zerofrom);
|
|
|
|
if (i == XFEATURE_PKRU) {
|
|
struct pkru_state pkru = {0};
|
|
/*
|
|
* PKRU is not necessarily up to date in the
|
|
* XSAVE buffer. Use the provided value.
|
|
*/
|
|
pkru.pkru = pkru_val;
|
|
membuf_write(&to, &pkru, sizeof(pkru));
|
|
} else {
|
|
membuf_write(&to,
|
|
__raw_xsave_addr(xsave, i),
|
|
xstate_sizes[i]);
|
|
}
|
|
/*
|
|
* Keep track of the last copied state in the non-compacted
|
|
* target buffer for gap zeroing.
|
|
*/
|
|
zerofrom = xstate_offsets[i] + xstate_sizes[i];
|
|
}
|
|
|
|
out:
|
|
if (to.left)
|
|
membuf_zero(&to, to.left);
|
|
}
|
|
|
|
/**
|
|
* copy_xstate_to_uabi_buf - Copy kernel saved xstate to a UABI buffer
|
|
* @to: membuf descriptor
|
|
* @tsk: The task from which to copy the saved xstate
|
|
* @copy_mode: The requested copy mode
|
|
*
|
|
* Converts from kernel XSAVE or XSAVES compacted format to UABI conforming
|
|
* format, i.e. from the kernel internal hardware dependent storage format
|
|
* to the requested @mode. UABI XSTATE is always uncompacted!
|
|
*
|
|
* It supports partial copy but @to.pos always starts from zero.
|
|
*/
|
|
void copy_xstate_to_uabi_buf(struct membuf to, struct task_struct *tsk,
|
|
enum xstate_copy_mode copy_mode)
|
|
{
|
|
__copy_xstate_to_uabi_buf(to, tsk->thread.fpu.fpstate,
|
|
tsk->thread.pkru, copy_mode);
|
|
}
|
|
|
|
static int copy_from_buffer(void *dst, unsigned int offset, unsigned int size,
|
|
const void *kbuf, const void __user *ubuf)
|
|
{
|
|
if (kbuf) {
|
|
memcpy(dst, kbuf + offset, size);
|
|
} else {
|
|
if (copy_from_user(dst, ubuf + offset, size))
|
|
return -EFAULT;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
/**
|
|
* copy_uabi_to_xstate - Copy a UABI format buffer to the kernel xstate
|
|
* @fpstate: The fpstate buffer to copy to
|
|
* @kbuf: The UABI format buffer, if it comes from the kernel
|
|
* @ubuf: The UABI format buffer, if it comes from userspace
|
|
* @pkru: The location to write the PKRU value to
|
|
*
|
|
* Converts from the UABI format into the kernel internal hardware
|
|
* dependent format.
|
|
*
|
|
* This function ultimately has three different callers with distinct PKRU
|
|
* behavior.
|
|
* 1. When called from sigreturn the PKRU register will be restored from
|
|
* @fpstate via an XRSTOR. Correctly copying the UABI format buffer to
|
|
* @fpstate is sufficient to cover this case, but the caller will also
|
|
* pass a pointer to the thread_struct's pkru field in @pkru and updating
|
|
* it is harmless.
|
|
* 2. When called from ptrace the PKRU register will be restored from the
|
|
* thread_struct's pkru field. A pointer to that is passed in @pkru.
|
|
* The kernel will restore it manually, so the XRSTOR behavior that resets
|
|
* the PKRU register to the hardware init value (0) if the corresponding
|
|
* xfeatures bit is not set is emulated here.
|
|
* 3. When called from KVM the PKRU register will be restored from the vcpu's
|
|
* pkru field. A pointer to that is passed in @pkru. KVM hasn't used
|
|
* XRSTOR and hasn't had the PKRU resetting behavior described above. To
|
|
* preserve that KVM behavior, it passes NULL for @pkru if the xfeatures
|
|
* bit is not set.
|
|
*/
|
|
static int copy_uabi_to_xstate(struct fpstate *fpstate, const void *kbuf,
|
|
const void __user *ubuf, u32 *pkru)
|
|
{
|
|
struct xregs_state *xsave = &fpstate->regs.xsave;
|
|
unsigned int offset, size;
|
|
struct xstate_header hdr;
|
|
u64 mask;
|
|
int i;
|
|
|
|
offset = offsetof(struct xregs_state, header);
|
|
if (copy_from_buffer(&hdr, offset, sizeof(hdr), kbuf, ubuf))
|
|
return -EFAULT;
|
|
|
|
if (validate_user_xstate_header(&hdr, fpstate))
|
|
return -EINVAL;
|
|
|
|
/* Validate MXCSR when any of the related features is in use */
|
|
mask = XFEATURE_MASK_FP | XFEATURE_MASK_SSE | XFEATURE_MASK_YMM;
|
|
if (hdr.xfeatures & mask) {
|
|
u32 mxcsr[2];
|
|
|
|
offset = offsetof(struct fxregs_state, mxcsr);
|
|
if (copy_from_buffer(mxcsr, offset, sizeof(mxcsr), kbuf, ubuf))
|
|
return -EFAULT;
|
|
|
|
/* Reserved bits in MXCSR must be zero. */
|
|
if (mxcsr[0] & ~mxcsr_feature_mask)
|
|
return -EINVAL;
|
|
|
|
/* SSE and YMM require MXCSR even when FP is not in use. */
|
|
if (!(hdr.xfeatures & XFEATURE_MASK_FP)) {
|
|
xsave->i387.mxcsr = mxcsr[0];
|
|
xsave->i387.mxcsr_mask = mxcsr[1];
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < XFEATURE_MAX; i++) {
|
|
mask = BIT_ULL(i);
|
|
|
|
if (hdr.xfeatures & mask) {
|
|
void *dst = __raw_xsave_addr(xsave, i);
|
|
|
|
offset = xstate_offsets[i];
|
|
size = xstate_sizes[i];
|
|
|
|
if (copy_from_buffer(dst, offset, size, kbuf, ubuf))
|
|
return -EFAULT;
|
|
}
|
|
}
|
|
|
|
if (hdr.xfeatures & XFEATURE_MASK_PKRU) {
|
|
struct pkru_state *xpkru;
|
|
|
|
xpkru = __raw_xsave_addr(xsave, XFEATURE_PKRU);
|
|
*pkru = xpkru->pkru;
|
|
} else {
|
|
/*
|
|
* KVM may pass NULL here to indicate that it does not need
|
|
* PKRU updated.
|
|
*/
|
|
if (pkru)
|
|
*pkru = 0;
|
|
}
|
|
|
|
/*
|
|
* The state that came in from userspace was user-state only.
|
|
* Mask all the user states out of 'xfeatures':
|
|
*/
|
|
xsave->header.xfeatures &= XFEATURE_MASK_SUPERVISOR_ALL;
|
|
|
|
/*
|
|
* Add back in the features that came in from userspace:
|
|
*/
|
|
xsave->header.xfeatures |= hdr.xfeatures;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Convert from a ptrace standard-format kernel buffer to kernel XSAVE[S]
|
|
* format and copy to the target thread. Used by ptrace and KVM.
|
|
*/
|
|
int copy_uabi_from_kernel_to_xstate(struct fpstate *fpstate, const void *kbuf, u32 *pkru)
|
|
{
|
|
return copy_uabi_to_xstate(fpstate, kbuf, NULL, pkru);
|
|
}
|
|
|
|
/*
|
|
* Convert from a sigreturn standard-format user-space buffer to kernel
|
|
* XSAVE[S] format and copy to the target thread. This is called from the
|
|
* sigreturn() and rt_sigreturn() system calls.
|
|
*/
|
|
int copy_sigframe_from_user_to_xstate(struct task_struct *tsk,
|
|
const void __user *ubuf)
|
|
{
|
|
return copy_uabi_to_xstate(tsk->thread.fpu.fpstate, NULL, ubuf, &tsk->thread.pkru);
|
|
}
|
|
|
|
static bool validate_independent_components(u64 mask)
|
|
{
|
|
u64 xchk;
|
|
|
|
if (WARN_ON_FPU(!cpu_feature_enabled(X86_FEATURE_XSAVES)))
|
|
return false;
|
|
|
|
xchk = ~xfeatures_mask_independent();
|
|
|
|
if (WARN_ON_ONCE(!mask || mask & xchk))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* xsaves - Save selected components to a kernel xstate buffer
|
|
* @xstate: Pointer to the buffer
|
|
* @mask: Feature mask to select the components to save
|
|
*
|
|
* The @xstate buffer must be 64 byte aligned and correctly initialized as
|
|
* XSAVES does not write the full xstate header. Before first use the
|
|
* buffer should be zeroed otherwise a consecutive XRSTORS from that buffer
|
|
* can #GP.
|
|
*
|
|
* The feature mask must be a subset of the independent features.
|
|
*/
|
|
void xsaves(struct xregs_state *xstate, u64 mask)
|
|
{
|
|
int err;
|
|
|
|
if (!validate_independent_components(mask))
|
|
return;
|
|
|
|
XSTATE_OP(XSAVES, xstate, (u32)mask, (u32)(mask >> 32), err);
|
|
WARN_ON_ONCE(err);
|
|
}
|
|
|
|
/**
|
|
* xrstors - Restore selected components from a kernel xstate buffer
|
|
* @xstate: Pointer to the buffer
|
|
* @mask: Feature mask to select the components to restore
|
|
*
|
|
* The @xstate buffer must be 64 byte aligned and correctly initialized
|
|
* otherwise XRSTORS from that buffer can #GP.
|
|
*
|
|
* Proper usage is to restore the state which was saved with
|
|
* xsaves() into @xstate.
|
|
*
|
|
* The feature mask must be a subset of the independent features.
|
|
*/
|
|
void xrstors(struct xregs_state *xstate, u64 mask)
|
|
{
|
|
int err;
|
|
|
|
if (!validate_independent_components(mask))
|
|
return;
|
|
|
|
XSTATE_OP(XRSTORS, xstate, (u32)mask, (u32)(mask >> 32), err);
|
|
WARN_ON_ONCE(err);
|
|
}
|
|
|
|
#if IS_ENABLED(CONFIG_KVM)
|
|
void fpstate_clear_xstate_component(struct fpstate *fps, unsigned int xfeature)
|
|
{
|
|
void *addr = get_xsave_addr(&fps->regs.xsave, xfeature);
|
|
|
|
if (addr)
|
|
memset(addr, 0, xstate_sizes[xfeature]);
|
|
}
|
|
EXPORT_SYMBOL_GPL(fpstate_clear_xstate_component);
|
|
#endif
|
|
|
|
#ifdef CONFIG_X86_64
|
|
|
|
#ifdef CONFIG_X86_DEBUG_FPU
|
|
/*
|
|
* Ensure that a subsequent XSAVE* or XRSTOR* instruction with RFBM=@mask
|
|
* can safely operate on the @fpstate buffer.
|
|
*/
|
|
static bool xstate_op_valid(struct fpstate *fpstate, u64 mask, bool rstor)
|
|
{
|
|
u64 xfd = __this_cpu_read(xfd_state);
|
|
|
|
if (fpstate->xfd == xfd)
|
|
return true;
|
|
|
|
/*
|
|
* The XFD MSR does not match fpstate->xfd. That's invalid when
|
|
* the passed in fpstate is current's fpstate.
|
|
*/
|
|
if (fpstate->xfd == current->thread.fpu.fpstate->xfd)
|
|
return false;
|
|
|
|
/*
|
|
* XRSTOR(S) from init_fpstate are always correct as it will just
|
|
* bring all components into init state and not read from the
|
|
* buffer. XSAVE(S) raises #PF after init.
|
|
*/
|
|
if (fpstate == &init_fpstate)
|
|
return rstor;
|
|
|
|
/*
|
|
* XSAVE(S): clone(), fpu_swap_kvm_fpu()
|
|
* XRSTORS(S): fpu_swap_kvm_fpu()
|
|
*/
|
|
|
|
/*
|
|
* No XSAVE/XRSTOR instructions (except XSAVE itself) touch
|
|
* the buffer area for XFD-disabled state components.
|
|
*/
|
|
mask &= ~xfd;
|
|
|
|
/*
|
|
* Remove features which are valid in fpstate. They
|
|
* have space allocated in fpstate.
|
|
*/
|
|
mask &= ~fpstate->xfeatures;
|
|
|
|
/*
|
|
* Any remaining state components in 'mask' might be written
|
|
* by XSAVE/XRSTOR. Fail validation it found.
|
|
*/
|
|
return !mask;
|
|
}
|
|
|
|
void xfd_validate_state(struct fpstate *fpstate, u64 mask, bool rstor)
|
|
{
|
|
WARN_ON_ONCE(!xstate_op_valid(fpstate, mask, rstor));
|
|
}
|
|
#endif /* CONFIG_X86_DEBUG_FPU */
|
|
|
|
static int __init xfd_update_static_branch(void)
|
|
{
|
|
/*
|
|
* If init_fpstate.xfd has bits set then dynamic features are
|
|
* available and the dynamic sizing must be enabled.
|
|
*/
|
|
if (init_fpstate.xfd)
|
|
static_branch_enable(&__fpu_state_size_dynamic);
|
|
return 0;
|
|
}
|
|
arch_initcall(xfd_update_static_branch)
|
|
|
|
void fpstate_free(struct fpu *fpu)
|
|
{
|
|
if (fpu->fpstate && fpu->fpstate != &fpu->__fpstate)
|
|
vfree(fpu->fpstate);
|
|
}
|
|
|
|
/**
|
|
* fpstate_realloc - Reallocate struct fpstate for the requested new features
|
|
*
|
|
* @xfeatures: A bitmap of xstate features which extend the enabled features
|
|
* of that task
|
|
* @ksize: The required size for the kernel buffer
|
|
* @usize: The required size for user space buffers
|
|
* @guest_fpu: Pointer to a guest FPU container. NULL for host allocations
|
|
*
|
|
* Note vs. vmalloc(): If the task with a vzalloc()-allocated buffer
|
|
* terminates quickly, vfree()-induced IPIs may be a concern, but tasks
|
|
* with large states are likely to live longer.
|
|
*
|
|
* Returns: 0 on success, -ENOMEM on allocation error.
|
|
*/
|
|
static int fpstate_realloc(u64 xfeatures, unsigned int ksize,
|
|
unsigned int usize, struct fpu_guest *guest_fpu)
|
|
{
|
|
struct fpu *fpu = ¤t->thread.fpu;
|
|
struct fpstate *curfps, *newfps = NULL;
|
|
unsigned int fpsize;
|
|
bool in_use;
|
|
|
|
fpsize = ksize + ALIGN(offsetof(struct fpstate, regs), 64);
|
|
|
|
newfps = vzalloc(fpsize);
|
|
if (!newfps)
|
|
return -ENOMEM;
|
|
newfps->size = ksize;
|
|
newfps->user_size = usize;
|
|
newfps->is_valloc = true;
|
|
|
|
/*
|
|
* When a guest FPU is supplied, use @guest_fpu->fpstate
|
|
* as reference independent whether it is in use or not.
|
|
*/
|
|
curfps = guest_fpu ? guest_fpu->fpstate : fpu->fpstate;
|
|
|
|
/* Determine whether @curfps is the active fpstate */
|
|
in_use = fpu->fpstate == curfps;
|
|
|
|
if (guest_fpu) {
|
|
newfps->is_guest = true;
|
|
newfps->is_confidential = curfps->is_confidential;
|
|
newfps->in_use = curfps->in_use;
|
|
guest_fpu->xfeatures |= xfeatures;
|
|
guest_fpu->uabi_size = usize;
|
|
}
|
|
|
|
fpregs_lock();
|
|
/*
|
|
* If @curfps is in use, ensure that the current state is in the
|
|
* registers before swapping fpstate as that might invalidate it
|
|
* due to layout changes.
|
|
*/
|
|
if (in_use && test_thread_flag(TIF_NEED_FPU_LOAD))
|
|
fpregs_restore_userregs();
|
|
|
|
newfps->xfeatures = curfps->xfeatures | xfeatures;
|
|
|
|
if (!guest_fpu)
|
|
newfps->user_xfeatures = curfps->user_xfeatures | xfeatures;
|
|
|
|
newfps->xfd = curfps->xfd & ~xfeatures;
|
|
|
|
/* Do the final updates within the locked region */
|
|
xstate_init_xcomp_bv(&newfps->regs.xsave, newfps->xfeatures);
|
|
|
|
if (guest_fpu) {
|
|
guest_fpu->fpstate = newfps;
|
|
/* If curfps is active, update the FPU fpstate pointer */
|
|
if (in_use)
|
|
fpu->fpstate = newfps;
|
|
} else {
|
|
fpu->fpstate = newfps;
|
|
}
|
|
|
|
if (in_use)
|
|
xfd_update_state(fpu->fpstate);
|
|
fpregs_unlock();
|
|
|
|
/* Only free valloc'ed state */
|
|
if (curfps && curfps->is_valloc)
|
|
vfree(curfps);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int validate_sigaltstack(unsigned int usize)
|
|
{
|
|
struct task_struct *thread, *leader = current->group_leader;
|
|
unsigned long framesize = get_sigframe_size();
|
|
|
|
lockdep_assert_held(¤t->sighand->siglock);
|
|
|
|
/* get_sigframe_size() is based on fpu_user_cfg.max_size */
|
|
framesize -= fpu_user_cfg.max_size;
|
|
framesize += usize;
|
|
for_each_thread(leader, thread) {
|
|
if (thread->sas_ss_size && thread->sas_ss_size < framesize)
|
|
return -ENOSPC;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int __xstate_request_perm(u64 permitted, u64 requested, bool guest)
|
|
{
|
|
/*
|
|
* This deliberately does not exclude !XSAVES as we still might
|
|
* decide to optionally context switch XCR0 or talk the silicon
|
|
* vendors into extending XFD for the pre AMX states, especially
|
|
* AVX512.
|
|
*/
|
|
bool compacted = cpu_feature_enabled(X86_FEATURE_XCOMPACTED);
|
|
struct fpu *fpu = ¤t->group_leader->thread.fpu;
|
|
struct fpu_state_perm *perm;
|
|
unsigned int ksize, usize;
|
|
u64 mask;
|
|
int ret = 0;
|
|
|
|
/* Check whether fully enabled */
|
|
if ((permitted & requested) == requested)
|
|
return 0;
|
|
|
|
/* Calculate the resulting kernel state size */
|
|
mask = permitted | requested;
|
|
/* Take supervisor states into account on the host */
|
|
if (!guest)
|
|
mask |= xfeatures_mask_supervisor();
|
|
ksize = xstate_calculate_size(mask, compacted);
|
|
|
|
/* Calculate the resulting user state size */
|
|
mask &= XFEATURE_MASK_USER_SUPPORTED;
|
|
usize = xstate_calculate_size(mask, false);
|
|
|
|
if (!guest) {
|
|
ret = validate_sigaltstack(usize);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
perm = guest ? &fpu->guest_perm : &fpu->perm;
|
|
/* Pairs with the READ_ONCE() in xstate_get_group_perm() */
|
|
WRITE_ONCE(perm->__state_perm, mask);
|
|
/* Protected by sighand lock */
|
|
perm->__state_size = ksize;
|
|
perm->__user_state_size = usize;
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Permissions array to map facilities with more than one component
|
|
*/
|
|
static const u64 xstate_prctl_req[XFEATURE_MAX] = {
|
|
[XFEATURE_XTILE_DATA] = XFEATURE_MASK_XTILE_DATA,
|
|
};
|
|
|
|
static int xstate_request_perm(unsigned long idx, bool guest)
|
|
{
|
|
u64 permitted, requested;
|
|
int ret;
|
|
|
|
if (idx >= XFEATURE_MAX)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Look up the facility mask which can require more than
|
|
* one xstate component.
|
|
*/
|
|
idx = array_index_nospec(idx, ARRAY_SIZE(xstate_prctl_req));
|
|
requested = xstate_prctl_req[idx];
|
|
if (!requested)
|
|
return -EOPNOTSUPP;
|
|
|
|
if ((fpu_user_cfg.max_features & requested) != requested)
|
|
return -EOPNOTSUPP;
|
|
|
|
/* Lockless quick check */
|
|
permitted = xstate_get_group_perm(guest);
|
|
if ((permitted & requested) == requested)
|
|
return 0;
|
|
|
|
/* Protect against concurrent modifications */
|
|
spin_lock_irq(¤t->sighand->siglock);
|
|
permitted = xstate_get_group_perm(guest);
|
|
|
|
/* First vCPU allocation locks the permissions. */
|
|
if (guest && (permitted & FPU_GUEST_PERM_LOCKED))
|
|
ret = -EBUSY;
|
|
else
|
|
ret = __xstate_request_perm(permitted, requested, guest);
|
|
spin_unlock_irq(¤t->sighand->siglock);
|
|
return ret;
|
|
}
|
|
|
|
int __xfd_enable_feature(u64 xfd_err, struct fpu_guest *guest_fpu)
|
|
{
|
|
u64 xfd_event = xfd_err & XFEATURE_MASK_USER_DYNAMIC;
|
|
struct fpu_state_perm *perm;
|
|
unsigned int ksize, usize;
|
|
struct fpu *fpu;
|
|
|
|
if (!xfd_event) {
|
|
if (!guest_fpu)
|
|
pr_err_once("XFD: Invalid xfd error: %016llx\n", xfd_err);
|
|
return 0;
|
|
}
|
|
|
|
/* Protect against concurrent modifications */
|
|
spin_lock_irq(¤t->sighand->siglock);
|
|
|
|
/* If not permitted let it die */
|
|
if ((xstate_get_group_perm(!!guest_fpu) & xfd_event) != xfd_event) {
|
|
spin_unlock_irq(¤t->sighand->siglock);
|
|
return -EPERM;
|
|
}
|
|
|
|
fpu = ¤t->group_leader->thread.fpu;
|
|
perm = guest_fpu ? &fpu->guest_perm : &fpu->perm;
|
|
ksize = perm->__state_size;
|
|
usize = perm->__user_state_size;
|
|
|
|
/*
|
|
* The feature is permitted. State size is sufficient. Dropping
|
|
* the lock is safe here even if more features are added from
|
|
* another task, the retrieved buffer sizes are valid for the
|
|
* currently requested feature(s).
|
|
*/
|
|
spin_unlock_irq(¤t->sighand->siglock);
|
|
|
|
/*
|
|
* Try to allocate a new fpstate. If that fails there is no way
|
|
* out.
|
|
*/
|
|
if (fpstate_realloc(xfd_event, ksize, usize, guest_fpu))
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
|
|
int xfd_enable_feature(u64 xfd_err)
|
|
{
|
|
return __xfd_enable_feature(xfd_err, NULL);
|
|
}
|
|
|
|
#else /* CONFIG_X86_64 */
|
|
static inline int xstate_request_perm(unsigned long idx, bool guest)
|
|
{
|
|
return -EPERM;
|
|
}
|
|
#endif /* !CONFIG_X86_64 */
|
|
|
|
u64 xstate_get_guest_group_perm(void)
|
|
{
|
|
return xstate_get_group_perm(true);
|
|
}
|
|
EXPORT_SYMBOL_GPL(xstate_get_guest_group_perm);
|
|
|
|
/**
|
|
* fpu_xstate_prctl - xstate permission operations
|
|
* @tsk: Redundant pointer to current
|
|
* @option: A subfunction of arch_prctl()
|
|
* @arg2: option argument
|
|
* Return: 0 if successful; otherwise, an error code
|
|
*
|
|
* Option arguments:
|
|
*
|
|
* ARCH_GET_XCOMP_SUPP: Pointer to user space u64 to store the info
|
|
* ARCH_GET_XCOMP_PERM: Pointer to user space u64 to store the info
|
|
* ARCH_REQ_XCOMP_PERM: Facility number requested
|
|
*
|
|
* For facilities which require more than one XSTATE component, the request
|
|
* must be the highest state component number related to that facility,
|
|
* e.g. for AMX which requires XFEATURE_XTILE_CFG(17) and
|
|
* XFEATURE_XTILE_DATA(18) this would be XFEATURE_XTILE_DATA(18).
|
|
*/
|
|
long fpu_xstate_prctl(int option, unsigned long arg2)
|
|
{
|
|
u64 __user *uptr = (u64 __user *)arg2;
|
|
u64 permitted, supported;
|
|
unsigned long idx = arg2;
|
|
bool guest = false;
|
|
|
|
switch (option) {
|
|
case ARCH_GET_XCOMP_SUPP:
|
|
supported = fpu_user_cfg.max_features | fpu_user_cfg.legacy_features;
|
|
return put_user(supported, uptr);
|
|
|
|
case ARCH_GET_XCOMP_PERM:
|
|
/*
|
|
* Lockless snapshot as it can also change right after the
|
|
* dropping the lock.
|
|
*/
|
|
permitted = xstate_get_host_group_perm();
|
|
permitted &= XFEATURE_MASK_USER_SUPPORTED;
|
|
return put_user(permitted, uptr);
|
|
|
|
case ARCH_GET_XCOMP_GUEST_PERM:
|
|
permitted = xstate_get_guest_group_perm();
|
|
permitted &= XFEATURE_MASK_USER_SUPPORTED;
|
|
return put_user(permitted, uptr);
|
|
|
|
case ARCH_REQ_XCOMP_GUEST_PERM:
|
|
guest = true;
|
|
fallthrough;
|
|
|
|
case ARCH_REQ_XCOMP_PERM:
|
|
if (!IS_ENABLED(CONFIG_X86_64))
|
|
return -EOPNOTSUPP;
|
|
|
|
return xstate_request_perm(idx, guest);
|
|
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_PROC_PID_ARCH_STATUS
|
|
/*
|
|
* Report the amount of time elapsed in millisecond since last AVX512
|
|
* use in the task.
|
|
*/
|
|
static void avx512_status(struct seq_file *m, struct task_struct *task)
|
|
{
|
|
unsigned long timestamp = READ_ONCE(task->thread.fpu.avx512_timestamp);
|
|
long delta;
|
|
|
|
if (!timestamp) {
|
|
/*
|
|
* Report -1 if no AVX512 usage
|
|
*/
|
|
delta = -1;
|
|
} else {
|
|
delta = (long)(jiffies - timestamp);
|
|
/*
|
|
* Cap to LONG_MAX if time difference > LONG_MAX
|
|
*/
|
|
if (delta < 0)
|
|
delta = LONG_MAX;
|
|
delta = jiffies_to_msecs(delta);
|
|
}
|
|
|
|
seq_put_decimal_ll(m, "AVX512_elapsed_ms:\t", delta);
|
|
seq_putc(m, '\n');
|
|
}
|
|
|
|
/*
|
|
* Report architecture specific information
|
|
*/
|
|
int proc_pid_arch_status(struct seq_file *m, struct pid_namespace *ns,
|
|
struct pid *pid, struct task_struct *task)
|
|
{
|
|
/*
|
|
* Report AVX512 state if the processor and build option supported.
|
|
*/
|
|
if (cpu_feature_enabled(X86_FEATURE_AVX512F))
|
|
avx512_status(m, task);
|
|
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_PROC_PID_ARCH_STATUS */
|