linux-zen-server/drivers/counter/ti-ecap-capture.c

616 lines
16 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* ECAP Capture driver
*
* Copyright (C) 2022 Julien Panis <jpanis@baylibre.com>
*/
#include <linux/atomic.h>
#include <linux/clk.h>
#include <linux/counter.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/mod_devicetable.h>
#include <linux/mutex.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#define ECAP_DRV_NAME "ecap"
/* ECAP event IDs */
#define ECAP_CEVT1 0
#define ECAP_CEVT2 1
#define ECAP_CEVT3 2
#define ECAP_CEVT4 3
#define ECAP_CNTOVF 4
#define ECAP_CEVT_LAST ECAP_CEVT4
#define ECAP_NB_CEVT (ECAP_CEVT_LAST + 1)
#define ECAP_EVT_LAST ECAP_CNTOVF
#define ECAP_NB_EVT (ECAP_EVT_LAST + 1)
/* Registers */
#define ECAP_TSCNT_REG 0x00
#define ECAP_CAP_REG(i) (((i) << 2) + 0x08)
#define ECAP_ECCTL_REG 0x28
#define ECAP_CAPPOL_BIT(i) BIT((i) << 1)
#define ECAP_EV_MODE_MASK GENMASK(7, 0)
#define ECAP_CAPLDEN_BIT BIT(8)
#define ECAP_CONT_ONESHT_BIT BIT(16)
#define ECAP_STOPVALUE_MASK GENMASK(18, 17)
#define ECAP_TSCNTSTP_BIT BIT(20)
#define ECAP_SYNCO_DIS_MASK GENMASK(23, 22)
#define ECAP_CAP_APWM_BIT BIT(25)
#define ECAP_ECCTL_EN_MASK (ECAP_CAPLDEN_BIT | ECAP_TSCNTSTP_BIT)
#define ECAP_ECCTL_CFG_MASK (ECAP_SYNCO_DIS_MASK | ECAP_STOPVALUE_MASK \
| ECAP_ECCTL_EN_MASK | ECAP_CAP_APWM_BIT \
| ECAP_CONT_ONESHT_BIT)
#define ECAP_ECINT_EN_FLG_REG 0x2c
#define ECAP_EVT_EN_MASK GENMASK(ECAP_NB_EVT, ECAP_NB_CEVT)
#define ECAP_EVT_FLG_BIT(i) BIT((i) + 17)
#define ECAP_ECINT_CLR_FRC_REG 0x30
#define ECAP_INT_CLR_BIT BIT(0)
#define ECAP_EVT_CLR_BIT(i) BIT((i) + 1)
#define ECAP_EVT_CLR_MASK GENMASK(ECAP_NB_EVT, 0)
#define ECAP_PID_REG 0x5c
/* ECAP signals */
#define ECAP_CLOCK_SIG 0
#define ECAP_INPUT_SIG 1
static const struct regmap_config ecap_cnt_regmap_config = {
.reg_bits = 32,
.reg_stride = 4,
.val_bits = 32,
.max_register = ECAP_PID_REG,
};
/**
* struct ecap_cnt_dev - device private data structure
* @enabled: device state
* @lock: synchronization lock to prevent I/O race conditions
* @clk: device clock
* @regmap: device register map
* @nb_ovf: number of overflows since capture start
* @pm_ctx: device context for PM operations
* @pm_ctx.ev_mode: event mode bits
* @pm_ctx.time_cntr: timestamp counter value
*/
struct ecap_cnt_dev {
bool enabled;
struct mutex lock;
struct clk *clk;
struct regmap *regmap;
atomic_t nb_ovf;
struct {
u8 ev_mode;
u32 time_cntr;
} pm_ctx;
};
static u8 ecap_cnt_capture_get_evmode(struct counter_device *counter)
{
struct ecap_cnt_dev *ecap_dev = counter_priv(counter);
unsigned int regval;
pm_runtime_get_sync(counter->parent);
regmap_read(ecap_dev->regmap, ECAP_ECCTL_REG, &regval);
pm_runtime_put_sync(counter->parent);
return regval;
}
static void ecap_cnt_capture_set_evmode(struct counter_device *counter, u8 ev_mode)
{
struct ecap_cnt_dev *ecap_dev = counter_priv(counter);
pm_runtime_get_sync(counter->parent);
regmap_update_bits(ecap_dev->regmap, ECAP_ECCTL_REG, ECAP_EV_MODE_MASK, ev_mode);
pm_runtime_put_sync(counter->parent);
}
static void ecap_cnt_capture_enable(struct counter_device *counter)
{
struct ecap_cnt_dev *ecap_dev = counter_priv(counter);
pm_runtime_get_sync(counter->parent);
/* Enable interrupts on events */
regmap_update_bits(ecap_dev->regmap, ECAP_ECINT_EN_FLG_REG,
ECAP_EVT_EN_MASK, ECAP_EVT_EN_MASK);
/* Run counter */
regmap_update_bits(ecap_dev->regmap, ECAP_ECCTL_REG, ECAP_ECCTL_CFG_MASK,
ECAP_SYNCO_DIS_MASK | ECAP_STOPVALUE_MASK | ECAP_ECCTL_EN_MASK);
}
static void ecap_cnt_capture_disable(struct counter_device *counter)
{
struct ecap_cnt_dev *ecap_dev = counter_priv(counter);
/* Stop counter */
regmap_update_bits(ecap_dev->regmap, ECAP_ECCTL_REG, ECAP_ECCTL_EN_MASK, 0);
/* Disable interrupts on events */
regmap_update_bits(ecap_dev->regmap, ECAP_ECINT_EN_FLG_REG, ECAP_EVT_EN_MASK, 0);
pm_runtime_put_sync(counter->parent);
}
static u32 ecap_cnt_count_get_val(struct counter_device *counter, unsigned int reg)
{
struct ecap_cnt_dev *ecap_dev = counter_priv(counter);
unsigned int regval;
pm_runtime_get_sync(counter->parent);
regmap_read(ecap_dev->regmap, reg, &regval);
pm_runtime_put_sync(counter->parent);
return regval;
}
static void ecap_cnt_count_set_val(struct counter_device *counter, unsigned int reg, u32 val)
{
struct ecap_cnt_dev *ecap_dev = counter_priv(counter);
pm_runtime_get_sync(counter->parent);
regmap_write(ecap_dev->regmap, reg, val);
pm_runtime_put_sync(counter->parent);
}
static int ecap_cnt_count_read(struct counter_device *counter,
struct counter_count *count, u64 *val)
{
*val = ecap_cnt_count_get_val(counter, ECAP_TSCNT_REG);
return 0;
}
static int ecap_cnt_count_write(struct counter_device *counter,
struct counter_count *count, u64 val)
{
if (val > U32_MAX)
return -ERANGE;
ecap_cnt_count_set_val(counter, ECAP_TSCNT_REG, val);
return 0;
}
static int ecap_cnt_function_read(struct counter_device *counter,
struct counter_count *count,
enum counter_function *function)
{
*function = COUNTER_FUNCTION_INCREASE;
return 0;
}
static int ecap_cnt_action_read(struct counter_device *counter,
struct counter_count *count,
struct counter_synapse *synapse,
enum counter_synapse_action *action)
{
*action = (synapse->signal->id == ECAP_CLOCK_SIG) ?
COUNTER_SYNAPSE_ACTION_RISING_EDGE :
COUNTER_SYNAPSE_ACTION_NONE;
return 0;
}
static int ecap_cnt_watch_validate(struct counter_device *counter,
const struct counter_watch *watch)
{
if (watch->channel > ECAP_CEVT_LAST)
return -EINVAL;
switch (watch->event) {
case COUNTER_EVENT_CAPTURE:
case COUNTER_EVENT_OVERFLOW:
return 0;
default:
return -EINVAL;
}
}
static int ecap_cnt_clk_get_freq(struct counter_device *counter,
struct counter_signal *signal, u64 *freq)
{
struct ecap_cnt_dev *ecap_dev = counter_priv(counter);
*freq = clk_get_rate(ecap_dev->clk);
return 0;
}
static int ecap_cnt_pol_read(struct counter_device *counter,
struct counter_signal *signal,
size_t idx, enum counter_signal_polarity *pol)
{
struct ecap_cnt_dev *ecap_dev = counter_priv(counter);
int bitval;
pm_runtime_get_sync(counter->parent);
bitval = regmap_test_bits(ecap_dev->regmap, ECAP_ECCTL_REG, ECAP_CAPPOL_BIT(idx));
pm_runtime_put_sync(counter->parent);
*pol = bitval ? COUNTER_SIGNAL_POLARITY_NEGATIVE : COUNTER_SIGNAL_POLARITY_POSITIVE;
return 0;
}
static int ecap_cnt_pol_write(struct counter_device *counter,
struct counter_signal *signal,
size_t idx, enum counter_signal_polarity pol)
{
struct ecap_cnt_dev *ecap_dev = counter_priv(counter);
pm_runtime_get_sync(counter->parent);
if (pol == COUNTER_SIGNAL_POLARITY_NEGATIVE)
regmap_set_bits(ecap_dev->regmap, ECAP_ECCTL_REG, ECAP_CAPPOL_BIT(idx));
else
regmap_clear_bits(ecap_dev->regmap, ECAP_ECCTL_REG, ECAP_CAPPOL_BIT(idx));
pm_runtime_put_sync(counter->parent);
return 0;
}
static int ecap_cnt_cap_read(struct counter_device *counter,
struct counter_count *count,
size_t idx, u64 *cap)
{
*cap = ecap_cnt_count_get_val(counter, ECAP_CAP_REG(idx));
return 0;
}
static int ecap_cnt_cap_write(struct counter_device *counter,
struct counter_count *count,
size_t idx, u64 cap)
{
if (cap > U32_MAX)
return -ERANGE;
ecap_cnt_count_set_val(counter, ECAP_CAP_REG(idx), cap);
return 0;
}
static int ecap_cnt_nb_ovf_read(struct counter_device *counter,
struct counter_count *count, u64 *val)
{
struct ecap_cnt_dev *ecap_dev = counter_priv(counter);
*val = atomic_read(&ecap_dev->nb_ovf);
return 0;
}
static int ecap_cnt_nb_ovf_write(struct counter_device *counter,
struct counter_count *count, u64 val)
{
struct ecap_cnt_dev *ecap_dev = counter_priv(counter);
if (val > U32_MAX)
return -ERANGE;
atomic_set(&ecap_dev->nb_ovf, val);
return 0;
}
static int ecap_cnt_ceiling_read(struct counter_device *counter,
struct counter_count *count, u64 *val)
{
*val = U32_MAX;
return 0;
}
static int ecap_cnt_enable_read(struct counter_device *counter,
struct counter_count *count, u8 *enable)
{
struct ecap_cnt_dev *ecap_dev = counter_priv(counter);
*enable = ecap_dev->enabled;
return 0;
}
static int ecap_cnt_enable_write(struct counter_device *counter,
struct counter_count *count, u8 enable)
{
struct ecap_cnt_dev *ecap_dev = counter_priv(counter);
mutex_lock(&ecap_dev->lock);
if (enable == ecap_dev->enabled)
goto out;
if (enable)
ecap_cnt_capture_enable(counter);
else
ecap_cnt_capture_disable(counter);
ecap_dev->enabled = enable;
out:
mutex_unlock(&ecap_dev->lock);
return 0;
}
static const struct counter_ops ecap_cnt_ops = {
.count_read = ecap_cnt_count_read,
.count_write = ecap_cnt_count_write,
.function_read = ecap_cnt_function_read,
.action_read = ecap_cnt_action_read,
.watch_validate = ecap_cnt_watch_validate,
};
static const enum counter_function ecap_cnt_functions[] = {
COUNTER_FUNCTION_INCREASE,
};
static const enum counter_synapse_action ecap_cnt_clock_actions[] = {
COUNTER_SYNAPSE_ACTION_RISING_EDGE,
};
static const enum counter_synapse_action ecap_cnt_input_actions[] = {
COUNTER_SYNAPSE_ACTION_NONE,
};
static struct counter_comp ecap_cnt_clock_ext[] = {
COUNTER_COMP_SIGNAL_U64("frequency", ecap_cnt_clk_get_freq, NULL),
};
static const enum counter_signal_polarity ecap_cnt_pol_avail[] = {
COUNTER_SIGNAL_POLARITY_POSITIVE,
COUNTER_SIGNAL_POLARITY_NEGATIVE,
};
static DEFINE_COUNTER_AVAILABLE(ecap_cnt_pol_available, ecap_cnt_pol_avail);
static DEFINE_COUNTER_ARRAY_POLARITY(ecap_cnt_pol_array, ecap_cnt_pol_available, ECAP_NB_CEVT);
static struct counter_comp ecap_cnt_signal_ext[] = {
COUNTER_COMP_ARRAY_POLARITY(ecap_cnt_pol_read, ecap_cnt_pol_write, ecap_cnt_pol_array),
};
static struct counter_signal ecap_cnt_signals[] = {
{
.id = ECAP_CLOCK_SIG,
.name = "Clock Signal",
.ext = ecap_cnt_clock_ext,
.num_ext = ARRAY_SIZE(ecap_cnt_clock_ext),
},
{
.id = ECAP_INPUT_SIG,
.name = "Input Signal",
.ext = ecap_cnt_signal_ext,
.num_ext = ARRAY_SIZE(ecap_cnt_signal_ext),
},
};
static struct counter_synapse ecap_cnt_synapses[] = {
{
.actions_list = ecap_cnt_clock_actions,
.num_actions = ARRAY_SIZE(ecap_cnt_clock_actions),
.signal = &ecap_cnt_signals[ECAP_CLOCK_SIG],
},
{
.actions_list = ecap_cnt_input_actions,
.num_actions = ARRAY_SIZE(ecap_cnt_input_actions),
.signal = &ecap_cnt_signals[ECAP_INPUT_SIG],
},
};
static DEFINE_COUNTER_ARRAY_CAPTURE(ecap_cnt_cap_array, ECAP_NB_CEVT);
static struct counter_comp ecap_cnt_count_ext[] = {
COUNTER_COMP_ARRAY_CAPTURE(ecap_cnt_cap_read, ecap_cnt_cap_write, ecap_cnt_cap_array),
COUNTER_COMP_COUNT_U64("num_overflows", ecap_cnt_nb_ovf_read, ecap_cnt_nb_ovf_write),
COUNTER_COMP_CEILING(ecap_cnt_ceiling_read, NULL),
COUNTER_COMP_ENABLE(ecap_cnt_enable_read, ecap_cnt_enable_write),
};
static struct counter_count ecap_cnt_counts[] = {
{
.name = "Timestamp Counter",
.functions_list = ecap_cnt_functions,
.num_functions = ARRAY_SIZE(ecap_cnt_functions),
.synapses = ecap_cnt_synapses,
.num_synapses = ARRAY_SIZE(ecap_cnt_synapses),
.ext = ecap_cnt_count_ext,
.num_ext = ARRAY_SIZE(ecap_cnt_count_ext),
},
};
static irqreturn_t ecap_cnt_isr(int irq, void *dev_id)
{
struct counter_device *counter_dev = dev_id;
struct ecap_cnt_dev *ecap_dev = counter_priv(counter_dev);
unsigned int clr = 0;
unsigned int flg;
int i;
regmap_read(ecap_dev->regmap, ECAP_ECINT_EN_FLG_REG, &flg);
/* Check capture events */
for (i = 0 ; i < ECAP_NB_CEVT ; i++) {
if (flg & ECAP_EVT_FLG_BIT(i)) {
counter_push_event(counter_dev, COUNTER_EVENT_CAPTURE, i);
clr |= ECAP_EVT_CLR_BIT(i);
}
}
/* Check counter overflow */
if (flg & ECAP_EVT_FLG_BIT(ECAP_CNTOVF)) {
atomic_inc(&ecap_dev->nb_ovf);
for (i = 0 ; i < ECAP_NB_CEVT ; i++)
counter_push_event(counter_dev, COUNTER_EVENT_OVERFLOW, i);
clr |= ECAP_EVT_CLR_BIT(ECAP_CNTOVF);
}
clr |= ECAP_INT_CLR_BIT;
regmap_update_bits(ecap_dev->regmap, ECAP_ECINT_CLR_FRC_REG, ECAP_EVT_CLR_MASK, clr);
return IRQ_HANDLED;
}
static void ecap_cnt_pm_disable(void *dev)
{
pm_runtime_disable(dev);
}
static int ecap_cnt_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct ecap_cnt_dev *ecap_dev;
struct counter_device *counter_dev;
void __iomem *mmio_base;
unsigned long clk_rate;
int ret;
counter_dev = devm_counter_alloc(dev, sizeof(*ecap_dev));
if (!counter_dev)
return -ENOMEM;
counter_dev->name = ECAP_DRV_NAME;
counter_dev->parent = dev;
counter_dev->ops = &ecap_cnt_ops;
counter_dev->signals = ecap_cnt_signals;
counter_dev->num_signals = ARRAY_SIZE(ecap_cnt_signals);
counter_dev->counts = ecap_cnt_counts;
counter_dev->num_counts = ARRAY_SIZE(ecap_cnt_counts);
ecap_dev = counter_priv(counter_dev);
mutex_init(&ecap_dev->lock);
ecap_dev->clk = devm_clk_get_enabled(dev, "fck");
if (IS_ERR(ecap_dev->clk))
return dev_err_probe(dev, PTR_ERR(ecap_dev->clk), "failed to get clock\n");
clk_rate = clk_get_rate(ecap_dev->clk);
if (!clk_rate) {
dev_err(dev, "failed to get clock rate\n");
return -EINVAL;
}
mmio_base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(mmio_base))
return PTR_ERR(mmio_base);
ecap_dev->regmap = devm_regmap_init_mmio(dev, mmio_base, &ecap_cnt_regmap_config);
if (IS_ERR(ecap_dev->regmap))
return dev_err_probe(dev, PTR_ERR(ecap_dev->regmap), "failed to init regmap\n");
ret = platform_get_irq(pdev, 0);
if (ret < 0)
return dev_err_probe(dev, ret, "failed to get irq\n");
ret = devm_request_irq(dev, ret, ecap_cnt_isr, 0, pdev->name, counter_dev);
if (ret)
return dev_err_probe(dev, ret, "failed to request irq\n");
platform_set_drvdata(pdev, counter_dev);
pm_runtime_enable(dev);
/* Register a cleanup callback to care for disabling PM */
ret = devm_add_action_or_reset(dev, ecap_cnt_pm_disable, dev);
if (ret)
return dev_err_probe(dev, ret, "failed to add pm disable action\n");
ret = devm_counter_add(dev, counter_dev);
if (ret)
return dev_err_probe(dev, ret, "failed to add counter\n");
return 0;
}
static int ecap_cnt_remove(struct platform_device *pdev)
{
struct counter_device *counter_dev = platform_get_drvdata(pdev);
struct ecap_cnt_dev *ecap_dev = counter_priv(counter_dev);
if (ecap_dev->enabled)
ecap_cnt_capture_disable(counter_dev);
return 0;
}
static int ecap_cnt_suspend(struct device *dev)
{
struct counter_device *counter_dev = dev_get_drvdata(dev);
struct ecap_cnt_dev *ecap_dev = counter_priv(counter_dev);
/* If eCAP is running, stop capture then save timestamp counter */
if (ecap_dev->enabled) {
/*
* Disabling capture has the following effects:
* - interrupts are disabled
* - loading of capture registers is disabled
* - timebase counter is stopped
*/
ecap_cnt_capture_disable(counter_dev);
ecap_dev->pm_ctx.time_cntr = ecap_cnt_count_get_val(counter_dev, ECAP_TSCNT_REG);
}
ecap_dev->pm_ctx.ev_mode = ecap_cnt_capture_get_evmode(counter_dev);
clk_disable(ecap_dev->clk);
return 0;
}
static int ecap_cnt_resume(struct device *dev)
{
struct counter_device *counter_dev = dev_get_drvdata(dev);
struct ecap_cnt_dev *ecap_dev = counter_priv(counter_dev);
clk_enable(ecap_dev->clk);
ecap_cnt_capture_set_evmode(counter_dev, ecap_dev->pm_ctx.ev_mode);
/* If eCAP was running, restore timestamp counter then run capture */
if (ecap_dev->enabled) {
ecap_cnt_count_set_val(counter_dev, ECAP_TSCNT_REG, ecap_dev->pm_ctx.time_cntr);
ecap_cnt_capture_enable(counter_dev);
}
return 0;
}
static DEFINE_SIMPLE_DEV_PM_OPS(ecap_cnt_pm_ops, ecap_cnt_suspend, ecap_cnt_resume);
static const struct of_device_id ecap_cnt_of_match[] = {
{ .compatible = "ti,am62-ecap-capture" },
{},
};
MODULE_DEVICE_TABLE(of, ecap_cnt_of_match);
static struct platform_driver ecap_cnt_driver = {
.probe = ecap_cnt_probe,
.remove = ecap_cnt_remove,
.driver = {
.name = "ecap-capture",
.of_match_table = ecap_cnt_of_match,
.pm = pm_sleep_ptr(&ecap_cnt_pm_ops),
},
};
module_platform_driver(ecap_cnt_driver);
MODULE_DESCRIPTION("ECAP Capture driver");
MODULE_AUTHOR("Julien Panis <jpanis@baylibre.com>");
MODULE_LICENSE("GPL");
MODULE_IMPORT_NS(COUNTER);