1750 lines
46 KiB
C
1750 lines
46 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/* Copyright (C) 2020 Marvell. */
|
|
|
|
#include <crypto/aes.h>
|
|
#include <crypto/authenc.h>
|
|
#include <crypto/cryptd.h>
|
|
#include <crypto/des.h>
|
|
#include <crypto/internal/aead.h>
|
|
#include <crypto/sha1.h>
|
|
#include <crypto/sha2.h>
|
|
#include <crypto/xts.h>
|
|
#include <crypto/gcm.h>
|
|
#include <crypto/scatterwalk.h>
|
|
#include <linux/rtnetlink.h>
|
|
#include <linux/sort.h>
|
|
#include <linux/module.h>
|
|
#include "otx2_cptvf.h"
|
|
#include "otx2_cptvf_algs.h"
|
|
#include "otx2_cpt_reqmgr.h"
|
|
|
|
/* Size of salt in AES GCM mode */
|
|
#define AES_GCM_SALT_SIZE 4
|
|
/* Size of IV in AES GCM mode */
|
|
#define AES_GCM_IV_SIZE 8
|
|
/* Size of ICV (Integrity Check Value) in AES GCM mode */
|
|
#define AES_GCM_ICV_SIZE 16
|
|
/* Offset of IV in AES GCM mode */
|
|
#define AES_GCM_IV_OFFSET 8
|
|
#define CONTROL_WORD_LEN 8
|
|
#define KEY2_OFFSET 48
|
|
#define DMA_MODE_FLAG(dma_mode) \
|
|
(((dma_mode) == OTX2_CPT_DMA_MODE_SG) ? (1 << 7) : 0)
|
|
|
|
/* Truncated SHA digest size */
|
|
#define SHA1_TRUNC_DIGEST_SIZE 12
|
|
#define SHA256_TRUNC_DIGEST_SIZE 16
|
|
#define SHA384_TRUNC_DIGEST_SIZE 24
|
|
#define SHA512_TRUNC_DIGEST_SIZE 32
|
|
|
|
static DEFINE_MUTEX(mutex);
|
|
static int is_crypto_registered;
|
|
|
|
struct cpt_device_desc {
|
|
struct pci_dev *dev;
|
|
int num_queues;
|
|
};
|
|
|
|
struct cpt_device_table {
|
|
atomic_t count;
|
|
struct cpt_device_desc desc[OTX2_CPT_MAX_LFS_NUM];
|
|
};
|
|
|
|
static struct cpt_device_table se_devices = {
|
|
.count = ATOMIC_INIT(0)
|
|
};
|
|
|
|
static inline int get_se_device(struct pci_dev **pdev, int *cpu_num)
|
|
{
|
|
int count;
|
|
|
|
count = atomic_read(&se_devices.count);
|
|
if (count < 1)
|
|
return -ENODEV;
|
|
|
|
*cpu_num = get_cpu();
|
|
/*
|
|
* On OcteonTX2 platform CPT instruction queue is bound to each
|
|
* local function LF, in turn LFs can be attached to PF
|
|
* or VF therefore we always use first device. We get maximum
|
|
* performance if one CPT queue is available for each cpu
|
|
* otherwise CPT queues need to be shared between cpus.
|
|
*/
|
|
if (*cpu_num >= se_devices.desc[0].num_queues)
|
|
*cpu_num %= se_devices.desc[0].num_queues;
|
|
*pdev = se_devices.desc[0].dev;
|
|
|
|
put_cpu();
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline int validate_hmac_cipher_null(struct otx2_cpt_req_info *cpt_req)
|
|
{
|
|
struct otx2_cpt_req_ctx *rctx;
|
|
struct aead_request *req;
|
|
struct crypto_aead *tfm;
|
|
|
|
req = container_of(cpt_req->areq, struct aead_request, base);
|
|
tfm = crypto_aead_reqtfm(req);
|
|
rctx = aead_request_ctx_dma(req);
|
|
if (memcmp(rctx->fctx.hmac.s.hmac_calc,
|
|
rctx->fctx.hmac.s.hmac_recv,
|
|
crypto_aead_authsize(tfm)) != 0)
|
|
return -EBADMSG;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void otx2_cpt_aead_callback(int status, void *arg1, void *arg2)
|
|
{
|
|
struct otx2_cpt_inst_info *inst_info = arg2;
|
|
struct crypto_async_request *areq = arg1;
|
|
struct otx2_cpt_req_info *cpt_req;
|
|
struct pci_dev *pdev;
|
|
|
|
if (inst_info) {
|
|
cpt_req = inst_info->req;
|
|
if (!status) {
|
|
/*
|
|
* When selected cipher is NULL we need to manually
|
|
* verify whether calculated hmac value matches
|
|
* received hmac value
|
|
*/
|
|
if (cpt_req->req_type ==
|
|
OTX2_CPT_AEAD_ENC_DEC_NULL_REQ &&
|
|
!cpt_req->is_enc)
|
|
status = validate_hmac_cipher_null(cpt_req);
|
|
}
|
|
pdev = inst_info->pdev;
|
|
otx2_cpt_info_destroy(pdev, inst_info);
|
|
}
|
|
if (areq)
|
|
crypto_request_complete(areq, status);
|
|
}
|
|
|
|
static void output_iv_copyback(struct crypto_async_request *areq)
|
|
{
|
|
struct otx2_cpt_req_info *req_info;
|
|
struct otx2_cpt_req_ctx *rctx;
|
|
struct skcipher_request *sreq;
|
|
struct crypto_skcipher *stfm;
|
|
struct otx2_cpt_enc_ctx *ctx;
|
|
u32 start, ivsize;
|
|
|
|
sreq = container_of(areq, struct skcipher_request, base);
|
|
stfm = crypto_skcipher_reqtfm(sreq);
|
|
ctx = crypto_skcipher_ctx(stfm);
|
|
if (ctx->cipher_type == OTX2_CPT_AES_CBC ||
|
|
ctx->cipher_type == OTX2_CPT_DES3_CBC) {
|
|
rctx = skcipher_request_ctx_dma(sreq);
|
|
req_info = &rctx->cpt_req;
|
|
ivsize = crypto_skcipher_ivsize(stfm);
|
|
start = sreq->cryptlen - ivsize;
|
|
|
|
if (req_info->is_enc) {
|
|
scatterwalk_map_and_copy(sreq->iv, sreq->dst, start,
|
|
ivsize, 0);
|
|
} else {
|
|
if (sreq->src != sreq->dst) {
|
|
scatterwalk_map_and_copy(sreq->iv, sreq->src,
|
|
start, ivsize, 0);
|
|
} else {
|
|
memcpy(sreq->iv, req_info->iv_out, ivsize);
|
|
kfree(req_info->iv_out);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void otx2_cpt_skcipher_callback(int status, void *arg1, void *arg2)
|
|
{
|
|
struct otx2_cpt_inst_info *inst_info = arg2;
|
|
struct crypto_async_request *areq = arg1;
|
|
struct pci_dev *pdev;
|
|
|
|
if (areq) {
|
|
if (!status)
|
|
output_iv_copyback(areq);
|
|
if (inst_info) {
|
|
pdev = inst_info->pdev;
|
|
otx2_cpt_info_destroy(pdev, inst_info);
|
|
}
|
|
crypto_request_complete(areq, status);
|
|
}
|
|
}
|
|
|
|
static inline void update_input_data(struct otx2_cpt_req_info *req_info,
|
|
struct scatterlist *inp_sg,
|
|
u32 nbytes, u32 *argcnt)
|
|
{
|
|
req_info->req.dlen += nbytes;
|
|
|
|
while (nbytes) {
|
|
u32 len = (nbytes < inp_sg->length) ? nbytes : inp_sg->length;
|
|
u8 *ptr = sg_virt(inp_sg);
|
|
|
|
req_info->in[*argcnt].vptr = (void *)ptr;
|
|
req_info->in[*argcnt].size = len;
|
|
nbytes -= len;
|
|
++(*argcnt);
|
|
inp_sg = sg_next(inp_sg);
|
|
}
|
|
}
|
|
|
|
static inline void update_output_data(struct otx2_cpt_req_info *req_info,
|
|
struct scatterlist *outp_sg,
|
|
u32 offset, u32 nbytes, u32 *argcnt)
|
|
{
|
|
u32 len, sg_len;
|
|
u8 *ptr;
|
|
|
|
req_info->rlen += nbytes;
|
|
|
|
while (nbytes) {
|
|
sg_len = outp_sg->length - offset;
|
|
len = (nbytes < sg_len) ? nbytes : sg_len;
|
|
ptr = sg_virt(outp_sg);
|
|
|
|
req_info->out[*argcnt].vptr = (void *) (ptr + offset);
|
|
req_info->out[*argcnt].size = len;
|
|
nbytes -= len;
|
|
++(*argcnt);
|
|
offset = 0;
|
|
outp_sg = sg_next(outp_sg);
|
|
}
|
|
}
|
|
|
|
static inline int create_ctx_hdr(struct skcipher_request *req, u32 enc,
|
|
u32 *argcnt)
|
|
{
|
|
struct crypto_skcipher *stfm = crypto_skcipher_reqtfm(req);
|
|
struct otx2_cpt_req_ctx *rctx = skcipher_request_ctx_dma(req);
|
|
struct otx2_cpt_enc_ctx *ctx = crypto_skcipher_ctx(stfm);
|
|
struct otx2_cpt_req_info *req_info = &rctx->cpt_req;
|
|
struct otx2_cpt_fc_ctx *fctx = &rctx->fctx;
|
|
int ivsize = crypto_skcipher_ivsize(stfm);
|
|
u32 start = req->cryptlen - ivsize;
|
|
gfp_t flags;
|
|
|
|
flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
|
|
GFP_KERNEL : GFP_ATOMIC;
|
|
req_info->ctrl.s.dma_mode = OTX2_CPT_DMA_MODE_SG;
|
|
req_info->ctrl.s.se_req = 1;
|
|
|
|
req_info->req.opcode.s.major = OTX2_CPT_MAJOR_OP_FC |
|
|
DMA_MODE_FLAG(OTX2_CPT_DMA_MODE_SG);
|
|
if (enc) {
|
|
req_info->req.opcode.s.minor = 2;
|
|
} else {
|
|
req_info->req.opcode.s.minor = 3;
|
|
if ((ctx->cipher_type == OTX2_CPT_AES_CBC ||
|
|
ctx->cipher_type == OTX2_CPT_DES3_CBC) &&
|
|
req->src == req->dst) {
|
|
req_info->iv_out = kmalloc(ivsize, flags);
|
|
if (!req_info->iv_out)
|
|
return -ENOMEM;
|
|
|
|
scatterwalk_map_and_copy(req_info->iv_out, req->src,
|
|
start, ivsize, 0);
|
|
}
|
|
}
|
|
/* Encryption data length */
|
|
req_info->req.param1 = req->cryptlen;
|
|
/* Authentication data length */
|
|
req_info->req.param2 = 0;
|
|
|
|
fctx->enc.enc_ctrl.e.enc_cipher = ctx->cipher_type;
|
|
fctx->enc.enc_ctrl.e.aes_key = ctx->key_type;
|
|
fctx->enc.enc_ctrl.e.iv_source = OTX2_CPT_FROM_CPTR;
|
|
|
|
if (ctx->cipher_type == OTX2_CPT_AES_XTS)
|
|
memcpy(fctx->enc.encr_key, ctx->enc_key, ctx->key_len * 2);
|
|
else
|
|
memcpy(fctx->enc.encr_key, ctx->enc_key, ctx->key_len);
|
|
|
|
memcpy(fctx->enc.encr_iv, req->iv, crypto_skcipher_ivsize(stfm));
|
|
|
|
cpu_to_be64s(&fctx->enc.enc_ctrl.u);
|
|
|
|
/*
|
|
* Storing Packet Data Information in offset
|
|
* Control Word First 8 bytes
|
|
*/
|
|
req_info->in[*argcnt].vptr = (u8 *)&rctx->ctrl_word;
|
|
req_info->in[*argcnt].size = CONTROL_WORD_LEN;
|
|
req_info->req.dlen += CONTROL_WORD_LEN;
|
|
++(*argcnt);
|
|
|
|
req_info->in[*argcnt].vptr = (u8 *)fctx;
|
|
req_info->in[*argcnt].size = sizeof(struct otx2_cpt_fc_ctx);
|
|
req_info->req.dlen += sizeof(struct otx2_cpt_fc_ctx);
|
|
|
|
++(*argcnt);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline int create_input_list(struct skcipher_request *req, u32 enc,
|
|
u32 enc_iv_len)
|
|
{
|
|
struct otx2_cpt_req_ctx *rctx = skcipher_request_ctx_dma(req);
|
|
struct otx2_cpt_req_info *req_info = &rctx->cpt_req;
|
|
u32 argcnt = 0;
|
|
int ret;
|
|
|
|
ret = create_ctx_hdr(req, enc, &argcnt);
|
|
if (ret)
|
|
return ret;
|
|
|
|
update_input_data(req_info, req->src, req->cryptlen, &argcnt);
|
|
req_info->in_cnt = argcnt;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline void create_output_list(struct skcipher_request *req,
|
|
u32 enc_iv_len)
|
|
{
|
|
struct otx2_cpt_req_ctx *rctx = skcipher_request_ctx_dma(req);
|
|
struct otx2_cpt_req_info *req_info = &rctx->cpt_req;
|
|
u32 argcnt = 0;
|
|
|
|
/*
|
|
* OUTPUT Buffer Processing
|
|
* AES encryption/decryption output would be
|
|
* received in the following format
|
|
*
|
|
* ------IV--------|------ENCRYPTED/DECRYPTED DATA-----|
|
|
* [ 16 Bytes/ [ Request Enc/Dec/ DATA Len AES CBC ]
|
|
*/
|
|
update_output_data(req_info, req->dst, 0, req->cryptlen, &argcnt);
|
|
req_info->out_cnt = argcnt;
|
|
}
|
|
|
|
static int skcipher_do_fallback(struct skcipher_request *req, bool is_enc)
|
|
{
|
|
struct crypto_skcipher *stfm = crypto_skcipher_reqtfm(req);
|
|
struct otx2_cpt_req_ctx *rctx = skcipher_request_ctx_dma(req);
|
|
struct otx2_cpt_enc_ctx *ctx = crypto_skcipher_ctx(stfm);
|
|
int ret;
|
|
|
|
if (ctx->fbk_cipher) {
|
|
skcipher_request_set_tfm(&rctx->sk_fbk_req, ctx->fbk_cipher);
|
|
skcipher_request_set_callback(&rctx->sk_fbk_req,
|
|
req->base.flags,
|
|
req->base.complete,
|
|
req->base.data);
|
|
skcipher_request_set_crypt(&rctx->sk_fbk_req, req->src,
|
|
req->dst, req->cryptlen, req->iv);
|
|
ret = is_enc ? crypto_skcipher_encrypt(&rctx->sk_fbk_req) :
|
|
crypto_skcipher_decrypt(&rctx->sk_fbk_req);
|
|
} else {
|
|
ret = -EINVAL;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static inline int cpt_enc_dec(struct skcipher_request *req, u32 enc)
|
|
{
|
|
struct crypto_skcipher *stfm = crypto_skcipher_reqtfm(req);
|
|
struct otx2_cpt_req_ctx *rctx = skcipher_request_ctx_dma(req);
|
|
struct otx2_cpt_enc_ctx *ctx = crypto_skcipher_ctx(stfm);
|
|
struct otx2_cpt_req_info *req_info = &rctx->cpt_req;
|
|
u32 enc_iv_len = crypto_skcipher_ivsize(stfm);
|
|
struct pci_dev *pdev;
|
|
int status, cpu_num;
|
|
|
|
if (req->cryptlen == 0)
|
|
return 0;
|
|
|
|
if (!IS_ALIGNED(req->cryptlen, ctx->enc_align_len))
|
|
return -EINVAL;
|
|
|
|
if (req->cryptlen > OTX2_CPT_MAX_REQ_SIZE)
|
|
return skcipher_do_fallback(req, enc);
|
|
|
|
/* Clear control words */
|
|
rctx->ctrl_word.flags = 0;
|
|
rctx->fctx.enc.enc_ctrl.u = 0;
|
|
|
|
status = create_input_list(req, enc, enc_iv_len);
|
|
if (status)
|
|
return status;
|
|
create_output_list(req, enc_iv_len);
|
|
|
|
status = get_se_device(&pdev, &cpu_num);
|
|
if (status)
|
|
return status;
|
|
|
|
req_info->callback = otx2_cpt_skcipher_callback;
|
|
req_info->areq = &req->base;
|
|
req_info->req_type = OTX2_CPT_ENC_DEC_REQ;
|
|
req_info->is_enc = enc;
|
|
req_info->is_trunc_hmac = false;
|
|
req_info->ctrl.s.grp = otx2_cpt_get_kcrypto_eng_grp_num(pdev);
|
|
|
|
/*
|
|
* We perform an asynchronous send and once
|
|
* the request is completed the driver would
|
|
* intimate through registered call back functions
|
|
*/
|
|
status = otx2_cpt_do_request(pdev, req_info, cpu_num);
|
|
|
|
return status;
|
|
}
|
|
|
|
static int otx2_cpt_skcipher_encrypt(struct skcipher_request *req)
|
|
{
|
|
return cpt_enc_dec(req, true);
|
|
}
|
|
|
|
static int otx2_cpt_skcipher_decrypt(struct skcipher_request *req)
|
|
{
|
|
return cpt_enc_dec(req, false);
|
|
}
|
|
|
|
static int otx2_cpt_skcipher_xts_setkey(struct crypto_skcipher *tfm,
|
|
const u8 *key, u32 keylen)
|
|
{
|
|
struct otx2_cpt_enc_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
const u8 *key2 = key + (keylen / 2);
|
|
const u8 *key1 = key;
|
|
int ret;
|
|
|
|
ret = xts_verify_key(tfm, key, keylen);
|
|
if (ret)
|
|
return ret;
|
|
ctx->key_len = keylen;
|
|
ctx->enc_align_len = 1;
|
|
memcpy(ctx->enc_key, key1, keylen / 2);
|
|
memcpy(ctx->enc_key + KEY2_OFFSET, key2, keylen / 2);
|
|
ctx->cipher_type = OTX2_CPT_AES_XTS;
|
|
switch (ctx->key_len) {
|
|
case 2 * AES_KEYSIZE_128:
|
|
ctx->key_type = OTX2_CPT_AES_128_BIT;
|
|
break;
|
|
case 2 * AES_KEYSIZE_192:
|
|
ctx->key_type = OTX2_CPT_AES_192_BIT;
|
|
break;
|
|
case 2 * AES_KEYSIZE_256:
|
|
ctx->key_type = OTX2_CPT_AES_256_BIT;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
return crypto_skcipher_setkey(ctx->fbk_cipher, key, keylen);
|
|
}
|
|
|
|
static int cpt_des_setkey(struct crypto_skcipher *tfm, const u8 *key,
|
|
u32 keylen, u8 cipher_type)
|
|
{
|
|
struct otx2_cpt_enc_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
|
|
if (keylen != DES3_EDE_KEY_SIZE)
|
|
return -EINVAL;
|
|
|
|
ctx->key_len = keylen;
|
|
ctx->cipher_type = cipher_type;
|
|
ctx->enc_align_len = 8;
|
|
|
|
memcpy(ctx->enc_key, key, keylen);
|
|
|
|
return crypto_skcipher_setkey(ctx->fbk_cipher, key, keylen);
|
|
}
|
|
|
|
static int cpt_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
|
|
u32 keylen, u8 cipher_type)
|
|
{
|
|
struct otx2_cpt_enc_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
|
|
switch (keylen) {
|
|
case AES_KEYSIZE_128:
|
|
ctx->key_type = OTX2_CPT_AES_128_BIT;
|
|
break;
|
|
case AES_KEYSIZE_192:
|
|
ctx->key_type = OTX2_CPT_AES_192_BIT;
|
|
break;
|
|
case AES_KEYSIZE_256:
|
|
ctx->key_type = OTX2_CPT_AES_256_BIT;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
if (cipher_type == OTX2_CPT_AES_CBC || cipher_type == OTX2_CPT_AES_ECB)
|
|
ctx->enc_align_len = 16;
|
|
else
|
|
ctx->enc_align_len = 1;
|
|
|
|
ctx->key_len = keylen;
|
|
ctx->cipher_type = cipher_type;
|
|
|
|
memcpy(ctx->enc_key, key, keylen);
|
|
|
|
return crypto_skcipher_setkey(ctx->fbk_cipher, key, keylen);
|
|
}
|
|
|
|
static int otx2_cpt_skcipher_cbc_aes_setkey(struct crypto_skcipher *tfm,
|
|
const u8 *key, u32 keylen)
|
|
{
|
|
return cpt_aes_setkey(tfm, key, keylen, OTX2_CPT_AES_CBC);
|
|
}
|
|
|
|
static int otx2_cpt_skcipher_ecb_aes_setkey(struct crypto_skcipher *tfm,
|
|
const u8 *key, u32 keylen)
|
|
{
|
|
return cpt_aes_setkey(tfm, key, keylen, OTX2_CPT_AES_ECB);
|
|
}
|
|
|
|
static int otx2_cpt_skcipher_cbc_des3_setkey(struct crypto_skcipher *tfm,
|
|
const u8 *key, u32 keylen)
|
|
{
|
|
return cpt_des_setkey(tfm, key, keylen, OTX2_CPT_DES3_CBC);
|
|
}
|
|
|
|
static int otx2_cpt_skcipher_ecb_des3_setkey(struct crypto_skcipher *tfm,
|
|
const u8 *key, u32 keylen)
|
|
{
|
|
return cpt_des_setkey(tfm, key, keylen, OTX2_CPT_DES3_ECB);
|
|
}
|
|
|
|
static int cpt_skcipher_fallback_init(struct otx2_cpt_enc_ctx *ctx,
|
|
struct crypto_alg *alg)
|
|
{
|
|
if (alg->cra_flags & CRYPTO_ALG_NEED_FALLBACK) {
|
|
ctx->fbk_cipher =
|
|
crypto_alloc_skcipher(alg->cra_name, 0,
|
|
CRYPTO_ALG_ASYNC |
|
|
CRYPTO_ALG_NEED_FALLBACK);
|
|
if (IS_ERR(ctx->fbk_cipher)) {
|
|
pr_err("%s() failed to allocate fallback for %s\n",
|
|
__func__, alg->cra_name);
|
|
return PTR_ERR(ctx->fbk_cipher);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int otx2_cpt_enc_dec_init(struct crypto_skcipher *stfm)
|
|
{
|
|
struct otx2_cpt_enc_ctx *ctx = crypto_skcipher_ctx(stfm);
|
|
struct crypto_tfm *tfm = crypto_skcipher_tfm(stfm);
|
|
struct crypto_alg *alg = tfm->__crt_alg;
|
|
|
|
memset(ctx, 0, sizeof(*ctx));
|
|
/*
|
|
* Additional memory for skcipher_request is
|
|
* allocated since the cryptd daemon uses
|
|
* this memory for request_ctx information
|
|
*/
|
|
crypto_skcipher_set_reqsize_dma(
|
|
stfm, sizeof(struct otx2_cpt_req_ctx) +
|
|
sizeof(struct skcipher_request));
|
|
|
|
return cpt_skcipher_fallback_init(ctx, alg);
|
|
}
|
|
|
|
static void otx2_cpt_skcipher_exit(struct crypto_skcipher *tfm)
|
|
{
|
|
struct otx2_cpt_enc_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
|
|
if (ctx->fbk_cipher) {
|
|
crypto_free_skcipher(ctx->fbk_cipher);
|
|
ctx->fbk_cipher = NULL;
|
|
}
|
|
}
|
|
|
|
static int cpt_aead_fallback_init(struct otx2_cpt_aead_ctx *ctx,
|
|
struct crypto_alg *alg)
|
|
{
|
|
if (alg->cra_flags & CRYPTO_ALG_NEED_FALLBACK) {
|
|
ctx->fbk_cipher =
|
|
crypto_alloc_aead(alg->cra_name, 0,
|
|
CRYPTO_ALG_ASYNC |
|
|
CRYPTO_ALG_NEED_FALLBACK);
|
|
if (IS_ERR(ctx->fbk_cipher)) {
|
|
pr_err("%s() failed to allocate fallback for %s\n",
|
|
__func__, alg->cra_name);
|
|
return PTR_ERR(ctx->fbk_cipher);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int cpt_aead_init(struct crypto_aead *atfm, u8 cipher_type, u8 mac_type)
|
|
{
|
|
struct otx2_cpt_aead_ctx *ctx = crypto_aead_ctx_dma(atfm);
|
|
struct crypto_tfm *tfm = crypto_aead_tfm(atfm);
|
|
struct crypto_alg *alg = tfm->__crt_alg;
|
|
|
|
ctx->cipher_type = cipher_type;
|
|
ctx->mac_type = mac_type;
|
|
|
|
/*
|
|
* When selected cipher is NULL we use HMAC opcode instead of
|
|
* FLEXICRYPTO opcode therefore we don't need to use HASH algorithms
|
|
* for calculating ipad and opad
|
|
*/
|
|
if (ctx->cipher_type != OTX2_CPT_CIPHER_NULL) {
|
|
switch (ctx->mac_type) {
|
|
case OTX2_CPT_SHA1:
|
|
ctx->hashalg = crypto_alloc_shash("sha1", 0,
|
|
CRYPTO_ALG_ASYNC);
|
|
if (IS_ERR(ctx->hashalg))
|
|
return PTR_ERR(ctx->hashalg);
|
|
break;
|
|
|
|
case OTX2_CPT_SHA256:
|
|
ctx->hashalg = crypto_alloc_shash("sha256", 0,
|
|
CRYPTO_ALG_ASYNC);
|
|
if (IS_ERR(ctx->hashalg))
|
|
return PTR_ERR(ctx->hashalg);
|
|
break;
|
|
|
|
case OTX2_CPT_SHA384:
|
|
ctx->hashalg = crypto_alloc_shash("sha384", 0,
|
|
CRYPTO_ALG_ASYNC);
|
|
if (IS_ERR(ctx->hashalg))
|
|
return PTR_ERR(ctx->hashalg);
|
|
break;
|
|
|
|
case OTX2_CPT_SHA512:
|
|
ctx->hashalg = crypto_alloc_shash("sha512", 0,
|
|
CRYPTO_ALG_ASYNC);
|
|
if (IS_ERR(ctx->hashalg))
|
|
return PTR_ERR(ctx->hashalg);
|
|
break;
|
|
}
|
|
}
|
|
switch (ctx->cipher_type) {
|
|
case OTX2_CPT_AES_CBC:
|
|
case OTX2_CPT_AES_ECB:
|
|
ctx->enc_align_len = 16;
|
|
break;
|
|
case OTX2_CPT_DES3_CBC:
|
|
case OTX2_CPT_DES3_ECB:
|
|
ctx->enc_align_len = 8;
|
|
break;
|
|
case OTX2_CPT_AES_GCM:
|
|
case OTX2_CPT_CIPHER_NULL:
|
|
ctx->enc_align_len = 1;
|
|
break;
|
|
}
|
|
crypto_aead_set_reqsize_dma(atfm, sizeof(struct otx2_cpt_req_ctx));
|
|
|
|
return cpt_aead_fallback_init(ctx, alg);
|
|
}
|
|
|
|
static int otx2_cpt_aead_cbc_aes_sha1_init(struct crypto_aead *tfm)
|
|
{
|
|
return cpt_aead_init(tfm, OTX2_CPT_AES_CBC, OTX2_CPT_SHA1);
|
|
}
|
|
|
|
static int otx2_cpt_aead_cbc_aes_sha256_init(struct crypto_aead *tfm)
|
|
{
|
|
return cpt_aead_init(tfm, OTX2_CPT_AES_CBC, OTX2_CPT_SHA256);
|
|
}
|
|
|
|
static int otx2_cpt_aead_cbc_aes_sha384_init(struct crypto_aead *tfm)
|
|
{
|
|
return cpt_aead_init(tfm, OTX2_CPT_AES_CBC, OTX2_CPT_SHA384);
|
|
}
|
|
|
|
static int otx2_cpt_aead_cbc_aes_sha512_init(struct crypto_aead *tfm)
|
|
{
|
|
return cpt_aead_init(tfm, OTX2_CPT_AES_CBC, OTX2_CPT_SHA512);
|
|
}
|
|
|
|
static int otx2_cpt_aead_ecb_null_sha1_init(struct crypto_aead *tfm)
|
|
{
|
|
return cpt_aead_init(tfm, OTX2_CPT_CIPHER_NULL, OTX2_CPT_SHA1);
|
|
}
|
|
|
|
static int otx2_cpt_aead_ecb_null_sha256_init(struct crypto_aead *tfm)
|
|
{
|
|
return cpt_aead_init(tfm, OTX2_CPT_CIPHER_NULL, OTX2_CPT_SHA256);
|
|
}
|
|
|
|
static int otx2_cpt_aead_ecb_null_sha384_init(struct crypto_aead *tfm)
|
|
{
|
|
return cpt_aead_init(tfm, OTX2_CPT_CIPHER_NULL, OTX2_CPT_SHA384);
|
|
}
|
|
|
|
static int otx2_cpt_aead_ecb_null_sha512_init(struct crypto_aead *tfm)
|
|
{
|
|
return cpt_aead_init(tfm, OTX2_CPT_CIPHER_NULL, OTX2_CPT_SHA512);
|
|
}
|
|
|
|
static int otx2_cpt_aead_gcm_aes_init(struct crypto_aead *tfm)
|
|
{
|
|
return cpt_aead_init(tfm, OTX2_CPT_AES_GCM, OTX2_CPT_MAC_NULL);
|
|
}
|
|
|
|
static void otx2_cpt_aead_exit(struct crypto_aead *tfm)
|
|
{
|
|
struct otx2_cpt_aead_ctx *ctx = crypto_aead_ctx_dma(tfm);
|
|
|
|
kfree(ctx->ipad);
|
|
kfree(ctx->opad);
|
|
if (ctx->hashalg)
|
|
crypto_free_shash(ctx->hashalg);
|
|
kfree(ctx->sdesc);
|
|
|
|
if (ctx->fbk_cipher) {
|
|
crypto_free_aead(ctx->fbk_cipher);
|
|
ctx->fbk_cipher = NULL;
|
|
}
|
|
}
|
|
|
|
static int otx2_cpt_aead_gcm_set_authsize(struct crypto_aead *tfm,
|
|
unsigned int authsize)
|
|
{
|
|
struct otx2_cpt_aead_ctx *ctx = crypto_aead_ctx_dma(tfm);
|
|
|
|
if (crypto_rfc4106_check_authsize(authsize))
|
|
return -EINVAL;
|
|
|
|
tfm->authsize = authsize;
|
|
/* Set authsize for fallback case */
|
|
if (ctx->fbk_cipher)
|
|
ctx->fbk_cipher->authsize = authsize;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int otx2_cpt_aead_set_authsize(struct crypto_aead *tfm,
|
|
unsigned int authsize)
|
|
{
|
|
tfm->authsize = authsize;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int otx2_cpt_aead_null_set_authsize(struct crypto_aead *tfm,
|
|
unsigned int authsize)
|
|
{
|
|
struct otx2_cpt_aead_ctx *ctx = crypto_aead_ctx_dma(tfm);
|
|
|
|
ctx->is_trunc_hmac = true;
|
|
tfm->authsize = authsize;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct otx2_cpt_sdesc *alloc_sdesc(struct crypto_shash *alg)
|
|
{
|
|
struct otx2_cpt_sdesc *sdesc;
|
|
int size;
|
|
|
|
size = sizeof(struct shash_desc) + crypto_shash_descsize(alg);
|
|
sdesc = kmalloc(size, GFP_KERNEL);
|
|
if (!sdesc)
|
|
return NULL;
|
|
|
|
sdesc->shash.tfm = alg;
|
|
|
|
return sdesc;
|
|
}
|
|
|
|
static inline void swap_data32(void *buf, u32 len)
|
|
{
|
|
cpu_to_be32_array(buf, buf, len / 4);
|
|
}
|
|
|
|
static inline void swap_data64(void *buf, u32 len)
|
|
{
|
|
u64 *src = buf;
|
|
int i = 0;
|
|
|
|
for (i = 0 ; i < len / 8; i++, src++)
|
|
cpu_to_be64s(src);
|
|
}
|
|
|
|
static int copy_pad(u8 mac_type, u8 *out_pad, u8 *in_pad)
|
|
{
|
|
struct sha512_state *sha512;
|
|
struct sha256_state *sha256;
|
|
struct sha1_state *sha1;
|
|
|
|
switch (mac_type) {
|
|
case OTX2_CPT_SHA1:
|
|
sha1 = (struct sha1_state *) in_pad;
|
|
swap_data32(sha1->state, SHA1_DIGEST_SIZE);
|
|
memcpy(out_pad, &sha1->state, SHA1_DIGEST_SIZE);
|
|
break;
|
|
|
|
case OTX2_CPT_SHA256:
|
|
sha256 = (struct sha256_state *) in_pad;
|
|
swap_data32(sha256->state, SHA256_DIGEST_SIZE);
|
|
memcpy(out_pad, &sha256->state, SHA256_DIGEST_SIZE);
|
|
break;
|
|
|
|
case OTX2_CPT_SHA384:
|
|
case OTX2_CPT_SHA512:
|
|
sha512 = (struct sha512_state *) in_pad;
|
|
swap_data64(sha512->state, SHA512_DIGEST_SIZE);
|
|
memcpy(out_pad, &sha512->state, SHA512_DIGEST_SIZE);
|
|
break;
|
|
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int aead_hmac_init(struct crypto_aead *cipher)
|
|
{
|
|
struct otx2_cpt_aead_ctx *ctx = crypto_aead_ctx_dma(cipher);
|
|
int state_size = crypto_shash_statesize(ctx->hashalg);
|
|
int ds = crypto_shash_digestsize(ctx->hashalg);
|
|
int bs = crypto_shash_blocksize(ctx->hashalg);
|
|
int authkeylen = ctx->auth_key_len;
|
|
u8 *ipad = NULL, *opad = NULL;
|
|
int ret = 0, icount = 0;
|
|
|
|
ctx->sdesc = alloc_sdesc(ctx->hashalg);
|
|
if (!ctx->sdesc)
|
|
return -ENOMEM;
|
|
|
|
ctx->ipad = kzalloc(bs, GFP_KERNEL);
|
|
if (!ctx->ipad) {
|
|
ret = -ENOMEM;
|
|
goto calc_fail;
|
|
}
|
|
|
|
ctx->opad = kzalloc(bs, GFP_KERNEL);
|
|
if (!ctx->opad) {
|
|
ret = -ENOMEM;
|
|
goto calc_fail;
|
|
}
|
|
|
|
ipad = kzalloc(state_size, GFP_KERNEL);
|
|
if (!ipad) {
|
|
ret = -ENOMEM;
|
|
goto calc_fail;
|
|
}
|
|
|
|
opad = kzalloc(state_size, GFP_KERNEL);
|
|
if (!opad) {
|
|
ret = -ENOMEM;
|
|
goto calc_fail;
|
|
}
|
|
|
|
if (authkeylen > bs) {
|
|
ret = crypto_shash_digest(&ctx->sdesc->shash, ctx->key,
|
|
authkeylen, ipad);
|
|
if (ret)
|
|
goto calc_fail;
|
|
|
|
authkeylen = ds;
|
|
} else {
|
|
memcpy(ipad, ctx->key, authkeylen);
|
|
}
|
|
|
|
memset(ipad + authkeylen, 0, bs - authkeylen);
|
|
memcpy(opad, ipad, bs);
|
|
|
|
for (icount = 0; icount < bs; icount++) {
|
|
ipad[icount] ^= 0x36;
|
|
opad[icount] ^= 0x5c;
|
|
}
|
|
|
|
/*
|
|
* Partial Hash calculated from the software
|
|
* algorithm is retrieved for IPAD & OPAD
|
|
*/
|
|
|
|
/* IPAD Calculation */
|
|
crypto_shash_init(&ctx->sdesc->shash);
|
|
crypto_shash_update(&ctx->sdesc->shash, ipad, bs);
|
|
crypto_shash_export(&ctx->sdesc->shash, ipad);
|
|
ret = copy_pad(ctx->mac_type, ctx->ipad, ipad);
|
|
if (ret)
|
|
goto calc_fail;
|
|
|
|
/* OPAD Calculation */
|
|
crypto_shash_init(&ctx->sdesc->shash);
|
|
crypto_shash_update(&ctx->sdesc->shash, opad, bs);
|
|
crypto_shash_export(&ctx->sdesc->shash, opad);
|
|
ret = copy_pad(ctx->mac_type, ctx->opad, opad);
|
|
if (ret)
|
|
goto calc_fail;
|
|
|
|
kfree(ipad);
|
|
kfree(opad);
|
|
|
|
return 0;
|
|
|
|
calc_fail:
|
|
kfree(ctx->ipad);
|
|
ctx->ipad = NULL;
|
|
kfree(ctx->opad);
|
|
ctx->opad = NULL;
|
|
kfree(ipad);
|
|
kfree(opad);
|
|
kfree(ctx->sdesc);
|
|
ctx->sdesc = NULL;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int otx2_cpt_aead_cbc_aes_sha_setkey(struct crypto_aead *cipher,
|
|
const unsigned char *key,
|
|
unsigned int keylen)
|
|
{
|
|
struct otx2_cpt_aead_ctx *ctx = crypto_aead_ctx_dma(cipher);
|
|
struct crypto_authenc_key_param *param;
|
|
int enckeylen = 0, authkeylen = 0;
|
|
struct rtattr *rta = (void *)key;
|
|
|
|
if (!RTA_OK(rta, keylen))
|
|
return -EINVAL;
|
|
|
|
if (rta->rta_type != CRYPTO_AUTHENC_KEYA_PARAM)
|
|
return -EINVAL;
|
|
|
|
if (RTA_PAYLOAD(rta) < sizeof(*param))
|
|
return -EINVAL;
|
|
|
|
param = RTA_DATA(rta);
|
|
enckeylen = be32_to_cpu(param->enckeylen);
|
|
key += RTA_ALIGN(rta->rta_len);
|
|
keylen -= RTA_ALIGN(rta->rta_len);
|
|
if (keylen < enckeylen)
|
|
return -EINVAL;
|
|
|
|
if (keylen > OTX2_CPT_MAX_KEY_SIZE)
|
|
return -EINVAL;
|
|
|
|
authkeylen = keylen - enckeylen;
|
|
memcpy(ctx->key, key, keylen);
|
|
|
|
switch (enckeylen) {
|
|
case AES_KEYSIZE_128:
|
|
ctx->key_type = OTX2_CPT_AES_128_BIT;
|
|
break;
|
|
case AES_KEYSIZE_192:
|
|
ctx->key_type = OTX2_CPT_AES_192_BIT;
|
|
break;
|
|
case AES_KEYSIZE_256:
|
|
ctx->key_type = OTX2_CPT_AES_256_BIT;
|
|
break;
|
|
default:
|
|
/* Invalid key length */
|
|
return -EINVAL;
|
|
}
|
|
|
|
ctx->enc_key_len = enckeylen;
|
|
ctx->auth_key_len = authkeylen;
|
|
|
|
return aead_hmac_init(cipher);
|
|
}
|
|
|
|
static int otx2_cpt_aead_ecb_null_sha_setkey(struct crypto_aead *cipher,
|
|
const unsigned char *key,
|
|
unsigned int keylen)
|
|
{
|
|
struct otx2_cpt_aead_ctx *ctx = crypto_aead_ctx_dma(cipher);
|
|
struct crypto_authenc_key_param *param;
|
|
struct rtattr *rta = (void *)key;
|
|
int enckeylen = 0;
|
|
|
|
if (!RTA_OK(rta, keylen))
|
|
return -EINVAL;
|
|
|
|
if (rta->rta_type != CRYPTO_AUTHENC_KEYA_PARAM)
|
|
return -EINVAL;
|
|
|
|
if (RTA_PAYLOAD(rta) < sizeof(*param))
|
|
return -EINVAL;
|
|
|
|
param = RTA_DATA(rta);
|
|
enckeylen = be32_to_cpu(param->enckeylen);
|
|
key += RTA_ALIGN(rta->rta_len);
|
|
keylen -= RTA_ALIGN(rta->rta_len);
|
|
if (enckeylen != 0)
|
|
return -EINVAL;
|
|
|
|
if (keylen > OTX2_CPT_MAX_KEY_SIZE)
|
|
return -EINVAL;
|
|
|
|
memcpy(ctx->key, key, keylen);
|
|
ctx->enc_key_len = enckeylen;
|
|
ctx->auth_key_len = keylen;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int otx2_cpt_aead_gcm_aes_setkey(struct crypto_aead *cipher,
|
|
const unsigned char *key,
|
|
unsigned int keylen)
|
|
{
|
|
struct otx2_cpt_aead_ctx *ctx = crypto_aead_ctx_dma(cipher);
|
|
|
|
/*
|
|
* For aes gcm we expect to get encryption key (16, 24, 32 bytes)
|
|
* and salt (4 bytes)
|
|
*/
|
|
switch (keylen) {
|
|
case AES_KEYSIZE_128 + AES_GCM_SALT_SIZE:
|
|
ctx->key_type = OTX2_CPT_AES_128_BIT;
|
|
ctx->enc_key_len = AES_KEYSIZE_128;
|
|
break;
|
|
case AES_KEYSIZE_192 + AES_GCM_SALT_SIZE:
|
|
ctx->key_type = OTX2_CPT_AES_192_BIT;
|
|
ctx->enc_key_len = AES_KEYSIZE_192;
|
|
break;
|
|
case AES_KEYSIZE_256 + AES_GCM_SALT_SIZE:
|
|
ctx->key_type = OTX2_CPT_AES_256_BIT;
|
|
ctx->enc_key_len = AES_KEYSIZE_256;
|
|
break;
|
|
default:
|
|
/* Invalid key and salt length */
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Store encryption key and salt */
|
|
memcpy(ctx->key, key, keylen);
|
|
|
|
return crypto_aead_setkey(ctx->fbk_cipher, key, keylen);
|
|
}
|
|
|
|
static inline int create_aead_ctx_hdr(struct aead_request *req, u32 enc,
|
|
u32 *argcnt)
|
|
{
|
|
struct otx2_cpt_req_ctx *rctx = aead_request_ctx_dma(req);
|
|
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
|
|
struct otx2_cpt_aead_ctx *ctx = crypto_aead_ctx_dma(tfm);
|
|
struct otx2_cpt_req_info *req_info = &rctx->cpt_req;
|
|
struct otx2_cpt_fc_ctx *fctx = &rctx->fctx;
|
|
int mac_len = crypto_aead_authsize(tfm);
|
|
int ds;
|
|
|
|
rctx->ctrl_word.e.enc_data_offset = req->assoclen;
|
|
|
|
switch (ctx->cipher_type) {
|
|
case OTX2_CPT_AES_CBC:
|
|
if (req->assoclen > 248 || !IS_ALIGNED(req->assoclen, 8))
|
|
return -EINVAL;
|
|
|
|
fctx->enc.enc_ctrl.e.iv_source = OTX2_CPT_FROM_CPTR;
|
|
/* Copy encryption key to context */
|
|
memcpy(fctx->enc.encr_key, ctx->key + ctx->auth_key_len,
|
|
ctx->enc_key_len);
|
|
/* Copy IV to context */
|
|
memcpy(fctx->enc.encr_iv, req->iv, crypto_aead_ivsize(tfm));
|
|
|
|
ds = crypto_shash_digestsize(ctx->hashalg);
|
|
if (ctx->mac_type == OTX2_CPT_SHA384)
|
|
ds = SHA512_DIGEST_SIZE;
|
|
if (ctx->ipad)
|
|
memcpy(fctx->hmac.e.ipad, ctx->ipad, ds);
|
|
if (ctx->opad)
|
|
memcpy(fctx->hmac.e.opad, ctx->opad, ds);
|
|
break;
|
|
|
|
case OTX2_CPT_AES_GCM:
|
|
if (crypto_ipsec_check_assoclen(req->assoclen))
|
|
return -EINVAL;
|
|
|
|
fctx->enc.enc_ctrl.e.iv_source = OTX2_CPT_FROM_DPTR;
|
|
/* Copy encryption key to context */
|
|
memcpy(fctx->enc.encr_key, ctx->key, ctx->enc_key_len);
|
|
/* Copy salt to context */
|
|
memcpy(fctx->enc.encr_iv, ctx->key + ctx->enc_key_len,
|
|
AES_GCM_SALT_SIZE);
|
|
|
|
rctx->ctrl_word.e.iv_offset = req->assoclen - AES_GCM_IV_OFFSET;
|
|
break;
|
|
|
|
default:
|
|
/* Unknown cipher type */
|
|
return -EINVAL;
|
|
}
|
|
cpu_to_be64s(&rctx->ctrl_word.flags);
|
|
|
|
req_info->ctrl.s.dma_mode = OTX2_CPT_DMA_MODE_SG;
|
|
req_info->ctrl.s.se_req = 1;
|
|
req_info->req.opcode.s.major = OTX2_CPT_MAJOR_OP_FC |
|
|
DMA_MODE_FLAG(OTX2_CPT_DMA_MODE_SG);
|
|
if (enc) {
|
|
req_info->req.opcode.s.minor = 2;
|
|
req_info->req.param1 = req->cryptlen;
|
|
req_info->req.param2 = req->cryptlen + req->assoclen;
|
|
} else {
|
|
req_info->req.opcode.s.minor = 3;
|
|
req_info->req.param1 = req->cryptlen - mac_len;
|
|
req_info->req.param2 = req->cryptlen + req->assoclen - mac_len;
|
|
}
|
|
|
|
fctx->enc.enc_ctrl.e.enc_cipher = ctx->cipher_type;
|
|
fctx->enc.enc_ctrl.e.aes_key = ctx->key_type;
|
|
fctx->enc.enc_ctrl.e.mac_type = ctx->mac_type;
|
|
fctx->enc.enc_ctrl.e.mac_len = mac_len;
|
|
cpu_to_be64s(&fctx->enc.enc_ctrl.u);
|
|
|
|
/*
|
|
* Storing Packet Data Information in offset
|
|
* Control Word First 8 bytes
|
|
*/
|
|
req_info->in[*argcnt].vptr = (u8 *)&rctx->ctrl_word;
|
|
req_info->in[*argcnt].size = CONTROL_WORD_LEN;
|
|
req_info->req.dlen += CONTROL_WORD_LEN;
|
|
++(*argcnt);
|
|
|
|
req_info->in[*argcnt].vptr = (u8 *)fctx;
|
|
req_info->in[*argcnt].size = sizeof(struct otx2_cpt_fc_ctx);
|
|
req_info->req.dlen += sizeof(struct otx2_cpt_fc_ctx);
|
|
++(*argcnt);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline void create_hmac_ctx_hdr(struct aead_request *req, u32 *argcnt,
|
|
u32 enc)
|
|
{
|
|
struct otx2_cpt_req_ctx *rctx = aead_request_ctx_dma(req);
|
|
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
|
|
struct otx2_cpt_aead_ctx *ctx = crypto_aead_ctx_dma(tfm);
|
|
struct otx2_cpt_req_info *req_info = &rctx->cpt_req;
|
|
|
|
req_info->ctrl.s.dma_mode = OTX2_CPT_DMA_MODE_SG;
|
|
req_info->ctrl.s.se_req = 1;
|
|
req_info->req.opcode.s.major = OTX2_CPT_MAJOR_OP_HMAC |
|
|
DMA_MODE_FLAG(OTX2_CPT_DMA_MODE_SG);
|
|
req_info->is_trunc_hmac = ctx->is_trunc_hmac;
|
|
|
|
req_info->req.opcode.s.minor = 0;
|
|
req_info->req.param1 = ctx->auth_key_len;
|
|
req_info->req.param2 = ctx->mac_type << 8;
|
|
|
|
/* Add authentication key */
|
|
req_info->in[*argcnt].vptr = ctx->key;
|
|
req_info->in[*argcnt].size = round_up(ctx->auth_key_len, 8);
|
|
req_info->req.dlen += round_up(ctx->auth_key_len, 8);
|
|
++(*argcnt);
|
|
}
|
|
|
|
static inline int create_aead_input_list(struct aead_request *req, u32 enc)
|
|
{
|
|
struct otx2_cpt_req_ctx *rctx = aead_request_ctx_dma(req);
|
|
struct otx2_cpt_req_info *req_info = &rctx->cpt_req;
|
|
u32 inputlen = req->cryptlen + req->assoclen;
|
|
u32 status, argcnt = 0;
|
|
|
|
status = create_aead_ctx_hdr(req, enc, &argcnt);
|
|
if (status)
|
|
return status;
|
|
update_input_data(req_info, req->src, inputlen, &argcnt);
|
|
req_info->in_cnt = argcnt;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline void create_aead_output_list(struct aead_request *req, u32 enc,
|
|
u32 mac_len)
|
|
{
|
|
struct otx2_cpt_req_ctx *rctx = aead_request_ctx_dma(req);
|
|
struct otx2_cpt_req_info *req_info = &rctx->cpt_req;
|
|
u32 argcnt = 0, outputlen = 0;
|
|
|
|
if (enc)
|
|
outputlen = req->cryptlen + req->assoclen + mac_len;
|
|
else
|
|
outputlen = req->cryptlen + req->assoclen - mac_len;
|
|
|
|
update_output_data(req_info, req->dst, 0, outputlen, &argcnt);
|
|
req_info->out_cnt = argcnt;
|
|
}
|
|
|
|
static inline void create_aead_null_input_list(struct aead_request *req,
|
|
u32 enc, u32 mac_len)
|
|
{
|
|
struct otx2_cpt_req_ctx *rctx = aead_request_ctx_dma(req);
|
|
struct otx2_cpt_req_info *req_info = &rctx->cpt_req;
|
|
u32 inputlen, argcnt = 0;
|
|
|
|
if (enc)
|
|
inputlen = req->cryptlen + req->assoclen;
|
|
else
|
|
inputlen = req->cryptlen + req->assoclen - mac_len;
|
|
|
|
create_hmac_ctx_hdr(req, &argcnt, enc);
|
|
update_input_data(req_info, req->src, inputlen, &argcnt);
|
|
req_info->in_cnt = argcnt;
|
|
}
|
|
|
|
static inline int create_aead_null_output_list(struct aead_request *req,
|
|
u32 enc, u32 mac_len)
|
|
{
|
|
struct otx2_cpt_req_ctx *rctx = aead_request_ctx_dma(req);
|
|
struct otx2_cpt_req_info *req_info = &rctx->cpt_req;
|
|
struct scatterlist *dst;
|
|
u8 *ptr = NULL;
|
|
int argcnt = 0, status, offset;
|
|
u32 inputlen;
|
|
|
|
if (enc)
|
|
inputlen = req->cryptlen + req->assoclen;
|
|
else
|
|
inputlen = req->cryptlen + req->assoclen - mac_len;
|
|
|
|
/*
|
|
* If source and destination are different
|
|
* then copy payload to destination
|
|
*/
|
|
if (req->src != req->dst) {
|
|
|
|
ptr = kmalloc(inputlen, (req_info->areq->flags &
|
|
CRYPTO_TFM_REQ_MAY_SLEEP) ?
|
|
GFP_KERNEL : GFP_ATOMIC);
|
|
if (!ptr)
|
|
return -ENOMEM;
|
|
|
|
status = sg_copy_to_buffer(req->src, sg_nents(req->src), ptr,
|
|
inputlen);
|
|
if (status != inputlen) {
|
|
status = -EINVAL;
|
|
goto error_free;
|
|
}
|
|
status = sg_copy_from_buffer(req->dst, sg_nents(req->dst), ptr,
|
|
inputlen);
|
|
if (status != inputlen) {
|
|
status = -EINVAL;
|
|
goto error_free;
|
|
}
|
|
kfree(ptr);
|
|
}
|
|
|
|
if (enc) {
|
|
/*
|
|
* In an encryption scenario hmac needs
|
|
* to be appended after payload
|
|
*/
|
|
dst = req->dst;
|
|
offset = inputlen;
|
|
while (offset >= dst->length) {
|
|
offset -= dst->length;
|
|
dst = sg_next(dst);
|
|
if (!dst)
|
|
return -ENOENT;
|
|
}
|
|
|
|
update_output_data(req_info, dst, offset, mac_len, &argcnt);
|
|
} else {
|
|
/*
|
|
* In a decryption scenario calculated hmac for received
|
|
* payload needs to be compare with hmac received
|
|
*/
|
|
status = sg_copy_buffer(req->src, sg_nents(req->src),
|
|
rctx->fctx.hmac.s.hmac_recv, mac_len,
|
|
inputlen, true);
|
|
if (status != mac_len)
|
|
return -EINVAL;
|
|
|
|
req_info->out[argcnt].vptr = rctx->fctx.hmac.s.hmac_calc;
|
|
req_info->out[argcnt].size = mac_len;
|
|
argcnt++;
|
|
}
|
|
|
|
req_info->out_cnt = argcnt;
|
|
return 0;
|
|
|
|
error_free:
|
|
kfree(ptr);
|
|
return status;
|
|
}
|
|
|
|
static int aead_do_fallback(struct aead_request *req, bool is_enc)
|
|
{
|
|
struct otx2_cpt_req_ctx *rctx = aead_request_ctx_dma(req);
|
|
struct crypto_aead *aead = crypto_aead_reqtfm(req);
|
|
struct otx2_cpt_aead_ctx *ctx = crypto_aead_ctx_dma(aead);
|
|
int ret;
|
|
|
|
if (ctx->fbk_cipher) {
|
|
/* Store the cipher tfm and then use the fallback tfm */
|
|
aead_request_set_tfm(&rctx->fbk_req, ctx->fbk_cipher);
|
|
aead_request_set_callback(&rctx->fbk_req, req->base.flags,
|
|
req->base.complete, req->base.data);
|
|
aead_request_set_crypt(&rctx->fbk_req, req->src,
|
|
req->dst, req->cryptlen, req->iv);
|
|
aead_request_set_ad(&rctx->fbk_req, req->assoclen);
|
|
ret = is_enc ? crypto_aead_encrypt(&rctx->fbk_req) :
|
|
crypto_aead_decrypt(&rctx->fbk_req);
|
|
} else {
|
|
ret = -EINVAL;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int cpt_aead_enc_dec(struct aead_request *req, u8 reg_type, u8 enc)
|
|
{
|
|
struct otx2_cpt_req_ctx *rctx = aead_request_ctx_dma(req);
|
|
struct otx2_cpt_req_info *req_info = &rctx->cpt_req;
|
|
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
|
|
struct otx2_cpt_aead_ctx *ctx = crypto_aead_ctx_dma(tfm);
|
|
struct pci_dev *pdev;
|
|
int status, cpu_num;
|
|
|
|
/* Clear control words */
|
|
rctx->ctrl_word.flags = 0;
|
|
rctx->fctx.enc.enc_ctrl.u = 0;
|
|
|
|
req_info->callback = otx2_cpt_aead_callback;
|
|
req_info->areq = &req->base;
|
|
req_info->req_type = reg_type;
|
|
req_info->is_enc = enc;
|
|
req_info->is_trunc_hmac = false;
|
|
|
|
switch (reg_type) {
|
|
case OTX2_CPT_AEAD_ENC_DEC_REQ:
|
|
status = create_aead_input_list(req, enc);
|
|
if (status)
|
|
return status;
|
|
create_aead_output_list(req, enc, crypto_aead_authsize(tfm));
|
|
break;
|
|
|
|
case OTX2_CPT_AEAD_ENC_DEC_NULL_REQ:
|
|
create_aead_null_input_list(req, enc,
|
|
crypto_aead_authsize(tfm));
|
|
status = create_aead_null_output_list(req, enc,
|
|
crypto_aead_authsize(tfm));
|
|
if (status)
|
|
return status;
|
|
break;
|
|
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
if (!IS_ALIGNED(req_info->req.param1, ctx->enc_align_len))
|
|
return -EINVAL;
|
|
|
|
if (!req_info->req.param2 ||
|
|
(req_info->req.param1 > OTX2_CPT_MAX_REQ_SIZE) ||
|
|
(req_info->req.param2 > OTX2_CPT_MAX_REQ_SIZE))
|
|
return aead_do_fallback(req, enc);
|
|
|
|
status = get_se_device(&pdev, &cpu_num);
|
|
if (status)
|
|
return status;
|
|
|
|
req_info->ctrl.s.grp = otx2_cpt_get_kcrypto_eng_grp_num(pdev);
|
|
|
|
/*
|
|
* We perform an asynchronous send and once
|
|
* the request is completed the driver would
|
|
* intimate through registered call back functions
|
|
*/
|
|
return otx2_cpt_do_request(pdev, req_info, cpu_num);
|
|
}
|
|
|
|
static int otx2_cpt_aead_encrypt(struct aead_request *req)
|
|
{
|
|
return cpt_aead_enc_dec(req, OTX2_CPT_AEAD_ENC_DEC_REQ, true);
|
|
}
|
|
|
|
static int otx2_cpt_aead_decrypt(struct aead_request *req)
|
|
{
|
|
return cpt_aead_enc_dec(req, OTX2_CPT_AEAD_ENC_DEC_REQ, false);
|
|
}
|
|
|
|
static int otx2_cpt_aead_null_encrypt(struct aead_request *req)
|
|
{
|
|
return cpt_aead_enc_dec(req, OTX2_CPT_AEAD_ENC_DEC_NULL_REQ, true);
|
|
}
|
|
|
|
static int otx2_cpt_aead_null_decrypt(struct aead_request *req)
|
|
{
|
|
return cpt_aead_enc_dec(req, OTX2_CPT_AEAD_ENC_DEC_NULL_REQ, false);
|
|
}
|
|
|
|
static struct skcipher_alg otx2_cpt_skciphers[] = { {
|
|
.base.cra_name = "xts(aes)",
|
|
.base.cra_driver_name = "cpt_xts_aes",
|
|
.base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
|
|
.base.cra_blocksize = AES_BLOCK_SIZE,
|
|
.base.cra_ctxsize = sizeof(struct otx2_cpt_enc_ctx),
|
|
.base.cra_alignmask = 7,
|
|
.base.cra_priority = 4001,
|
|
.base.cra_module = THIS_MODULE,
|
|
|
|
.init = otx2_cpt_enc_dec_init,
|
|
.exit = otx2_cpt_skcipher_exit,
|
|
.ivsize = AES_BLOCK_SIZE,
|
|
.min_keysize = 2 * AES_MIN_KEY_SIZE,
|
|
.max_keysize = 2 * AES_MAX_KEY_SIZE,
|
|
.setkey = otx2_cpt_skcipher_xts_setkey,
|
|
.encrypt = otx2_cpt_skcipher_encrypt,
|
|
.decrypt = otx2_cpt_skcipher_decrypt,
|
|
}, {
|
|
.base.cra_name = "cbc(aes)",
|
|
.base.cra_driver_name = "cpt_cbc_aes",
|
|
.base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
|
|
.base.cra_blocksize = AES_BLOCK_SIZE,
|
|
.base.cra_ctxsize = sizeof(struct otx2_cpt_enc_ctx),
|
|
.base.cra_alignmask = 7,
|
|
.base.cra_priority = 4001,
|
|
.base.cra_module = THIS_MODULE,
|
|
|
|
.init = otx2_cpt_enc_dec_init,
|
|
.exit = otx2_cpt_skcipher_exit,
|
|
.ivsize = AES_BLOCK_SIZE,
|
|
.min_keysize = AES_MIN_KEY_SIZE,
|
|
.max_keysize = AES_MAX_KEY_SIZE,
|
|
.setkey = otx2_cpt_skcipher_cbc_aes_setkey,
|
|
.encrypt = otx2_cpt_skcipher_encrypt,
|
|
.decrypt = otx2_cpt_skcipher_decrypt,
|
|
}, {
|
|
.base.cra_name = "ecb(aes)",
|
|
.base.cra_driver_name = "cpt_ecb_aes",
|
|
.base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
|
|
.base.cra_blocksize = AES_BLOCK_SIZE,
|
|
.base.cra_ctxsize = sizeof(struct otx2_cpt_enc_ctx),
|
|
.base.cra_alignmask = 7,
|
|
.base.cra_priority = 4001,
|
|
.base.cra_module = THIS_MODULE,
|
|
|
|
.init = otx2_cpt_enc_dec_init,
|
|
.exit = otx2_cpt_skcipher_exit,
|
|
.ivsize = 0,
|
|
.min_keysize = AES_MIN_KEY_SIZE,
|
|
.max_keysize = AES_MAX_KEY_SIZE,
|
|
.setkey = otx2_cpt_skcipher_ecb_aes_setkey,
|
|
.encrypt = otx2_cpt_skcipher_encrypt,
|
|
.decrypt = otx2_cpt_skcipher_decrypt,
|
|
}, {
|
|
.base.cra_name = "cbc(des3_ede)",
|
|
.base.cra_driver_name = "cpt_cbc_des3_ede",
|
|
.base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
|
|
.base.cra_blocksize = DES3_EDE_BLOCK_SIZE,
|
|
.base.cra_ctxsize = sizeof(struct otx2_cpt_enc_ctx),
|
|
.base.cra_alignmask = 7,
|
|
.base.cra_priority = 4001,
|
|
.base.cra_module = THIS_MODULE,
|
|
|
|
.init = otx2_cpt_enc_dec_init,
|
|
.exit = otx2_cpt_skcipher_exit,
|
|
.min_keysize = DES3_EDE_KEY_SIZE,
|
|
.max_keysize = DES3_EDE_KEY_SIZE,
|
|
.ivsize = DES_BLOCK_SIZE,
|
|
.setkey = otx2_cpt_skcipher_cbc_des3_setkey,
|
|
.encrypt = otx2_cpt_skcipher_encrypt,
|
|
.decrypt = otx2_cpt_skcipher_decrypt,
|
|
}, {
|
|
.base.cra_name = "ecb(des3_ede)",
|
|
.base.cra_driver_name = "cpt_ecb_des3_ede",
|
|
.base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
|
|
.base.cra_blocksize = DES3_EDE_BLOCK_SIZE,
|
|
.base.cra_ctxsize = sizeof(struct otx2_cpt_enc_ctx),
|
|
.base.cra_alignmask = 7,
|
|
.base.cra_priority = 4001,
|
|
.base.cra_module = THIS_MODULE,
|
|
|
|
.init = otx2_cpt_enc_dec_init,
|
|
.exit = otx2_cpt_skcipher_exit,
|
|
.min_keysize = DES3_EDE_KEY_SIZE,
|
|
.max_keysize = DES3_EDE_KEY_SIZE,
|
|
.ivsize = 0,
|
|
.setkey = otx2_cpt_skcipher_ecb_des3_setkey,
|
|
.encrypt = otx2_cpt_skcipher_encrypt,
|
|
.decrypt = otx2_cpt_skcipher_decrypt,
|
|
} };
|
|
|
|
static struct aead_alg otx2_cpt_aeads[] = { {
|
|
.base = {
|
|
.cra_name = "authenc(hmac(sha1),cbc(aes))",
|
|
.cra_driver_name = "cpt_hmac_sha1_cbc_aes",
|
|
.cra_blocksize = AES_BLOCK_SIZE,
|
|
.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
|
|
.cra_ctxsize = sizeof(struct otx2_cpt_aead_ctx) + CRYPTO_DMA_PADDING,
|
|
.cra_priority = 4001,
|
|
.cra_alignmask = 0,
|
|
.cra_module = THIS_MODULE,
|
|
},
|
|
.init = otx2_cpt_aead_cbc_aes_sha1_init,
|
|
.exit = otx2_cpt_aead_exit,
|
|
.setkey = otx2_cpt_aead_cbc_aes_sha_setkey,
|
|
.setauthsize = otx2_cpt_aead_set_authsize,
|
|
.encrypt = otx2_cpt_aead_encrypt,
|
|
.decrypt = otx2_cpt_aead_decrypt,
|
|
.ivsize = AES_BLOCK_SIZE,
|
|
.maxauthsize = SHA1_DIGEST_SIZE,
|
|
}, {
|
|
.base = {
|
|
.cra_name = "authenc(hmac(sha256),cbc(aes))",
|
|
.cra_driver_name = "cpt_hmac_sha256_cbc_aes",
|
|
.cra_blocksize = AES_BLOCK_SIZE,
|
|
.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
|
|
.cra_ctxsize = sizeof(struct otx2_cpt_aead_ctx) + CRYPTO_DMA_PADDING,
|
|
.cra_priority = 4001,
|
|
.cra_alignmask = 0,
|
|
.cra_module = THIS_MODULE,
|
|
},
|
|
.init = otx2_cpt_aead_cbc_aes_sha256_init,
|
|
.exit = otx2_cpt_aead_exit,
|
|
.setkey = otx2_cpt_aead_cbc_aes_sha_setkey,
|
|
.setauthsize = otx2_cpt_aead_set_authsize,
|
|
.encrypt = otx2_cpt_aead_encrypt,
|
|
.decrypt = otx2_cpt_aead_decrypt,
|
|
.ivsize = AES_BLOCK_SIZE,
|
|
.maxauthsize = SHA256_DIGEST_SIZE,
|
|
}, {
|
|
.base = {
|
|
.cra_name = "authenc(hmac(sha384),cbc(aes))",
|
|
.cra_driver_name = "cpt_hmac_sha384_cbc_aes",
|
|
.cra_blocksize = AES_BLOCK_SIZE,
|
|
.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
|
|
.cra_ctxsize = sizeof(struct otx2_cpt_aead_ctx) + CRYPTO_DMA_PADDING,
|
|
.cra_priority = 4001,
|
|
.cra_alignmask = 0,
|
|
.cra_module = THIS_MODULE,
|
|
},
|
|
.init = otx2_cpt_aead_cbc_aes_sha384_init,
|
|
.exit = otx2_cpt_aead_exit,
|
|
.setkey = otx2_cpt_aead_cbc_aes_sha_setkey,
|
|
.setauthsize = otx2_cpt_aead_set_authsize,
|
|
.encrypt = otx2_cpt_aead_encrypt,
|
|
.decrypt = otx2_cpt_aead_decrypt,
|
|
.ivsize = AES_BLOCK_SIZE,
|
|
.maxauthsize = SHA384_DIGEST_SIZE,
|
|
}, {
|
|
.base = {
|
|
.cra_name = "authenc(hmac(sha512),cbc(aes))",
|
|
.cra_driver_name = "cpt_hmac_sha512_cbc_aes",
|
|
.cra_blocksize = AES_BLOCK_SIZE,
|
|
.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
|
|
.cra_ctxsize = sizeof(struct otx2_cpt_aead_ctx) + CRYPTO_DMA_PADDING,
|
|
.cra_priority = 4001,
|
|
.cra_alignmask = 0,
|
|
.cra_module = THIS_MODULE,
|
|
},
|
|
.init = otx2_cpt_aead_cbc_aes_sha512_init,
|
|
.exit = otx2_cpt_aead_exit,
|
|
.setkey = otx2_cpt_aead_cbc_aes_sha_setkey,
|
|
.setauthsize = otx2_cpt_aead_set_authsize,
|
|
.encrypt = otx2_cpt_aead_encrypt,
|
|
.decrypt = otx2_cpt_aead_decrypt,
|
|
.ivsize = AES_BLOCK_SIZE,
|
|
.maxauthsize = SHA512_DIGEST_SIZE,
|
|
}, {
|
|
.base = {
|
|
.cra_name = "authenc(hmac(sha1),ecb(cipher_null))",
|
|
.cra_driver_name = "cpt_hmac_sha1_ecb_null",
|
|
.cra_blocksize = 1,
|
|
.cra_flags = CRYPTO_ALG_ASYNC,
|
|
.cra_ctxsize = sizeof(struct otx2_cpt_aead_ctx) + CRYPTO_DMA_PADDING,
|
|
.cra_priority = 4001,
|
|
.cra_alignmask = 0,
|
|
.cra_module = THIS_MODULE,
|
|
},
|
|
.init = otx2_cpt_aead_ecb_null_sha1_init,
|
|
.exit = otx2_cpt_aead_exit,
|
|
.setkey = otx2_cpt_aead_ecb_null_sha_setkey,
|
|
.setauthsize = otx2_cpt_aead_null_set_authsize,
|
|
.encrypt = otx2_cpt_aead_null_encrypt,
|
|
.decrypt = otx2_cpt_aead_null_decrypt,
|
|
.ivsize = 0,
|
|
.maxauthsize = SHA1_DIGEST_SIZE,
|
|
}, {
|
|
.base = {
|
|
.cra_name = "authenc(hmac(sha256),ecb(cipher_null))",
|
|
.cra_driver_name = "cpt_hmac_sha256_ecb_null",
|
|
.cra_blocksize = 1,
|
|
.cra_flags = CRYPTO_ALG_ASYNC,
|
|
.cra_ctxsize = sizeof(struct otx2_cpt_aead_ctx) + CRYPTO_DMA_PADDING,
|
|
.cra_priority = 4001,
|
|
.cra_alignmask = 0,
|
|
.cra_module = THIS_MODULE,
|
|
},
|
|
.init = otx2_cpt_aead_ecb_null_sha256_init,
|
|
.exit = otx2_cpt_aead_exit,
|
|
.setkey = otx2_cpt_aead_ecb_null_sha_setkey,
|
|
.setauthsize = otx2_cpt_aead_null_set_authsize,
|
|
.encrypt = otx2_cpt_aead_null_encrypt,
|
|
.decrypt = otx2_cpt_aead_null_decrypt,
|
|
.ivsize = 0,
|
|
.maxauthsize = SHA256_DIGEST_SIZE,
|
|
}, {
|
|
.base = {
|
|
.cra_name = "authenc(hmac(sha384),ecb(cipher_null))",
|
|
.cra_driver_name = "cpt_hmac_sha384_ecb_null",
|
|
.cra_blocksize = 1,
|
|
.cra_flags = CRYPTO_ALG_ASYNC,
|
|
.cra_ctxsize = sizeof(struct otx2_cpt_aead_ctx) + CRYPTO_DMA_PADDING,
|
|
.cra_priority = 4001,
|
|
.cra_alignmask = 0,
|
|
.cra_module = THIS_MODULE,
|
|
},
|
|
.init = otx2_cpt_aead_ecb_null_sha384_init,
|
|
.exit = otx2_cpt_aead_exit,
|
|
.setkey = otx2_cpt_aead_ecb_null_sha_setkey,
|
|
.setauthsize = otx2_cpt_aead_null_set_authsize,
|
|
.encrypt = otx2_cpt_aead_null_encrypt,
|
|
.decrypt = otx2_cpt_aead_null_decrypt,
|
|
.ivsize = 0,
|
|
.maxauthsize = SHA384_DIGEST_SIZE,
|
|
}, {
|
|
.base = {
|
|
.cra_name = "authenc(hmac(sha512),ecb(cipher_null))",
|
|
.cra_driver_name = "cpt_hmac_sha512_ecb_null",
|
|
.cra_blocksize = 1,
|
|
.cra_flags = CRYPTO_ALG_ASYNC,
|
|
.cra_ctxsize = sizeof(struct otx2_cpt_aead_ctx) + CRYPTO_DMA_PADDING,
|
|
.cra_priority = 4001,
|
|
.cra_alignmask = 0,
|
|
.cra_module = THIS_MODULE,
|
|
},
|
|
.init = otx2_cpt_aead_ecb_null_sha512_init,
|
|
.exit = otx2_cpt_aead_exit,
|
|
.setkey = otx2_cpt_aead_ecb_null_sha_setkey,
|
|
.setauthsize = otx2_cpt_aead_null_set_authsize,
|
|
.encrypt = otx2_cpt_aead_null_encrypt,
|
|
.decrypt = otx2_cpt_aead_null_decrypt,
|
|
.ivsize = 0,
|
|
.maxauthsize = SHA512_DIGEST_SIZE,
|
|
}, {
|
|
.base = {
|
|
.cra_name = "rfc4106(gcm(aes))",
|
|
.cra_driver_name = "cpt_rfc4106_gcm_aes",
|
|
.cra_blocksize = 1,
|
|
.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
|
|
.cra_ctxsize = sizeof(struct otx2_cpt_aead_ctx) + CRYPTO_DMA_PADDING,
|
|
.cra_priority = 4001,
|
|
.cra_alignmask = 0,
|
|
.cra_module = THIS_MODULE,
|
|
},
|
|
.init = otx2_cpt_aead_gcm_aes_init,
|
|
.exit = otx2_cpt_aead_exit,
|
|
.setkey = otx2_cpt_aead_gcm_aes_setkey,
|
|
.setauthsize = otx2_cpt_aead_gcm_set_authsize,
|
|
.encrypt = otx2_cpt_aead_encrypt,
|
|
.decrypt = otx2_cpt_aead_decrypt,
|
|
.ivsize = AES_GCM_IV_SIZE,
|
|
.maxauthsize = AES_GCM_ICV_SIZE,
|
|
} };
|
|
|
|
static inline int cpt_register_algs(void)
|
|
{
|
|
int i, err = 0;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(otx2_cpt_skciphers); i++)
|
|
otx2_cpt_skciphers[i].base.cra_flags &= ~CRYPTO_ALG_DEAD;
|
|
|
|
err = crypto_register_skciphers(otx2_cpt_skciphers,
|
|
ARRAY_SIZE(otx2_cpt_skciphers));
|
|
if (err)
|
|
return err;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(otx2_cpt_aeads); i++)
|
|
otx2_cpt_aeads[i].base.cra_flags &= ~CRYPTO_ALG_DEAD;
|
|
|
|
err = crypto_register_aeads(otx2_cpt_aeads,
|
|
ARRAY_SIZE(otx2_cpt_aeads));
|
|
if (err) {
|
|
crypto_unregister_skciphers(otx2_cpt_skciphers,
|
|
ARRAY_SIZE(otx2_cpt_skciphers));
|
|
return err;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline void cpt_unregister_algs(void)
|
|
{
|
|
crypto_unregister_skciphers(otx2_cpt_skciphers,
|
|
ARRAY_SIZE(otx2_cpt_skciphers));
|
|
crypto_unregister_aeads(otx2_cpt_aeads, ARRAY_SIZE(otx2_cpt_aeads));
|
|
}
|
|
|
|
static int compare_func(const void *lptr, const void *rptr)
|
|
{
|
|
const struct cpt_device_desc *ldesc = (struct cpt_device_desc *) lptr;
|
|
const struct cpt_device_desc *rdesc = (struct cpt_device_desc *) rptr;
|
|
|
|
if (ldesc->dev->devfn < rdesc->dev->devfn)
|
|
return -1;
|
|
if (ldesc->dev->devfn > rdesc->dev->devfn)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
static void swap_func(void *lptr, void *rptr, int size)
|
|
{
|
|
struct cpt_device_desc *ldesc = lptr;
|
|
struct cpt_device_desc *rdesc = rptr;
|
|
|
|
swap(*ldesc, *rdesc);
|
|
}
|
|
|
|
int otx2_cpt_crypto_init(struct pci_dev *pdev, struct module *mod,
|
|
int num_queues, int num_devices)
|
|
{
|
|
int ret = 0;
|
|
int count;
|
|
|
|
mutex_lock(&mutex);
|
|
count = atomic_read(&se_devices.count);
|
|
if (count >= OTX2_CPT_MAX_LFS_NUM) {
|
|
dev_err(&pdev->dev, "No space to add a new device\n");
|
|
ret = -ENOSPC;
|
|
goto unlock;
|
|
}
|
|
se_devices.desc[count].num_queues = num_queues;
|
|
se_devices.desc[count++].dev = pdev;
|
|
atomic_inc(&se_devices.count);
|
|
|
|
if (atomic_read(&se_devices.count) == num_devices &&
|
|
is_crypto_registered == false) {
|
|
if (cpt_register_algs()) {
|
|
dev_err(&pdev->dev,
|
|
"Error in registering crypto algorithms\n");
|
|
ret = -EINVAL;
|
|
goto unlock;
|
|
}
|
|
try_module_get(mod);
|
|
is_crypto_registered = true;
|
|
}
|
|
sort(se_devices.desc, count, sizeof(struct cpt_device_desc),
|
|
compare_func, swap_func);
|
|
|
|
unlock:
|
|
mutex_unlock(&mutex);
|
|
return ret;
|
|
}
|
|
|
|
void otx2_cpt_crypto_exit(struct pci_dev *pdev, struct module *mod)
|
|
{
|
|
struct cpt_device_table *dev_tbl;
|
|
bool dev_found = false;
|
|
int i, j, count;
|
|
|
|
mutex_lock(&mutex);
|
|
|
|
dev_tbl = &se_devices;
|
|
count = atomic_read(&dev_tbl->count);
|
|
for (i = 0; i < count; i++) {
|
|
if (pdev == dev_tbl->desc[i].dev) {
|
|
for (j = i; j < count-1; j++)
|
|
dev_tbl->desc[j] = dev_tbl->desc[j+1];
|
|
dev_found = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!dev_found) {
|
|
dev_err(&pdev->dev, "%s device not found\n", __func__);
|
|
goto unlock;
|
|
}
|
|
if (atomic_dec_and_test(&se_devices.count)) {
|
|
cpt_unregister_algs();
|
|
module_put(mod);
|
|
is_crypto_registered = false;
|
|
}
|
|
|
|
unlock:
|
|
mutex_unlock(&mutex);
|
|
}
|