linux-zen-server/drivers/gpu/drm/amd/pm/swsmu/smu11/vangogh_ppt.c

2470 lines
71 KiB
C

/*
* Copyright 2020 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#define SWSMU_CODE_LAYER_L2
#include "amdgpu.h"
#include "amdgpu_smu.h"
#include "smu_v11_0.h"
#include "smu11_driver_if_vangogh.h"
#include "vangogh_ppt.h"
#include "smu_v11_5_ppsmc.h"
#include "smu_v11_5_pmfw.h"
#include "smu_cmn.h"
#include "soc15_common.h"
#include "asic_reg/gc/gc_10_3_0_offset.h"
#include "asic_reg/gc/gc_10_3_0_sh_mask.h"
#include <asm/processor.h>
/*
* DO NOT use these for err/warn/info/debug messages.
* Use dev_err, dev_warn, dev_info and dev_dbg instead.
* They are more MGPU friendly.
*/
#undef pr_err
#undef pr_warn
#undef pr_info
#undef pr_debug
// Registers related to GFXOFF
// addressBlock: smuio_smuio_SmuSmuioDec
// base address: 0x5a000
#define mmSMUIO_GFX_MISC_CNTL 0x00c5
#define mmSMUIO_GFX_MISC_CNTL_BASE_IDX 0
//SMUIO_GFX_MISC_CNTL
#define SMUIO_GFX_MISC_CNTL__SMU_GFX_cold_vs_gfxoff__SHIFT 0x0
#define SMUIO_GFX_MISC_CNTL__PWR_GFXOFF_STATUS__SHIFT 0x1
#define SMUIO_GFX_MISC_CNTL__SMU_GFX_cold_vs_gfxoff_MASK 0x00000001L
#define SMUIO_GFX_MISC_CNTL__PWR_GFXOFF_STATUS_MASK 0x00000006L
#define FEATURE_MASK(feature) (1ULL << feature)
#define SMC_DPM_FEATURE ( \
FEATURE_MASK(FEATURE_CCLK_DPM_BIT) | \
FEATURE_MASK(FEATURE_VCN_DPM_BIT) | \
FEATURE_MASK(FEATURE_FCLK_DPM_BIT) | \
FEATURE_MASK(FEATURE_SOCCLK_DPM_BIT) | \
FEATURE_MASK(FEATURE_MP0CLK_DPM_BIT) | \
FEATURE_MASK(FEATURE_LCLK_DPM_BIT) | \
FEATURE_MASK(FEATURE_SHUBCLK_DPM_BIT) | \
FEATURE_MASK(FEATURE_DCFCLK_DPM_BIT)| \
FEATURE_MASK(FEATURE_GFX_DPM_BIT))
static struct cmn2asic_msg_mapping vangogh_message_map[SMU_MSG_MAX_COUNT] = {
MSG_MAP(TestMessage, PPSMC_MSG_TestMessage, 0),
MSG_MAP(GetSmuVersion, PPSMC_MSG_GetSmuVersion, 0),
MSG_MAP(GetDriverIfVersion, PPSMC_MSG_GetDriverIfVersion, 0),
MSG_MAP(EnableGfxOff, PPSMC_MSG_EnableGfxOff, 0),
MSG_MAP(AllowGfxOff, PPSMC_MSG_AllowGfxOff, 0),
MSG_MAP(DisallowGfxOff, PPSMC_MSG_DisallowGfxOff, 0),
MSG_MAP(PowerDownIspByTile, PPSMC_MSG_PowerDownIspByTile, 0),
MSG_MAP(PowerUpIspByTile, PPSMC_MSG_PowerUpIspByTile, 0),
MSG_MAP(PowerDownVcn, PPSMC_MSG_PowerDownVcn, 0),
MSG_MAP(PowerUpVcn, PPSMC_MSG_PowerUpVcn, 0),
MSG_MAP(RlcPowerNotify, PPSMC_MSG_RlcPowerNotify, 0),
MSG_MAP(SetHardMinVcn, PPSMC_MSG_SetHardMinVcn, 0),
MSG_MAP(SetSoftMinGfxclk, PPSMC_MSG_SetSoftMinGfxclk, 0),
MSG_MAP(ActiveProcessNotify, PPSMC_MSG_ActiveProcessNotify, 0),
MSG_MAP(SetHardMinIspiclkByFreq, PPSMC_MSG_SetHardMinIspiclkByFreq, 0),
MSG_MAP(SetHardMinIspxclkByFreq, PPSMC_MSG_SetHardMinIspxclkByFreq, 0),
MSG_MAP(SetDriverDramAddrHigh, PPSMC_MSG_SetDriverDramAddrHigh, 0),
MSG_MAP(SetDriverDramAddrLow, PPSMC_MSG_SetDriverDramAddrLow, 0),
MSG_MAP(TransferTableSmu2Dram, PPSMC_MSG_TransferTableSmu2Dram, 0),
MSG_MAP(TransferTableDram2Smu, PPSMC_MSG_TransferTableDram2Smu, 0),
MSG_MAP(GfxDeviceDriverReset, PPSMC_MSG_GfxDeviceDriverReset, 0),
MSG_MAP(GetEnabledSmuFeatures, PPSMC_MSG_GetEnabledSmuFeatures, 0),
MSG_MAP(SetHardMinSocclkByFreq, PPSMC_MSG_SetHardMinSocclkByFreq, 0),
MSG_MAP(SetSoftMinFclk, PPSMC_MSG_SetSoftMinFclk, 0),
MSG_MAP(SetSoftMinVcn, PPSMC_MSG_SetSoftMinVcn, 0),
MSG_MAP(EnablePostCode, PPSMC_MSG_EnablePostCode, 0),
MSG_MAP(GetGfxclkFrequency, PPSMC_MSG_GetGfxclkFrequency, 0),
MSG_MAP(GetFclkFrequency, PPSMC_MSG_GetFclkFrequency, 0),
MSG_MAP(SetSoftMaxGfxClk, PPSMC_MSG_SetSoftMaxGfxClk, 0),
MSG_MAP(SetHardMinGfxClk, PPSMC_MSG_SetHardMinGfxClk, 0),
MSG_MAP(SetSoftMaxSocclkByFreq, PPSMC_MSG_SetSoftMaxSocclkByFreq, 0),
MSG_MAP(SetSoftMaxFclkByFreq, PPSMC_MSG_SetSoftMaxFclkByFreq, 0),
MSG_MAP(SetSoftMaxVcn, PPSMC_MSG_SetSoftMaxVcn, 0),
MSG_MAP(SetPowerLimitPercentage, PPSMC_MSG_SetPowerLimitPercentage, 0),
MSG_MAP(PowerDownJpeg, PPSMC_MSG_PowerDownJpeg, 0),
MSG_MAP(PowerUpJpeg, PPSMC_MSG_PowerUpJpeg, 0),
MSG_MAP(SetHardMinFclkByFreq, PPSMC_MSG_SetHardMinFclkByFreq, 0),
MSG_MAP(SetSoftMinSocclkByFreq, PPSMC_MSG_SetSoftMinSocclkByFreq, 0),
MSG_MAP(PowerUpCvip, PPSMC_MSG_PowerUpCvip, 0),
MSG_MAP(PowerDownCvip, PPSMC_MSG_PowerDownCvip, 0),
MSG_MAP(GetPptLimit, PPSMC_MSG_GetPptLimit, 0),
MSG_MAP(GetThermalLimit, PPSMC_MSG_GetThermalLimit, 0),
MSG_MAP(GetCurrentTemperature, PPSMC_MSG_GetCurrentTemperature, 0),
MSG_MAP(GetCurrentPower, PPSMC_MSG_GetCurrentPower, 0),
MSG_MAP(GetCurrentVoltage, PPSMC_MSG_GetCurrentVoltage, 0),
MSG_MAP(GetCurrentCurrent, PPSMC_MSG_GetCurrentCurrent, 0),
MSG_MAP(GetAverageCpuActivity, PPSMC_MSG_GetAverageCpuActivity, 0),
MSG_MAP(GetAverageGfxActivity, PPSMC_MSG_GetAverageGfxActivity, 0),
MSG_MAP(GetAveragePower, PPSMC_MSG_GetAveragePower, 0),
MSG_MAP(GetAverageTemperature, PPSMC_MSG_GetAverageTemperature, 0),
MSG_MAP(SetAveragePowerTimeConstant, PPSMC_MSG_SetAveragePowerTimeConstant, 0),
MSG_MAP(SetAverageActivityTimeConstant, PPSMC_MSG_SetAverageActivityTimeConstant, 0),
MSG_MAP(SetAverageTemperatureTimeConstant, PPSMC_MSG_SetAverageTemperatureTimeConstant, 0),
MSG_MAP(SetMitigationEndHysteresis, PPSMC_MSG_SetMitigationEndHysteresis, 0),
MSG_MAP(GetCurrentFreq, PPSMC_MSG_GetCurrentFreq, 0),
MSG_MAP(SetReducedPptLimit, PPSMC_MSG_SetReducedPptLimit, 0),
MSG_MAP(SetReducedThermalLimit, PPSMC_MSG_SetReducedThermalLimit, 0),
MSG_MAP(DramLogSetDramAddr, PPSMC_MSG_DramLogSetDramAddr, 0),
MSG_MAP(StartDramLogging, PPSMC_MSG_StartDramLogging, 0),
MSG_MAP(StopDramLogging, PPSMC_MSG_StopDramLogging, 0),
MSG_MAP(SetSoftMinCclk, PPSMC_MSG_SetSoftMinCclk, 0),
MSG_MAP(SetSoftMaxCclk, PPSMC_MSG_SetSoftMaxCclk, 0),
MSG_MAP(RequestActiveWgp, PPSMC_MSG_RequestActiveWgp, 0),
MSG_MAP(SetFastPPTLimit, PPSMC_MSG_SetFastPPTLimit, 0),
MSG_MAP(SetSlowPPTLimit, PPSMC_MSG_SetSlowPPTLimit, 0),
MSG_MAP(GetFastPPTLimit, PPSMC_MSG_GetFastPPTLimit, 0),
MSG_MAP(GetSlowPPTLimit, PPSMC_MSG_GetSlowPPTLimit, 0),
MSG_MAP(GetGfxOffStatus, PPSMC_MSG_GetGfxOffStatus, 0),
MSG_MAP(GetGfxOffEntryCount, PPSMC_MSG_GetGfxOffEntryCount, 0),
MSG_MAP(LogGfxOffResidency, PPSMC_MSG_LogGfxOffResidency, 0),
};
static struct cmn2asic_mapping vangogh_feature_mask_map[SMU_FEATURE_COUNT] = {
FEA_MAP(PPT),
FEA_MAP(TDC),
FEA_MAP(THERMAL),
FEA_MAP(DS_GFXCLK),
FEA_MAP(DS_SOCCLK),
FEA_MAP(DS_LCLK),
FEA_MAP(DS_FCLK),
FEA_MAP(DS_MP1CLK),
FEA_MAP(DS_MP0CLK),
FEA_MAP(ATHUB_PG),
FEA_MAP(CCLK_DPM),
FEA_MAP(FAN_CONTROLLER),
FEA_MAP(ULV),
FEA_MAP(VCN_DPM),
FEA_MAP(LCLK_DPM),
FEA_MAP(SHUBCLK_DPM),
FEA_MAP(DCFCLK_DPM),
FEA_MAP(DS_DCFCLK),
FEA_MAP(S0I2),
FEA_MAP(SMU_LOW_POWER),
FEA_MAP(GFX_DEM),
FEA_MAP(PSI),
FEA_MAP(PROCHOT),
FEA_MAP(CPUOFF),
FEA_MAP(STAPM),
FEA_MAP(S0I3),
FEA_MAP(DF_CSTATES),
FEA_MAP(PERF_LIMIT),
FEA_MAP(CORE_DLDO),
FEA_MAP(RSMU_LOW_POWER),
FEA_MAP(SMN_LOW_POWER),
FEA_MAP(THM_LOW_POWER),
FEA_MAP(SMUIO_LOW_POWER),
FEA_MAP(MP1_LOW_POWER),
FEA_MAP(DS_VCN),
FEA_MAP(CPPC),
FEA_MAP(OS_CSTATES),
FEA_MAP(ISP_DPM),
FEA_MAP(A55_DPM),
FEA_MAP(CVIP_DSP_DPM),
FEA_MAP(MSMU_LOW_POWER),
FEA_MAP_REVERSE(SOCCLK),
FEA_MAP_REVERSE(FCLK),
FEA_MAP_HALF_REVERSE(GFX),
};
static struct cmn2asic_mapping vangogh_table_map[SMU_TABLE_COUNT] = {
TAB_MAP_VALID(WATERMARKS),
TAB_MAP_VALID(SMU_METRICS),
TAB_MAP_VALID(CUSTOM_DPM),
TAB_MAP_VALID(DPMCLOCKS),
};
static struct cmn2asic_mapping vangogh_workload_map[PP_SMC_POWER_PROFILE_COUNT] = {
WORKLOAD_MAP(PP_SMC_POWER_PROFILE_FULLSCREEN3D, WORKLOAD_PPLIB_FULL_SCREEN_3D_BIT),
WORKLOAD_MAP(PP_SMC_POWER_PROFILE_VIDEO, WORKLOAD_PPLIB_VIDEO_BIT),
WORKLOAD_MAP(PP_SMC_POWER_PROFILE_VR, WORKLOAD_PPLIB_VR_BIT),
WORKLOAD_MAP(PP_SMC_POWER_PROFILE_COMPUTE, WORKLOAD_PPLIB_COMPUTE_BIT),
WORKLOAD_MAP(PP_SMC_POWER_PROFILE_CUSTOM, WORKLOAD_PPLIB_CUSTOM_BIT),
};
static const uint8_t vangogh_throttler_map[] = {
[THROTTLER_STATUS_BIT_SPL] = (SMU_THROTTLER_SPL_BIT),
[THROTTLER_STATUS_BIT_FPPT] = (SMU_THROTTLER_FPPT_BIT),
[THROTTLER_STATUS_BIT_SPPT] = (SMU_THROTTLER_SPPT_BIT),
[THROTTLER_STATUS_BIT_SPPT_APU] = (SMU_THROTTLER_SPPT_APU_BIT),
[THROTTLER_STATUS_BIT_THM_CORE] = (SMU_THROTTLER_TEMP_CORE_BIT),
[THROTTLER_STATUS_BIT_THM_GFX] = (SMU_THROTTLER_TEMP_GPU_BIT),
[THROTTLER_STATUS_BIT_THM_SOC] = (SMU_THROTTLER_TEMP_SOC_BIT),
[THROTTLER_STATUS_BIT_TDC_VDD] = (SMU_THROTTLER_TDC_VDD_BIT),
[THROTTLER_STATUS_BIT_TDC_SOC] = (SMU_THROTTLER_TDC_SOC_BIT),
[THROTTLER_STATUS_BIT_TDC_GFX] = (SMU_THROTTLER_TDC_GFX_BIT),
[THROTTLER_STATUS_BIT_TDC_CVIP] = (SMU_THROTTLER_TDC_CVIP_BIT),
};
static int vangogh_tables_init(struct smu_context *smu)
{
struct smu_table_context *smu_table = &smu->smu_table;
struct smu_table *tables = smu_table->tables;
uint32_t if_version;
uint32_t smu_version;
uint32_t ret = 0;
ret = smu_cmn_get_smc_version(smu, &if_version, &smu_version);
if (ret) {
return ret;
}
SMU_TABLE_INIT(tables, SMU_TABLE_WATERMARKS, sizeof(Watermarks_t),
PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
SMU_TABLE_INIT(tables, SMU_TABLE_DPMCLOCKS, sizeof(DpmClocks_t),
PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
SMU_TABLE_INIT(tables, SMU_TABLE_PMSTATUSLOG, SMU11_TOOL_SIZE,
PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
SMU_TABLE_INIT(tables, SMU_TABLE_ACTIVITY_MONITOR_COEFF, sizeof(DpmActivityMonitorCoeffExt_t),
PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
if (if_version < 0x3) {
SMU_TABLE_INIT(tables, SMU_TABLE_SMU_METRICS, sizeof(SmuMetrics_legacy_t),
PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
smu_table->metrics_table = kzalloc(sizeof(SmuMetrics_legacy_t), GFP_KERNEL);
} else {
SMU_TABLE_INIT(tables, SMU_TABLE_SMU_METRICS, sizeof(SmuMetrics_t),
PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
smu_table->metrics_table = kzalloc(sizeof(SmuMetrics_t), GFP_KERNEL);
}
if (!smu_table->metrics_table)
goto err0_out;
smu_table->metrics_time = 0;
if (smu_version >= 0x043F3E00)
smu_table->gpu_metrics_table_size = sizeof(struct gpu_metrics_v2_3);
else
smu_table->gpu_metrics_table_size = sizeof(struct gpu_metrics_v2_2);
smu_table->gpu_metrics_table = kzalloc(smu_table->gpu_metrics_table_size, GFP_KERNEL);
if (!smu_table->gpu_metrics_table)
goto err1_out;
smu_table->watermarks_table = kzalloc(sizeof(Watermarks_t), GFP_KERNEL);
if (!smu_table->watermarks_table)
goto err2_out;
smu_table->clocks_table = kzalloc(sizeof(DpmClocks_t), GFP_KERNEL);
if (!smu_table->clocks_table)
goto err3_out;
return 0;
err3_out:
kfree(smu_table->watermarks_table);
err2_out:
kfree(smu_table->gpu_metrics_table);
err1_out:
kfree(smu_table->metrics_table);
err0_out:
return -ENOMEM;
}
static int vangogh_get_legacy_smu_metrics_data(struct smu_context *smu,
MetricsMember_t member,
uint32_t *value)
{
struct smu_table_context *smu_table = &smu->smu_table;
SmuMetrics_legacy_t *metrics = (SmuMetrics_legacy_t *)smu_table->metrics_table;
int ret = 0;
ret = smu_cmn_get_metrics_table(smu,
NULL,
false);
if (ret)
return ret;
switch (member) {
case METRICS_CURR_GFXCLK:
*value = metrics->GfxclkFrequency;
break;
case METRICS_AVERAGE_SOCCLK:
*value = metrics->SocclkFrequency;
break;
case METRICS_AVERAGE_VCLK:
*value = metrics->VclkFrequency;
break;
case METRICS_AVERAGE_DCLK:
*value = metrics->DclkFrequency;
break;
case METRICS_CURR_UCLK:
*value = metrics->MemclkFrequency;
break;
case METRICS_AVERAGE_GFXACTIVITY:
*value = metrics->GfxActivity / 100;
break;
case METRICS_AVERAGE_VCNACTIVITY:
*value = metrics->UvdActivity;
break;
case METRICS_AVERAGE_SOCKETPOWER:
*value = (metrics->CurrentSocketPower << 8) /
1000 ;
break;
case METRICS_TEMPERATURE_EDGE:
*value = metrics->GfxTemperature / 100 *
SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
break;
case METRICS_TEMPERATURE_HOTSPOT:
*value = metrics->SocTemperature / 100 *
SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
break;
case METRICS_THROTTLER_STATUS:
*value = metrics->ThrottlerStatus;
break;
case METRICS_VOLTAGE_VDDGFX:
*value = metrics->Voltage[2];
break;
case METRICS_VOLTAGE_VDDSOC:
*value = metrics->Voltage[1];
break;
case METRICS_AVERAGE_CPUCLK:
memcpy(value, &metrics->CoreFrequency[0],
smu->cpu_core_num * sizeof(uint16_t));
break;
default:
*value = UINT_MAX;
break;
}
return ret;
}
static int vangogh_get_smu_metrics_data(struct smu_context *smu,
MetricsMember_t member,
uint32_t *value)
{
struct smu_table_context *smu_table = &smu->smu_table;
SmuMetrics_t *metrics = (SmuMetrics_t *)smu_table->metrics_table;
int ret = 0;
ret = smu_cmn_get_metrics_table(smu,
NULL,
false);
if (ret)
return ret;
switch (member) {
case METRICS_CURR_GFXCLK:
*value = metrics->Current.GfxclkFrequency;
break;
case METRICS_AVERAGE_SOCCLK:
*value = metrics->Current.SocclkFrequency;
break;
case METRICS_AVERAGE_VCLK:
*value = metrics->Current.VclkFrequency;
break;
case METRICS_AVERAGE_DCLK:
*value = metrics->Current.DclkFrequency;
break;
case METRICS_CURR_UCLK:
*value = metrics->Current.MemclkFrequency;
break;
case METRICS_AVERAGE_GFXACTIVITY:
*value = metrics->Current.GfxActivity;
break;
case METRICS_AVERAGE_VCNACTIVITY:
*value = metrics->Current.UvdActivity;
break;
case METRICS_AVERAGE_SOCKETPOWER:
*value = (metrics->Current.CurrentSocketPower << 8) /
1000;
break;
case METRICS_TEMPERATURE_EDGE:
*value = metrics->Current.GfxTemperature / 100 *
SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
break;
case METRICS_TEMPERATURE_HOTSPOT:
*value = metrics->Current.SocTemperature / 100 *
SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
break;
case METRICS_THROTTLER_STATUS:
*value = metrics->Current.ThrottlerStatus;
break;
case METRICS_VOLTAGE_VDDGFX:
*value = metrics->Current.Voltage[2];
break;
case METRICS_VOLTAGE_VDDSOC:
*value = metrics->Current.Voltage[1];
break;
case METRICS_AVERAGE_CPUCLK:
memcpy(value, &metrics->Current.CoreFrequency[0],
smu->cpu_core_num * sizeof(uint16_t));
break;
default:
*value = UINT_MAX;
break;
}
return ret;
}
static int vangogh_common_get_smu_metrics_data(struct smu_context *smu,
MetricsMember_t member,
uint32_t *value)
{
struct amdgpu_device *adev = smu->adev;
uint32_t if_version;
int ret = 0;
ret = smu_cmn_get_smc_version(smu, &if_version, NULL);
if (ret) {
dev_err(adev->dev, "Failed to get smu if version!\n");
return ret;
}
if (if_version < 0x3)
ret = vangogh_get_legacy_smu_metrics_data(smu, member, value);
else
ret = vangogh_get_smu_metrics_data(smu, member, value);
return ret;
}
static int vangogh_allocate_dpm_context(struct smu_context *smu)
{
struct smu_dpm_context *smu_dpm = &smu->smu_dpm;
smu_dpm->dpm_context = kzalloc(sizeof(struct smu_11_0_dpm_context),
GFP_KERNEL);
if (!smu_dpm->dpm_context)
return -ENOMEM;
smu_dpm->dpm_context_size = sizeof(struct smu_11_0_dpm_context);
return 0;
}
static int vangogh_init_smc_tables(struct smu_context *smu)
{
int ret = 0;
ret = vangogh_tables_init(smu);
if (ret)
return ret;
ret = vangogh_allocate_dpm_context(smu);
if (ret)
return ret;
#ifdef CONFIG_X86
/* AMD x86 APU only */
smu->cpu_core_num = boot_cpu_data.x86_max_cores;
#else
smu->cpu_core_num = 4;
#endif
return smu_v11_0_init_smc_tables(smu);
}
static int vangogh_dpm_set_vcn_enable(struct smu_context *smu, bool enable)
{
int ret = 0;
if (enable) {
/* vcn dpm on is a prerequisite for vcn power gate messages */
ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_PowerUpVcn, 0, NULL);
if (ret)
return ret;
} else {
ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_PowerDownVcn, 0, NULL);
if (ret)
return ret;
}
return ret;
}
static int vangogh_dpm_set_jpeg_enable(struct smu_context *smu, bool enable)
{
int ret = 0;
if (enable) {
ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_PowerUpJpeg, 0, NULL);
if (ret)
return ret;
} else {
ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_PowerDownJpeg, 0, NULL);
if (ret)
return ret;
}
return ret;
}
static bool vangogh_is_dpm_running(struct smu_context *smu)
{
struct amdgpu_device *adev = smu->adev;
int ret = 0;
uint64_t feature_enabled;
/* we need to re-init after suspend so return false */
if (adev->in_suspend)
return false;
ret = smu_cmn_get_enabled_mask(smu, &feature_enabled);
if (ret)
return false;
return !!(feature_enabled & SMC_DPM_FEATURE);
}
static int vangogh_get_dpm_clk_limited(struct smu_context *smu, enum smu_clk_type clk_type,
uint32_t dpm_level, uint32_t *freq)
{
DpmClocks_t *clk_table = smu->smu_table.clocks_table;
if (!clk_table || clk_type >= SMU_CLK_COUNT)
return -EINVAL;
switch (clk_type) {
case SMU_SOCCLK:
if (dpm_level >= clk_table->NumSocClkLevelsEnabled)
return -EINVAL;
*freq = clk_table->SocClocks[dpm_level];
break;
case SMU_VCLK:
if (dpm_level >= clk_table->VcnClkLevelsEnabled)
return -EINVAL;
*freq = clk_table->VcnClocks[dpm_level].vclk;
break;
case SMU_DCLK:
if (dpm_level >= clk_table->VcnClkLevelsEnabled)
return -EINVAL;
*freq = clk_table->VcnClocks[dpm_level].dclk;
break;
case SMU_UCLK:
case SMU_MCLK:
if (dpm_level >= clk_table->NumDfPstatesEnabled)
return -EINVAL;
*freq = clk_table->DfPstateTable[dpm_level].memclk;
break;
case SMU_FCLK:
if (dpm_level >= clk_table->NumDfPstatesEnabled)
return -EINVAL;
*freq = clk_table->DfPstateTable[dpm_level].fclk;
break;
default:
return -EINVAL;
}
return 0;
}
static int vangogh_print_legacy_clk_levels(struct smu_context *smu,
enum smu_clk_type clk_type, char *buf)
{
DpmClocks_t *clk_table = smu->smu_table.clocks_table;
SmuMetrics_legacy_t metrics;
struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);
int i, idx, size = 0, ret = 0;
uint32_t cur_value = 0, value = 0, count = 0;
bool cur_value_match_level = false;
memset(&metrics, 0, sizeof(metrics));
ret = smu_cmn_get_metrics_table(smu, &metrics, false);
if (ret)
return ret;
smu_cmn_get_sysfs_buf(&buf, &size);
switch (clk_type) {
case SMU_OD_SCLK:
if (smu_dpm_ctx->dpm_level == AMD_DPM_FORCED_LEVEL_MANUAL) {
size += sysfs_emit_at(buf, size, "%s:\n", "OD_SCLK");
size += sysfs_emit_at(buf, size, "0: %10uMhz\n",
(smu->gfx_actual_hard_min_freq > 0) ? smu->gfx_actual_hard_min_freq : smu->gfx_default_hard_min_freq);
size += sysfs_emit_at(buf, size, "1: %10uMhz\n",
(smu->gfx_actual_soft_max_freq > 0) ? smu->gfx_actual_soft_max_freq : smu->gfx_default_soft_max_freq);
}
break;
case SMU_OD_CCLK:
if (smu_dpm_ctx->dpm_level == AMD_DPM_FORCED_LEVEL_MANUAL) {
size += sysfs_emit_at(buf, size, "CCLK_RANGE in Core%d:\n", smu->cpu_core_id_select);
size += sysfs_emit_at(buf, size, "0: %10uMhz\n",
(smu->cpu_actual_soft_min_freq > 0) ? smu->cpu_actual_soft_min_freq : smu->cpu_default_soft_min_freq);
size += sysfs_emit_at(buf, size, "1: %10uMhz\n",
(smu->cpu_actual_soft_max_freq > 0) ? smu->cpu_actual_soft_max_freq : smu->cpu_default_soft_max_freq);
}
break;
case SMU_OD_RANGE:
if (smu_dpm_ctx->dpm_level == AMD_DPM_FORCED_LEVEL_MANUAL) {
size += sysfs_emit_at(buf, size, "%s:\n", "OD_RANGE");
size += sysfs_emit_at(buf, size, "SCLK: %7uMhz %10uMhz\n",
smu->gfx_default_hard_min_freq, smu->gfx_default_soft_max_freq);
size += sysfs_emit_at(buf, size, "CCLK: %7uMhz %10uMhz\n",
smu->cpu_default_soft_min_freq, smu->cpu_default_soft_max_freq);
}
break;
case SMU_SOCCLK:
/* the level 3 ~ 6 of socclk use the same frequency for vangogh */
count = clk_table->NumSocClkLevelsEnabled;
cur_value = metrics.SocclkFrequency;
break;
case SMU_VCLK:
count = clk_table->VcnClkLevelsEnabled;
cur_value = metrics.VclkFrequency;
break;
case SMU_DCLK:
count = clk_table->VcnClkLevelsEnabled;
cur_value = metrics.DclkFrequency;
break;
case SMU_MCLK:
count = clk_table->NumDfPstatesEnabled;
cur_value = metrics.MemclkFrequency;
break;
case SMU_FCLK:
count = clk_table->NumDfPstatesEnabled;
ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_GetFclkFrequency, 0, &cur_value);
if (ret)
return ret;
break;
default:
break;
}
switch (clk_type) {
case SMU_SOCCLK:
case SMU_VCLK:
case SMU_DCLK:
case SMU_MCLK:
case SMU_FCLK:
for (i = 0; i < count; i++) {
idx = (clk_type == SMU_FCLK || clk_type == SMU_MCLK) ? (count - i - 1) : i;
ret = vangogh_get_dpm_clk_limited(smu, clk_type, idx, &value);
if (ret)
return ret;
if (!value)
continue;
size += sysfs_emit_at(buf, size, "%d: %uMhz %s\n", i, value,
cur_value == value ? "*" : "");
if (cur_value == value)
cur_value_match_level = true;
}
if (!cur_value_match_level)
size += sysfs_emit_at(buf, size, " %uMhz *\n", cur_value);
break;
default:
break;
}
return size;
}
static int vangogh_print_clk_levels(struct smu_context *smu,
enum smu_clk_type clk_type, char *buf)
{
DpmClocks_t *clk_table = smu->smu_table.clocks_table;
SmuMetrics_t metrics;
struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);
int i, idx, size = 0, ret = 0;
uint32_t cur_value = 0, value = 0, count = 0;
bool cur_value_match_level = false;
uint32_t min, max;
memset(&metrics, 0, sizeof(metrics));
ret = smu_cmn_get_metrics_table(smu, &metrics, false);
if (ret)
return ret;
smu_cmn_get_sysfs_buf(&buf, &size);
switch (clk_type) {
case SMU_OD_SCLK:
if (smu_dpm_ctx->dpm_level == AMD_DPM_FORCED_LEVEL_MANUAL) {
size += sysfs_emit_at(buf, size, "%s:\n", "OD_SCLK");
size += sysfs_emit_at(buf, size, "0: %10uMhz\n",
(smu->gfx_actual_hard_min_freq > 0) ? smu->gfx_actual_hard_min_freq : smu->gfx_default_hard_min_freq);
size += sysfs_emit_at(buf, size, "1: %10uMhz\n",
(smu->gfx_actual_soft_max_freq > 0) ? smu->gfx_actual_soft_max_freq : smu->gfx_default_soft_max_freq);
}
break;
case SMU_OD_CCLK:
if (smu_dpm_ctx->dpm_level == AMD_DPM_FORCED_LEVEL_MANUAL) {
size += sysfs_emit_at(buf, size, "CCLK_RANGE in Core%d:\n", smu->cpu_core_id_select);
size += sysfs_emit_at(buf, size, "0: %10uMhz\n",
(smu->cpu_actual_soft_min_freq > 0) ? smu->cpu_actual_soft_min_freq : smu->cpu_default_soft_min_freq);
size += sysfs_emit_at(buf, size, "1: %10uMhz\n",
(smu->cpu_actual_soft_max_freq > 0) ? smu->cpu_actual_soft_max_freq : smu->cpu_default_soft_max_freq);
}
break;
case SMU_OD_RANGE:
if (smu_dpm_ctx->dpm_level == AMD_DPM_FORCED_LEVEL_MANUAL) {
size += sysfs_emit_at(buf, size, "%s:\n", "OD_RANGE");
size += sysfs_emit_at(buf, size, "SCLK: %7uMhz %10uMhz\n",
smu->gfx_default_hard_min_freq, smu->gfx_default_soft_max_freq);
size += sysfs_emit_at(buf, size, "CCLK: %7uMhz %10uMhz\n",
smu->cpu_default_soft_min_freq, smu->cpu_default_soft_max_freq);
}
break;
case SMU_SOCCLK:
/* the level 3 ~ 6 of socclk use the same frequency for vangogh */
count = clk_table->NumSocClkLevelsEnabled;
cur_value = metrics.Current.SocclkFrequency;
break;
case SMU_VCLK:
count = clk_table->VcnClkLevelsEnabled;
cur_value = metrics.Current.VclkFrequency;
break;
case SMU_DCLK:
count = clk_table->VcnClkLevelsEnabled;
cur_value = metrics.Current.DclkFrequency;
break;
case SMU_MCLK:
count = clk_table->NumDfPstatesEnabled;
cur_value = metrics.Current.MemclkFrequency;
break;
case SMU_FCLK:
count = clk_table->NumDfPstatesEnabled;
ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_GetFclkFrequency, 0, &cur_value);
if (ret)
return ret;
break;
case SMU_GFXCLK:
case SMU_SCLK:
ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_GetGfxclkFrequency, 0, &cur_value);
if (ret) {
return ret;
}
break;
default:
break;
}
switch (clk_type) {
case SMU_SOCCLK:
case SMU_VCLK:
case SMU_DCLK:
case SMU_MCLK:
case SMU_FCLK:
for (i = 0; i < count; i++) {
idx = (clk_type == SMU_FCLK || clk_type == SMU_MCLK) ? (count - i - 1) : i;
ret = vangogh_get_dpm_clk_limited(smu, clk_type, idx, &value);
if (ret)
return ret;
if (!value)
continue;
size += sysfs_emit_at(buf, size, "%d: %uMhz %s\n", i, value,
cur_value == value ? "*" : "");
if (cur_value == value)
cur_value_match_level = true;
}
if (!cur_value_match_level)
size += sysfs_emit_at(buf, size, " %uMhz *\n", cur_value);
break;
case SMU_GFXCLK:
case SMU_SCLK:
min = (smu->gfx_actual_hard_min_freq > 0) ? smu->gfx_actual_hard_min_freq : smu->gfx_default_hard_min_freq;
max = (smu->gfx_actual_soft_max_freq > 0) ? smu->gfx_actual_soft_max_freq : smu->gfx_default_soft_max_freq;
if (cur_value == max)
i = 2;
else if (cur_value == min)
i = 0;
else
i = 1;
size += sysfs_emit_at(buf, size, "0: %uMhz %s\n", min,
i == 0 ? "*" : "");
size += sysfs_emit_at(buf, size, "1: %uMhz %s\n",
i == 1 ? cur_value : VANGOGH_UMD_PSTATE_STANDARD_GFXCLK,
i == 1 ? "*" : "");
size += sysfs_emit_at(buf, size, "2: %uMhz %s\n", max,
i == 2 ? "*" : "");
break;
default:
break;
}
return size;
}
static int vangogh_common_print_clk_levels(struct smu_context *smu,
enum smu_clk_type clk_type, char *buf)
{
struct amdgpu_device *adev = smu->adev;
uint32_t if_version;
int ret = 0;
ret = smu_cmn_get_smc_version(smu, &if_version, NULL);
if (ret) {
dev_err(adev->dev, "Failed to get smu if version!\n");
return ret;
}
if (if_version < 0x3)
ret = vangogh_print_legacy_clk_levels(smu, clk_type, buf);
else
ret = vangogh_print_clk_levels(smu, clk_type, buf);
return ret;
}
static int vangogh_get_profiling_clk_mask(struct smu_context *smu,
enum amd_dpm_forced_level level,
uint32_t *vclk_mask,
uint32_t *dclk_mask,
uint32_t *mclk_mask,
uint32_t *fclk_mask,
uint32_t *soc_mask)
{
DpmClocks_t *clk_table = smu->smu_table.clocks_table;
if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK) {
if (mclk_mask)
*mclk_mask = clk_table->NumDfPstatesEnabled - 1;
if (fclk_mask)
*fclk_mask = clk_table->NumDfPstatesEnabled - 1;
if (soc_mask)
*soc_mask = 0;
} else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) {
if (mclk_mask)
*mclk_mask = 0;
if (fclk_mask)
*fclk_mask = 0;
if (soc_mask)
*soc_mask = 1;
if (vclk_mask)
*vclk_mask = 1;
if (dclk_mask)
*dclk_mask = 1;
} else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD) {
if (mclk_mask)
*mclk_mask = 0;
if (fclk_mask)
*fclk_mask = 0;
if (soc_mask)
*soc_mask = 1;
if (vclk_mask)
*vclk_mask = 1;
if (dclk_mask)
*dclk_mask = 1;
}
return 0;
}
static bool vangogh_clk_dpm_is_enabled(struct smu_context *smu,
enum smu_clk_type clk_type)
{
enum smu_feature_mask feature_id = 0;
switch (clk_type) {
case SMU_MCLK:
case SMU_UCLK:
case SMU_FCLK:
feature_id = SMU_FEATURE_DPM_FCLK_BIT;
break;
case SMU_GFXCLK:
case SMU_SCLK:
feature_id = SMU_FEATURE_DPM_GFXCLK_BIT;
break;
case SMU_SOCCLK:
feature_id = SMU_FEATURE_DPM_SOCCLK_BIT;
break;
case SMU_VCLK:
case SMU_DCLK:
feature_id = SMU_FEATURE_VCN_DPM_BIT;
break;
default:
return true;
}
if (!smu_cmn_feature_is_enabled(smu, feature_id))
return false;
return true;
}
static int vangogh_get_dpm_ultimate_freq(struct smu_context *smu,
enum smu_clk_type clk_type,
uint32_t *min,
uint32_t *max)
{
int ret = 0;
uint32_t soc_mask;
uint32_t vclk_mask;
uint32_t dclk_mask;
uint32_t mclk_mask;
uint32_t fclk_mask;
uint32_t clock_limit;
if (!vangogh_clk_dpm_is_enabled(smu, clk_type)) {
switch (clk_type) {
case SMU_MCLK:
case SMU_UCLK:
clock_limit = smu->smu_table.boot_values.uclk;
break;
case SMU_FCLK:
clock_limit = smu->smu_table.boot_values.fclk;
break;
case SMU_GFXCLK:
case SMU_SCLK:
clock_limit = smu->smu_table.boot_values.gfxclk;
break;
case SMU_SOCCLK:
clock_limit = smu->smu_table.boot_values.socclk;
break;
case SMU_VCLK:
clock_limit = smu->smu_table.boot_values.vclk;
break;
case SMU_DCLK:
clock_limit = smu->smu_table.boot_values.dclk;
break;
default:
clock_limit = 0;
break;
}
/* clock in Mhz unit */
if (min)
*min = clock_limit / 100;
if (max)
*max = clock_limit / 100;
return 0;
}
if (max) {
ret = vangogh_get_profiling_clk_mask(smu,
AMD_DPM_FORCED_LEVEL_PROFILE_PEAK,
&vclk_mask,
&dclk_mask,
&mclk_mask,
&fclk_mask,
&soc_mask);
if (ret)
goto failed;
switch (clk_type) {
case SMU_UCLK:
case SMU_MCLK:
ret = vangogh_get_dpm_clk_limited(smu, clk_type, mclk_mask, max);
if (ret)
goto failed;
break;
case SMU_SOCCLK:
ret = vangogh_get_dpm_clk_limited(smu, clk_type, soc_mask, max);
if (ret)
goto failed;
break;
case SMU_FCLK:
ret = vangogh_get_dpm_clk_limited(smu, clk_type, fclk_mask, max);
if (ret)
goto failed;
break;
case SMU_VCLK:
ret = vangogh_get_dpm_clk_limited(smu, clk_type, vclk_mask, max);
if (ret)
goto failed;
break;
case SMU_DCLK:
ret = vangogh_get_dpm_clk_limited(smu, clk_type, dclk_mask, max);
if (ret)
goto failed;
break;
default:
ret = -EINVAL;
goto failed;
}
}
if (min) {
switch (clk_type) {
case SMU_UCLK:
case SMU_MCLK:
ret = vangogh_get_dpm_clk_limited(smu, clk_type, mclk_mask, min);
if (ret)
goto failed;
break;
case SMU_SOCCLK:
ret = vangogh_get_dpm_clk_limited(smu, clk_type, soc_mask, min);
if (ret)
goto failed;
break;
case SMU_FCLK:
ret = vangogh_get_dpm_clk_limited(smu, clk_type, fclk_mask, min);
if (ret)
goto failed;
break;
case SMU_VCLK:
ret = vangogh_get_dpm_clk_limited(smu, clk_type, vclk_mask, min);
if (ret)
goto failed;
break;
case SMU_DCLK:
ret = vangogh_get_dpm_clk_limited(smu, clk_type, dclk_mask, min);
if (ret)
goto failed;
break;
default:
ret = -EINVAL;
goto failed;
}
}
failed:
return ret;
}
static int vangogh_get_power_profile_mode(struct smu_context *smu,
char *buf)
{
uint32_t i, size = 0;
int16_t workload_type = 0;
if (!buf)
return -EINVAL;
for (i = 0; i <= PP_SMC_POWER_PROFILE_CUSTOM; i++) {
/*
* Conv PP_SMC_POWER_PROFILE* to WORKLOAD_PPLIB_*_BIT
* Not all profile modes are supported on vangogh.
*/
workload_type = smu_cmn_to_asic_specific_index(smu,
CMN2ASIC_MAPPING_WORKLOAD,
i);
if (workload_type < 0)
continue;
size += sysfs_emit_at(buf, size, "%2d %14s%s\n",
i, amdgpu_pp_profile_name[i], (i == smu->power_profile_mode) ? "*" : " ");
}
return size;
}
static int vangogh_set_power_profile_mode(struct smu_context *smu, long *input, uint32_t size)
{
int workload_type, ret;
uint32_t profile_mode = input[size];
if (profile_mode > PP_SMC_POWER_PROFILE_CUSTOM) {
dev_err(smu->adev->dev, "Invalid power profile mode %d\n", profile_mode);
return -EINVAL;
}
if (profile_mode == PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT ||
profile_mode == PP_SMC_POWER_PROFILE_POWERSAVING)
return 0;
/* conv PP_SMC_POWER_PROFILE* to WORKLOAD_PPLIB_*_BIT */
workload_type = smu_cmn_to_asic_specific_index(smu,
CMN2ASIC_MAPPING_WORKLOAD,
profile_mode);
if (workload_type < 0) {
dev_dbg(smu->adev->dev, "Unsupported power profile mode %d on VANGOGH\n",
profile_mode);
return -EINVAL;
}
ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_ActiveProcessNotify,
1 << workload_type,
NULL);
if (ret) {
dev_err_once(smu->adev->dev, "Fail to set workload type %d\n",
workload_type);
return ret;
}
smu->power_profile_mode = profile_mode;
return 0;
}
static int vangogh_set_soft_freq_limited_range(struct smu_context *smu,
enum smu_clk_type clk_type,
uint32_t min,
uint32_t max)
{
int ret = 0;
if (!vangogh_clk_dpm_is_enabled(smu, clk_type))
return 0;
switch (clk_type) {
case SMU_GFXCLK:
case SMU_SCLK:
ret = smu_cmn_send_smc_msg_with_param(smu,
SMU_MSG_SetHardMinGfxClk,
min, NULL);
if (ret)
return ret;
ret = smu_cmn_send_smc_msg_with_param(smu,
SMU_MSG_SetSoftMaxGfxClk,
max, NULL);
if (ret)
return ret;
break;
case SMU_FCLK:
ret = smu_cmn_send_smc_msg_with_param(smu,
SMU_MSG_SetHardMinFclkByFreq,
min, NULL);
if (ret)
return ret;
ret = smu_cmn_send_smc_msg_with_param(smu,
SMU_MSG_SetSoftMaxFclkByFreq,
max, NULL);
if (ret)
return ret;
break;
case SMU_SOCCLK:
ret = smu_cmn_send_smc_msg_with_param(smu,
SMU_MSG_SetHardMinSocclkByFreq,
min, NULL);
if (ret)
return ret;
ret = smu_cmn_send_smc_msg_with_param(smu,
SMU_MSG_SetSoftMaxSocclkByFreq,
max, NULL);
if (ret)
return ret;
break;
case SMU_VCLK:
ret = smu_cmn_send_smc_msg_with_param(smu,
SMU_MSG_SetHardMinVcn,
min << 16, NULL);
if (ret)
return ret;
ret = smu_cmn_send_smc_msg_with_param(smu,
SMU_MSG_SetSoftMaxVcn,
max << 16, NULL);
if (ret)
return ret;
break;
case SMU_DCLK:
ret = smu_cmn_send_smc_msg_with_param(smu,
SMU_MSG_SetHardMinVcn,
min, NULL);
if (ret)
return ret;
ret = smu_cmn_send_smc_msg_with_param(smu,
SMU_MSG_SetSoftMaxVcn,
max, NULL);
if (ret)
return ret;
break;
default:
return -EINVAL;
}
return ret;
}
static int vangogh_force_clk_levels(struct smu_context *smu,
enum smu_clk_type clk_type, uint32_t mask)
{
uint32_t soft_min_level = 0, soft_max_level = 0;
uint32_t min_freq = 0, max_freq = 0;
int ret = 0 ;
soft_min_level = mask ? (ffs(mask) - 1) : 0;
soft_max_level = mask ? (fls(mask) - 1) : 0;
switch (clk_type) {
case SMU_SOCCLK:
ret = vangogh_get_dpm_clk_limited(smu, clk_type,
soft_min_level, &min_freq);
if (ret)
return ret;
ret = vangogh_get_dpm_clk_limited(smu, clk_type,
soft_max_level, &max_freq);
if (ret)
return ret;
ret = smu_cmn_send_smc_msg_with_param(smu,
SMU_MSG_SetSoftMaxSocclkByFreq,
max_freq, NULL);
if (ret)
return ret;
ret = smu_cmn_send_smc_msg_with_param(smu,
SMU_MSG_SetHardMinSocclkByFreq,
min_freq, NULL);
if (ret)
return ret;
break;
case SMU_FCLK:
ret = vangogh_get_dpm_clk_limited(smu,
clk_type, soft_min_level, &min_freq);
if (ret)
return ret;
ret = vangogh_get_dpm_clk_limited(smu,
clk_type, soft_max_level, &max_freq);
if (ret)
return ret;
ret = smu_cmn_send_smc_msg_with_param(smu,
SMU_MSG_SetSoftMaxFclkByFreq,
max_freq, NULL);
if (ret)
return ret;
ret = smu_cmn_send_smc_msg_with_param(smu,
SMU_MSG_SetHardMinFclkByFreq,
min_freq, NULL);
if (ret)
return ret;
break;
case SMU_VCLK:
ret = vangogh_get_dpm_clk_limited(smu,
clk_type, soft_min_level, &min_freq);
if (ret)
return ret;
ret = vangogh_get_dpm_clk_limited(smu,
clk_type, soft_max_level, &max_freq);
if (ret)
return ret;
ret = smu_cmn_send_smc_msg_with_param(smu,
SMU_MSG_SetHardMinVcn,
min_freq << 16, NULL);
if (ret)
return ret;
ret = smu_cmn_send_smc_msg_with_param(smu,
SMU_MSG_SetSoftMaxVcn,
max_freq << 16, NULL);
if (ret)
return ret;
break;
case SMU_DCLK:
ret = vangogh_get_dpm_clk_limited(smu,
clk_type, soft_min_level, &min_freq);
if (ret)
return ret;
ret = vangogh_get_dpm_clk_limited(smu,
clk_type, soft_max_level, &max_freq);
if (ret)
return ret;
ret = smu_cmn_send_smc_msg_with_param(smu,
SMU_MSG_SetHardMinVcn,
min_freq, NULL);
if (ret)
return ret;
ret = smu_cmn_send_smc_msg_with_param(smu,
SMU_MSG_SetSoftMaxVcn,
max_freq, NULL);
if (ret)
return ret;
break;
default:
break;
}
return ret;
}
static int vangogh_force_dpm_limit_value(struct smu_context *smu, bool highest)
{
int ret = 0, i = 0;
uint32_t min_freq, max_freq, force_freq;
enum smu_clk_type clk_type;
enum smu_clk_type clks[] = {
SMU_SOCCLK,
SMU_VCLK,
SMU_DCLK,
SMU_FCLK,
};
for (i = 0; i < ARRAY_SIZE(clks); i++) {
clk_type = clks[i];
ret = vangogh_get_dpm_ultimate_freq(smu, clk_type, &min_freq, &max_freq);
if (ret)
return ret;
force_freq = highest ? max_freq : min_freq;
ret = vangogh_set_soft_freq_limited_range(smu, clk_type, force_freq, force_freq);
if (ret)
return ret;
}
return ret;
}
static int vangogh_unforce_dpm_levels(struct smu_context *smu)
{
int ret = 0, i = 0;
uint32_t min_freq, max_freq;
enum smu_clk_type clk_type;
struct clk_feature_map {
enum smu_clk_type clk_type;
uint32_t feature;
} clk_feature_map[] = {
{SMU_FCLK, SMU_FEATURE_DPM_FCLK_BIT},
{SMU_SOCCLK, SMU_FEATURE_DPM_SOCCLK_BIT},
{SMU_VCLK, SMU_FEATURE_VCN_DPM_BIT},
{SMU_DCLK, SMU_FEATURE_VCN_DPM_BIT},
};
for (i = 0; i < ARRAY_SIZE(clk_feature_map); i++) {
if (!smu_cmn_feature_is_enabled(smu, clk_feature_map[i].feature))
continue;
clk_type = clk_feature_map[i].clk_type;
ret = vangogh_get_dpm_ultimate_freq(smu, clk_type, &min_freq, &max_freq);
if (ret)
return ret;
ret = vangogh_set_soft_freq_limited_range(smu, clk_type, min_freq, max_freq);
if (ret)
return ret;
}
return ret;
}
static int vangogh_set_peak_clock_by_device(struct smu_context *smu)
{
int ret = 0;
uint32_t socclk_freq = 0, fclk_freq = 0;
uint32_t vclk_freq = 0, dclk_freq = 0;
ret = vangogh_get_dpm_ultimate_freq(smu, SMU_FCLK, NULL, &fclk_freq);
if (ret)
return ret;
ret = vangogh_set_soft_freq_limited_range(smu, SMU_FCLK, fclk_freq, fclk_freq);
if (ret)
return ret;
ret = vangogh_get_dpm_ultimate_freq(smu, SMU_SOCCLK, NULL, &socclk_freq);
if (ret)
return ret;
ret = vangogh_set_soft_freq_limited_range(smu, SMU_SOCCLK, socclk_freq, socclk_freq);
if (ret)
return ret;
ret = vangogh_get_dpm_ultimate_freq(smu, SMU_VCLK, NULL, &vclk_freq);
if (ret)
return ret;
ret = vangogh_set_soft_freq_limited_range(smu, SMU_VCLK, vclk_freq, vclk_freq);
if (ret)
return ret;
ret = vangogh_get_dpm_ultimate_freq(smu, SMU_DCLK, NULL, &dclk_freq);
if (ret)
return ret;
ret = vangogh_set_soft_freq_limited_range(smu, SMU_DCLK, dclk_freq, dclk_freq);
if (ret)
return ret;
return ret;
}
static int vangogh_set_performance_level(struct smu_context *smu,
enum amd_dpm_forced_level level)
{
int ret = 0, i;
uint32_t soc_mask, mclk_mask, fclk_mask;
uint32_t vclk_mask = 0, dclk_mask = 0;
smu->cpu_actual_soft_min_freq = smu->cpu_default_soft_min_freq;
smu->cpu_actual_soft_max_freq = smu->cpu_default_soft_max_freq;
switch (level) {
case AMD_DPM_FORCED_LEVEL_HIGH:
smu->gfx_actual_hard_min_freq = smu->gfx_default_soft_max_freq;
smu->gfx_actual_soft_max_freq = smu->gfx_default_soft_max_freq;
ret = vangogh_force_dpm_limit_value(smu, true);
if (ret)
return ret;
break;
case AMD_DPM_FORCED_LEVEL_LOW:
smu->gfx_actual_hard_min_freq = smu->gfx_default_hard_min_freq;
smu->gfx_actual_soft_max_freq = smu->gfx_default_hard_min_freq;
ret = vangogh_force_dpm_limit_value(smu, false);
if (ret)
return ret;
break;
case AMD_DPM_FORCED_LEVEL_AUTO:
smu->gfx_actual_hard_min_freq = smu->gfx_default_hard_min_freq;
smu->gfx_actual_soft_max_freq = smu->gfx_default_soft_max_freq;
ret = vangogh_unforce_dpm_levels(smu);
if (ret)
return ret;
break;
case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD:
smu->gfx_actual_hard_min_freq = VANGOGH_UMD_PSTATE_STANDARD_GFXCLK;
smu->gfx_actual_soft_max_freq = VANGOGH_UMD_PSTATE_STANDARD_GFXCLK;
ret = vangogh_get_profiling_clk_mask(smu, level,
&vclk_mask,
&dclk_mask,
&mclk_mask,
&fclk_mask,
&soc_mask);
if (ret)
return ret;
vangogh_force_clk_levels(smu, SMU_FCLK, 1 << fclk_mask);
vangogh_force_clk_levels(smu, SMU_SOCCLK, 1 << soc_mask);
vangogh_force_clk_levels(smu, SMU_VCLK, 1 << vclk_mask);
vangogh_force_clk_levels(smu, SMU_DCLK, 1 << dclk_mask);
break;
case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK:
smu->gfx_actual_hard_min_freq = smu->gfx_default_hard_min_freq;
smu->gfx_actual_soft_max_freq = smu->gfx_default_hard_min_freq;
break;
case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK:
smu->gfx_actual_hard_min_freq = smu->gfx_default_hard_min_freq;
smu->gfx_actual_soft_max_freq = smu->gfx_default_soft_max_freq;
ret = vangogh_get_profiling_clk_mask(smu, level,
NULL,
NULL,
&mclk_mask,
&fclk_mask,
NULL);
if (ret)
return ret;
vangogh_force_clk_levels(smu, SMU_FCLK, 1 << fclk_mask);
break;
case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK:
smu->gfx_actual_hard_min_freq = VANGOGH_UMD_PSTATE_PEAK_GFXCLK;
smu->gfx_actual_soft_max_freq = VANGOGH_UMD_PSTATE_PEAK_GFXCLK;
ret = vangogh_set_peak_clock_by_device(smu);
if (ret)
return ret;
break;
case AMD_DPM_FORCED_LEVEL_MANUAL:
case AMD_DPM_FORCED_LEVEL_PROFILE_EXIT:
default:
return 0;
}
ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetHardMinGfxClk,
smu->gfx_actual_hard_min_freq, NULL);
if (ret)
return ret;
ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMaxGfxClk,
smu->gfx_actual_soft_max_freq, NULL);
if (ret)
return ret;
if (smu->adev->pm.fw_version >= 0x43f1b00) {
for (i = 0; i < smu->cpu_core_num; i++) {
ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMinCclk,
((i << 20)
| smu->cpu_actual_soft_min_freq),
NULL);
if (ret)
return ret;
ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMaxCclk,
((i << 20)
| smu->cpu_actual_soft_max_freq),
NULL);
if (ret)
return ret;
}
}
return ret;
}
static int vangogh_read_sensor(struct smu_context *smu,
enum amd_pp_sensors sensor,
void *data, uint32_t *size)
{
int ret = 0;
if (!data || !size)
return -EINVAL;
switch (sensor) {
case AMDGPU_PP_SENSOR_GPU_LOAD:
ret = vangogh_common_get_smu_metrics_data(smu,
METRICS_AVERAGE_GFXACTIVITY,
(uint32_t *)data);
*size = 4;
break;
case AMDGPU_PP_SENSOR_GPU_POWER:
ret = vangogh_common_get_smu_metrics_data(smu,
METRICS_AVERAGE_SOCKETPOWER,
(uint32_t *)data);
*size = 4;
break;
case AMDGPU_PP_SENSOR_EDGE_TEMP:
ret = vangogh_common_get_smu_metrics_data(smu,
METRICS_TEMPERATURE_EDGE,
(uint32_t *)data);
*size = 4;
break;
case AMDGPU_PP_SENSOR_HOTSPOT_TEMP:
ret = vangogh_common_get_smu_metrics_data(smu,
METRICS_TEMPERATURE_HOTSPOT,
(uint32_t *)data);
*size = 4;
break;
case AMDGPU_PP_SENSOR_GFX_MCLK:
ret = vangogh_common_get_smu_metrics_data(smu,
METRICS_CURR_UCLK,
(uint32_t *)data);
*(uint32_t *)data *= 100;
*size = 4;
break;
case AMDGPU_PP_SENSOR_GFX_SCLK:
ret = vangogh_common_get_smu_metrics_data(smu,
METRICS_CURR_GFXCLK,
(uint32_t *)data);
*(uint32_t *)data *= 100;
*size = 4;
break;
case AMDGPU_PP_SENSOR_VDDGFX:
ret = vangogh_common_get_smu_metrics_data(smu,
METRICS_VOLTAGE_VDDGFX,
(uint32_t *)data);
*size = 4;
break;
case AMDGPU_PP_SENSOR_VDDNB:
ret = vangogh_common_get_smu_metrics_data(smu,
METRICS_VOLTAGE_VDDSOC,
(uint32_t *)data);
*size = 4;
break;
case AMDGPU_PP_SENSOR_CPU_CLK:
ret = vangogh_common_get_smu_metrics_data(smu,
METRICS_AVERAGE_CPUCLK,
(uint32_t *)data);
*size = smu->cpu_core_num * sizeof(uint16_t);
break;
default:
ret = -EOPNOTSUPP;
break;
}
return ret;
}
static int vangogh_set_watermarks_table(struct smu_context *smu,
struct pp_smu_wm_range_sets *clock_ranges)
{
int i;
int ret = 0;
Watermarks_t *table = smu->smu_table.watermarks_table;
if (!table || !clock_ranges)
return -EINVAL;
if (clock_ranges) {
if (clock_ranges->num_reader_wm_sets > NUM_WM_RANGES ||
clock_ranges->num_writer_wm_sets > NUM_WM_RANGES)
return -EINVAL;
for (i = 0; i < clock_ranges->num_reader_wm_sets; i++) {
table->WatermarkRow[WM_DCFCLK][i].MinClock =
clock_ranges->reader_wm_sets[i].min_drain_clk_mhz;
table->WatermarkRow[WM_DCFCLK][i].MaxClock =
clock_ranges->reader_wm_sets[i].max_drain_clk_mhz;
table->WatermarkRow[WM_DCFCLK][i].MinMclk =
clock_ranges->reader_wm_sets[i].min_fill_clk_mhz;
table->WatermarkRow[WM_DCFCLK][i].MaxMclk =
clock_ranges->reader_wm_sets[i].max_fill_clk_mhz;
table->WatermarkRow[WM_DCFCLK][i].WmSetting =
clock_ranges->reader_wm_sets[i].wm_inst;
}
for (i = 0; i < clock_ranges->num_writer_wm_sets; i++) {
table->WatermarkRow[WM_SOCCLK][i].MinClock =
clock_ranges->writer_wm_sets[i].min_fill_clk_mhz;
table->WatermarkRow[WM_SOCCLK][i].MaxClock =
clock_ranges->writer_wm_sets[i].max_fill_clk_mhz;
table->WatermarkRow[WM_SOCCLK][i].MinMclk =
clock_ranges->writer_wm_sets[i].min_drain_clk_mhz;
table->WatermarkRow[WM_SOCCLK][i].MaxMclk =
clock_ranges->writer_wm_sets[i].max_drain_clk_mhz;
table->WatermarkRow[WM_SOCCLK][i].WmSetting =
clock_ranges->writer_wm_sets[i].wm_inst;
}
smu->watermarks_bitmap |= WATERMARKS_EXIST;
}
/* pass data to smu controller */
if ((smu->watermarks_bitmap & WATERMARKS_EXIST) &&
!(smu->watermarks_bitmap & WATERMARKS_LOADED)) {
ret = smu_cmn_write_watermarks_table(smu);
if (ret) {
dev_err(smu->adev->dev, "Failed to update WMTABLE!");
return ret;
}
smu->watermarks_bitmap |= WATERMARKS_LOADED;
}
return 0;
}
static ssize_t vangogh_get_legacy_gpu_metrics_v2_3(struct smu_context *smu,
void **table)
{
struct smu_table_context *smu_table = &smu->smu_table;
struct gpu_metrics_v2_3 *gpu_metrics =
(struct gpu_metrics_v2_3 *)smu_table->gpu_metrics_table;
SmuMetrics_legacy_t metrics;
int ret = 0;
ret = smu_cmn_get_metrics_table(smu, &metrics, true);
if (ret)
return ret;
smu_cmn_init_soft_gpu_metrics(gpu_metrics, 2, 3);
gpu_metrics->temperature_gfx = metrics.GfxTemperature;
gpu_metrics->temperature_soc = metrics.SocTemperature;
memcpy(&gpu_metrics->temperature_core[0],
&metrics.CoreTemperature[0],
sizeof(uint16_t) * 4);
gpu_metrics->temperature_l3[0] = metrics.L3Temperature[0];
gpu_metrics->average_gfx_activity = metrics.GfxActivity;
gpu_metrics->average_mm_activity = metrics.UvdActivity;
gpu_metrics->average_socket_power = metrics.CurrentSocketPower;
gpu_metrics->average_cpu_power = metrics.Power[0];
gpu_metrics->average_soc_power = metrics.Power[1];
gpu_metrics->average_gfx_power = metrics.Power[2];
memcpy(&gpu_metrics->average_core_power[0],
&metrics.CorePower[0],
sizeof(uint16_t) * 4);
gpu_metrics->average_gfxclk_frequency = metrics.GfxclkFrequency;
gpu_metrics->average_socclk_frequency = metrics.SocclkFrequency;
gpu_metrics->average_uclk_frequency = metrics.MemclkFrequency;
gpu_metrics->average_fclk_frequency = metrics.MemclkFrequency;
gpu_metrics->average_vclk_frequency = metrics.VclkFrequency;
gpu_metrics->average_dclk_frequency = metrics.DclkFrequency;
memcpy(&gpu_metrics->current_coreclk[0],
&metrics.CoreFrequency[0],
sizeof(uint16_t) * 4);
gpu_metrics->current_l3clk[0] = metrics.L3Frequency[0];
gpu_metrics->throttle_status = metrics.ThrottlerStatus;
gpu_metrics->indep_throttle_status =
smu_cmn_get_indep_throttler_status(metrics.ThrottlerStatus,
vangogh_throttler_map);
gpu_metrics->system_clock_counter = ktime_get_boottime_ns();
*table = (void *)gpu_metrics;
return sizeof(struct gpu_metrics_v2_3);
}
static ssize_t vangogh_get_legacy_gpu_metrics(struct smu_context *smu,
void **table)
{
struct smu_table_context *smu_table = &smu->smu_table;
struct gpu_metrics_v2_2 *gpu_metrics =
(struct gpu_metrics_v2_2 *)smu_table->gpu_metrics_table;
SmuMetrics_legacy_t metrics;
int ret = 0;
ret = smu_cmn_get_metrics_table(smu, &metrics, true);
if (ret)
return ret;
smu_cmn_init_soft_gpu_metrics(gpu_metrics, 2, 2);
gpu_metrics->temperature_gfx = metrics.GfxTemperature;
gpu_metrics->temperature_soc = metrics.SocTemperature;
memcpy(&gpu_metrics->temperature_core[0],
&metrics.CoreTemperature[0],
sizeof(uint16_t) * 4);
gpu_metrics->temperature_l3[0] = metrics.L3Temperature[0];
gpu_metrics->average_gfx_activity = metrics.GfxActivity;
gpu_metrics->average_mm_activity = metrics.UvdActivity;
gpu_metrics->average_socket_power = metrics.CurrentSocketPower;
gpu_metrics->average_cpu_power = metrics.Power[0];
gpu_metrics->average_soc_power = metrics.Power[1];
gpu_metrics->average_gfx_power = metrics.Power[2];
memcpy(&gpu_metrics->average_core_power[0],
&metrics.CorePower[0],
sizeof(uint16_t) * 4);
gpu_metrics->average_gfxclk_frequency = metrics.GfxclkFrequency;
gpu_metrics->average_socclk_frequency = metrics.SocclkFrequency;
gpu_metrics->average_uclk_frequency = metrics.MemclkFrequency;
gpu_metrics->average_fclk_frequency = metrics.MemclkFrequency;
gpu_metrics->average_vclk_frequency = metrics.VclkFrequency;
gpu_metrics->average_dclk_frequency = metrics.DclkFrequency;
memcpy(&gpu_metrics->current_coreclk[0],
&metrics.CoreFrequency[0],
sizeof(uint16_t) * 4);
gpu_metrics->current_l3clk[0] = metrics.L3Frequency[0];
gpu_metrics->throttle_status = metrics.ThrottlerStatus;
gpu_metrics->indep_throttle_status =
smu_cmn_get_indep_throttler_status(metrics.ThrottlerStatus,
vangogh_throttler_map);
gpu_metrics->system_clock_counter = ktime_get_boottime_ns();
*table = (void *)gpu_metrics;
return sizeof(struct gpu_metrics_v2_2);
}
static ssize_t vangogh_get_gpu_metrics_v2_3(struct smu_context *smu,
void **table)
{
struct smu_table_context *smu_table = &smu->smu_table;
struct gpu_metrics_v2_3 *gpu_metrics =
(struct gpu_metrics_v2_3 *)smu_table->gpu_metrics_table;
SmuMetrics_t metrics;
int ret = 0;
ret = smu_cmn_get_metrics_table(smu, &metrics, true);
if (ret)
return ret;
smu_cmn_init_soft_gpu_metrics(gpu_metrics, 2, 3);
gpu_metrics->temperature_gfx = metrics.Current.GfxTemperature;
gpu_metrics->temperature_soc = metrics.Current.SocTemperature;
memcpy(&gpu_metrics->temperature_core[0],
&metrics.Current.CoreTemperature[0],
sizeof(uint16_t) * 4);
gpu_metrics->temperature_l3[0] = metrics.Current.L3Temperature[0];
gpu_metrics->average_temperature_gfx = metrics.Average.GfxTemperature;
gpu_metrics->average_temperature_soc = metrics.Average.SocTemperature;
memcpy(&gpu_metrics->average_temperature_core[0],
&metrics.Average.CoreTemperature[0],
sizeof(uint16_t) * 4);
gpu_metrics->average_temperature_l3[0] = metrics.Average.L3Temperature[0];
gpu_metrics->average_gfx_activity = metrics.Current.GfxActivity;
gpu_metrics->average_mm_activity = metrics.Current.UvdActivity;
gpu_metrics->average_socket_power = metrics.Current.CurrentSocketPower;
gpu_metrics->average_cpu_power = metrics.Current.Power[0];
gpu_metrics->average_soc_power = metrics.Current.Power[1];
gpu_metrics->average_gfx_power = metrics.Current.Power[2];
memcpy(&gpu_metrics->average_core_power[0],
&metrics.Average.CorePower[0],
sizeof(uint16_t) * 4);
gpu_metrics->average_gfxclk_frequency = metrics.Average.GfxclkFrequency;
gpu_metrics->average_socclk_frequency = metrics.Average.SocclkFrequency;
gpu_metrics->average_uclk_frequency = metrics.Average.MemclkFrequency;
gpu_metrics->average_fclk_frequency = metrics.Average.MemclkFrequency;
gpu_metrics->average_vclk_frequency = metrics.Average.VclkFrequency;
gpu_metrics->average_dclk_frequency = metrics.Average.DclkFrequency;
gpu_metrics->current_gfxclk = metrics.Current.GfxclkFrequency;
gpu_metrics->current_socclk = metrics.Current.SocclkFrequency;
gpu_metrics->current_uclk = metrics.Current.MemclkFrequency;
gpu_metrics->current_fclk = metrics.Current.MemclkFrequency;
gpu_metrics->current_vclk = metrics.Current.VclkFrequency;
gpu_metrics->current_dclk = metrics.Current.DclkFrequency;
memcpy(&gpu_metrics->current_coreclk[0],
&metrics.Current.CoreFrequency[0],
sizeof(uint16_t) * 4);
gpu_metrics->current_l3clk[0] = metrics.Current.L3Frequency[0];
gpu_metrics->throttle_status = metrics.Current.ThrottlerStatus;
gpu_metrics->indep_throttle_status =
smu_cmn_get_indep_throttler_status(metrics.Current.ThrottlerStatus,
vangogh_throttler_map);
gpu_metrics->system_clock_counter = ktime_get_boottime_ns();
*table = (void *)gpu_metrics;
return sizeof(struct gpu_metrics_v2_3);
}
static ssize_t vangogh_get_gpu_metrics(struct smu_context *smu,
void **table)
{
struct smu_table_context *smu_table = &smu->smu_table;
struct gpu_metrics_v2_2 *gpu_metrics =
(struct gpu_metrics_v2_2 *)smu_table->gpu_metrics_table;
SmuMetrics_t metrics;
int ret = 0;
ret = smu_cmn_get_metrics_table(smu, &metrics, true);
if (ret)
return ret;
smu_cmn_init_soft_gpu_metrics(gpu_metrics, 2, 2);
gpu_metrics->temperature_gfx = metrics.Current.GfxTemperature;
gpu_metrics->temperature_soc = metrics.Current.SocTemperature;
memcpy(&gpu_metrics->temperature_core[0],
&metrics.Current.CoreTemperature[0],
sizeof(uint16_t) * 4);
gpu_metrics->temperature_l3[0] = metrics.Current.L3Temperature[0];
gpu_metrics->average_gfx_activity = metrics.Current.GfxActivity;
gpu_metrics->average_mm_activity = metrics.Current.UvdActivity;
gpu_metrics->average_socket_power = metrics.Current.CurrentSocketPower;
gpu_metrics->average_cpu_power = metrics.Current.Power[0];
gpu_metrics->average_soc_power = metrics.Current.Power[1];
gpu_metrics->average_gfx_power = metrics.Current.Power[2];
memcpy(&gpu_metrics->average_core_power[0],
&metrics.Average.CorePower[0],
sizeof(uint16_t) * 4);
gpu_metrics->average_gfxclk_frequency = metrics.Average.GfxclkFrequency;
gpu_metrics->average_socclk_frequency = metrics.Average.SocclkFrequency;
gpu_metrics->average_uclk_frequency = metrics.Average.MemclkFrequency;
gpu_metrics->average_fclk_frequency = metrics.Average.MemclkFrequency;
gpu_metrics->average_vclk_frequency = metrics.Average.VclkFrequency;
gpu_metrics->average_dclk_frequency = metrics.Average.DclkFrequency;
gpu_metrics->current_gfxclk = metrics.Current.GfxclkFrequency;
gpu_metrics->current_socclk = metrics.Current.SocclkFrequency;
gpu_metrics->current_uclk = metrics.Current.MemclkFrequency;
gpu_metrics->current_fclk = metrics.Current.MemclkFrequency;
gpu_metrics->current_vclk = metrics.Current.VclkFrequency;
gpu_metrics->current_dclk = metrics.Current.DclkFrequency;
memcpy(&gpu_metrics->current_coreclk[0],
&metrics.Current.CoreFrequency[0],
sizeof(uint16_t) * 4);
gpu_metrics->current_l3clk[0] = metrics.Current.L3Frequency[0];
gpu_metrics->throttle_status = metrics.Current.ThrottlerStatus;
gpu_metrics->indep_throttle_status =
smu_cmn_get_indep_throttler_status(metrics.Current.ThrottlerStatus,
vangogh_throttler_map);
gpu_metrics->system_clock_counter = ktime_get_boottime_ns();
*table = (void *)gpu_metrics;
return sizeof(struct gpu_metrics_v2_2);
}
static ssize_t vangogh_common_get_gpu_metrics(struct smu_context *smu,
void **table)
{
uint32_t if_version;
uint32_t smu_version;
int ret = 0;
ret = smu_cmn_get_smc_version(smu, &if_version, &smu_version);
if (ret) {
return ret;
}
if (smu_version >= 0x043F3E00) {
if (if_version < 0x3)
ret = vangogh_get_legacy_gpu_metrics_v2_3(smu, table);
else
ret = vangogh_get_gpu_metrics_v2_3(smu, table);
} else {
if (if_version < 0x3)
ret = vangogh_get_legacy_gpu_metrics(smu, table);
else
ret = vangogh_get_gpu_metrics(smu, table);
}
return ret;
}
static int vangogh_od_edit_dpm_table(struct smu_context *smu, enum PP_OD_DPM_TABLE_COMMAND type,
long input[], uint32_t size)
{
int ret = 0;
struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);
if (!(smu_dpm_ctx->dpm_level == AMD_DPM_FORCED_LEVEL_MANUAL)) {
dev_warn(smu->adev->dev,
"pp_od_clk_voltage is not accessible if power_dpm_force_performance_level is not in manual mode!\n");
return -EINVAL;
}
switch (type) {
case PP_OD_EDIT_CCLK_VDDC_TABLE:
if (size != 3) {
dev_err(smu->adev->dev, "Input parameter number not correct (should be 4 for processor)\n");
return -EINVAL;
}
if (input[0] >= smu->cpu_core_num) {
dev_err(smu->adev->dev, "core index is overflow, should be less than %d\n",
smu->cpu_core_num);
}
smu->cpu_core_id_select = input[0];
if (input[1] == 0) {
if (input[2] < smu->cpu_default_soft_min_freq) {
dev_warn(smu->adev->dev, "Fine grain setting minimum cclk (%ld) MHz is less than the minimum allowed (%d) MHz\n",
input[2], smu->cpu_default_soft_min_freq);
return -EINVAL;
}
smu->cpu_actual_soft_min_freq = input[2];
} else if (input[1] == 1) {
if (input[2] > smu->cpu_default_soft_max_freq) {
dev_warn(smu->adev->dev, "Fine grain setting maximum cclk (%ld) MHz is greater than the maximum allowed (%d) MHz\n",
input[2], smu->cpu_default_soft_max_freq);
return -EINVAL;
}
smu->cpu_actual_soft_max_freq = input[2];
} else {
return -EINVAL;
}
break;
case PP_OD_EDIT_SCLK_VDDC_TABLE:
if (size != 2) {
dev_err(smu->adev->dev, "Input parameter number not correct\n");
return -EINVAL;
}
if (input[0] == 0) {
if (input[1] < smu->gfx_default_hard_min_freq) {
dev_warn(smu->adev->dev,
"Fine grain setting minimum sclk (%ld) MHz is less than the minimum allowed (%d) MHz\n",
input[1], smu->gfx_default_hard_min_freq);
return -EINVAL;
}
smu->gfx_actual_hard_min_freq = input[1];
} else if (input[0] == 1) {
if (input[1] > smu->gfx_default_soft_max_freq) {
dev_warn(smu->adev->dev,
"Fine grain setting maximum sclk (%ld) MHz is greater than the maximum allowed (%d) MHz\n",
input[1], smu->gfx_default_soft_max_freq);
return -EINVAL;
}
smu->gfx_actual_soft_max_freq = input[1];
} else {
return -EINVAL;
}
break;
case PP_OD_RESTORE_DEFAULT_TABLE:
if (size != 0) {
dev_err(smu->adev->dev, "Input parameter number not correct\n");
return -EINVAL;
} else {
smu->gfx_actual_hard_min_freq = smu->gfx_default_hard_min_freq;
smu->gfx_actual_soft_max_freq = smu->gfx_default_soft_max_freq;
smu->cpu_actual_soft_min_freq = smu->cpu_default_soft_min_freq;
smu->cpu_actual_soft_max_freq = smu->cpu_default_soft_max_freq;
}
break;
case PP_OD_COMMIT_DPM_TABLE:
if (size != 0) {
dev_err(smu->adev->dev, "Input parameter number not correct\n");
return -EINVAL;
} else {
if (smu->gfx_actual_hard_min_freq > smu->gfx_actual_soft_max_freq) {
dev_err(smu->adev->dev,
"The setting minimum sclk (%d) MHz is greater than the setting maximum sclk (%d) MHz\n",
smu->gfx_actual_hard_min_freq,
smu->gfx_actual_soft_max_freq);
return -EINVAL;
}
ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetHardMinGfxClk,
smu->gfx_actual_hard_min_freq, NULL);
if (ret) {
dev_err(smu->adev->dev, "Set hard min sclk failed!");
return ret;
}
ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMaxGfxClk,
smu->gfx_actual_soft_max_freq, NULL);
if (ret) {
dev_err(smu->adev->dev, "Set soft max sclk failed!");
return ret;
}
if (smu->adev->pm.fw_version < 0x43f1b00) {
dev_warn(smu->adev->dev, "CPUSoftMax/CPUSoftMin are not supported, please update SBIOS!\n");
break;
}
ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMinCclk,
((smu->cpu_core_id_select << 20)
| smu->cpu_actual_soft_min_freq),
NULL);
if (ret) {
dev_err(smu->adev->dev, "Set hard min cclk failed!");
return ret;
}
ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMaxCclk,
((smu->cpu_core_id_select << 20)
| smu->cpu_actual_soft_max_freq),
NULL);
if (ret) {
dev_err(smu->adev->dev, "Set soft max cclk failed!");
return ret;
}
}
break;
default:
return -ENOSYS;
}
return ret;
}
static int vangogh_set_default_dpm_tables(struct smu_context *smu)
{
struct smu_table_context *smu_table = &smu->smu_table;
return smu_cmn_update_table(smu, SMU_TABLE_DPMCLOCKS, 0, smu_table->clocks_table, false);
}
static int vangogh_set_fine_grain_gfx_freq_parameters(struct smu_context *smu)
{
DpmClocks_t *clk_table = smu->smu_table.clocks_table;
smu->gfx_default_hard_min_freq = clk_table->MinGfxClk;
smu->gfx_default_soft_max_freq = clk_table->MaxGfxClk;
smu->gfx_actual_hard_min_freq = 0;
smu->gfx_actual_soft_max_freq = 0;
smu->cpu_default_soft_min_freq = 1400;
smu->cpu_default_soft_max_freq = 3500;
smu->cpu_actual_soft_min_freq = 0;
smu->cpu_actual_soft_max_freq = 0;
return 0;
}
static int vangogh_get_dpm_clock_table(struct smu_context *smu, struct dpm_clocks *clock_table)
{
DpmClocks_t *table = smu->smu_table.clocks_table;
int i;
if (!clock_table || !table)
return -EINVAL;
for (i = 0; i < NUM_SOCCLK_DPM_LEVELS; i++) {
clock_table->SocClocks[i].Freq = table->SocClocks[i];
clock_table->SocClocks[i].Vol = table->SocVoltage[i];
}
for (i = 0; i < NUM_FCLK_DPM_LEVELS; i++) {
clock_table->FClocks[i].Freq = table->DfPstateTable[i].fclk;
clock_table->FClocks[i].Vol = table->DfPstateTable[i].voltage;
}
for (i = 0; i < NUM_FCLK_DPM_LEVELS; i++) {
clock_table->MemClocks[i].Freq = table->DfPstateTable[i].memclk;
clock_table->MemClocks[i].Vol = table->DfPstateTable[i].voltage;
}
return 0;
}
static int vangogh_system_features_control(struct smu_context *smu, bool en)
{
struct amdgpu_device *adev = smu->adev;
int ret = 0;
if (adev->pm.fw_version >= 0x43f1700 && !en)
ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_RlcPowerNotify,
RLC_STATUS_OFF, NULL);
return ret;
}
static int vangogh_post_smu_init(struct smu_context *smu)
{
struct amdgpu_device *adev = smu->adev;
uint32_t tmp;
int ret = 0;
uint8_t aon_bits = 0;
/* Two CUs in one WGP */
uint32_t req_active_wgps = adev->gfx.cu_info.number/2;
uint32_t total_cu = adev->gfx.config.max_cu_per_sh *
adev->gfx.config.max_sh_per_se * adev->gfx.config.max_shader_engines;
/* allow message will be sent after enable message on Vangogh*/
if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_GFXCLK_BIT) &&
(adev->pg_flags & AMD_PG_SUPPORT_GFX_PG)) {
ret = smu_cmn_send_smc_msg(smu, SMU_MSG_EnableGfxOff, NULL);
if (ret) {
dev_err(adev->dev, "Failed to Enable GfxOff!\n");
return ret;
}
} else {
adev->pm.pp_feature &= ~PP_GFXOFF_MASK;
dev_info(adev->dev, "If GFX DPM or power gate disabled, disable GFXOFF\n");
}
/* if all CUs are active, no need to power off any WGPs */
if (total_cu == adev->gfx.cu_info.number)
return 0;
/*
* Calculate the total bits number of always on WGPs for all SA/SEs in
* RLC_PG_ALWAYS_ON_WGP_MASK.
*/
tmp = RREG32_KIQ(SOC15_REG_OFFSET(GC, 0, mmRLC_PG_ALWAYS_ON_WGP_MASK));
tmp &= RLC_PG_ALWAYS_ON_WGP_MASK__AON_WGP_MASK_MASK;
aon_bits = hweight32(tmp) * adev->gfx.config.max_sh_per_se * adev->gfx.config.max_shader_engines;
/* Do not request any WGPs less than set in the AON_WGP_MASK */
if (aon_bits > req_active_wgps) {
dev_info(adev->dev, "Number of always on WGPs greater than active WGPs: WGP power save not requested.\n");
return 0;
} else {
return smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_RequestActiveWgp, req_active_wgps, NULL);
}
}
static int vangogh_mode_reset(struct smu_context *smu, int type)
{
int ret = 0, index = 0;
index = smu_cmn_to_asic_specific_index(smu, CMN2ASIC_MAPPING_MSG,
SMU_MSG_GfxDeviceDriverReset);
if (index < 0)
return index == -EACCES ? 0 : index;
mutex_lock(&smu->message_lock);
ret = smu_cmn_send_msg_without_waiting(smu, (uint16_t)index, type);
mutex_unlock(&smu->message_lock);
mdelay(10);
return ret;
}
static int vangogh_mode2_reset(struct smu_context *smu)
{
return vangogh_mode_reset(smu, SMU_RESET_MODE_2);
}
/**
* vangogh_get_gfxoff_status - Get gfxoff status
*
* @smu: amdgpu_device pointer
*
* Get current gfxoff status
*
* Return:
* * 0 - GFXOFF (default if enabled).
* * 1 - Transition out of GFX State.
* * 2 - Not in GFXOFF.
* * 3 - Transition into GFXOFF.
*/
static u32 vangogh_get_gfxoff_status(struct smu_context *smu)
{
struct amdgpu_device *adev = smu->adev;
u32 reg, gfxoff_status;
reg = RREG32_SOC15(SMUIO, 0, mmSMUIO_GFX_MISC_CNTL);
gfxoff_status = (reg & SMUIO_GFX_MISC_CNTL__PWR_GFXOFF_STATUS_MASK)
>> SMUIO_GFX_MISC_CNTL__PWR_GFXOFF_STATUS__SHIFT;
return gfxoff_status;
}
static int vangogh_get_power_limit(struct smu_context *smu,
uint32_t *current_power_limit,
uint32_t *default_power_limit,
uint32_t *max_power_limit)
{
struct smu_11_5_power_context *power_context =
smu->smu_power.power_context;
uint32_t ppt_limit;
int ret = 0;
if (smu->adev->pm.fw_version < 0x43f1e00)
return ret;
ret = smu_cmn_send_smc_msg(smu, SMU_MSG_GetSlowPPTLimit, &ppt_limit);
if (ret) {
dev_err(smu->adev->dev, "Get slow PPT limit failed!\n");
return ret;
}
/* convert from milliwatt to watt */
if (current_power_limit)
*current_power_limit = ppt_limit / 1000;
if (default_power_limit)
*default_power_limit = ppt_limit / 1000;
if (max_power_limit)
*max_power_limit = 29;
ret = smu_cmn_send_smc_msg(smu, SMU_MSG_GetFastPPTLimit, &ppt_limit);
if (ret) {
dev_err(smu->adev->dev, "Get fast PPT limit failed!\n");
return ret;
}
/* convert from milliwatt to watt */
power_context->current_fast_ppt_limit =
power_context->default_fast_ppt_limit = ppt_limit / 1000;
power_context->max_fast_ppt_limit = 30;
return ret;
}
static int vangogh_get_ppt_limit(struct smu_context *smu,
uint32_t *ppt_limit,
enum smu_ppt_limit_type type,
enum smu_ppt_limit_level level)
{
struct smu_11_5_power_context *power_context =
smu->smu_power.power_context;
if (!power_context)
return -EOPNOTSUPP;
if (type == SMU_FAST_PPT_LIMIT) {
switch (level) {
case SMU_PPT_LIMIT_MAX:
*ppt_limit = power_context->max_fast_ppt_limit;
break;
case SMU_PPT_LIMIT_CURRENT:
*ppt_limit = power_context->current_fast_ppt_limit;
break;
case SMU_PPT_LIMIT_DEFAULT:
*ppt_limit = power_context->default_fast_ppt_limit;
break;
default:
break;
}
}
return 0;
}
static int vangogh_set_power_limit(struct smu_context *smu,
enum smu_ppt_limit_type limit_type,
uint32_t ppt_limit)
{
struct smu_11_5_power_context *power_context =
smu->smu_power.power_context;
int ret = 0;
if (!smu_cmn_feature_is_enabled(smu, SMU_FEATURE_PPT_BIT)) {
dev_err(smu->adev->dev, "Setting new power limit is not supported!\n");
return -EOPNOTSUPP;
}
switch (limit_type) {
case SMU_DEFAULT_PPT_LIMIT:
ret = smu_cmn_send_smc_msg_with_param(smu,
SMU_MSG_SetSlowPPTLimit,
ppt_limit * 1000, /* convert from watt to milliwatt */
NULL);
if (ret)
return ret;
smu->current_power_limit = ppt_limit;
break;
case SMU_FAST_PPT_LIMIT:
ppt_limit &= ~(SMU_FAST_PPT_LIMIT << 24);
if (ppt_limit > power_context->max_fast_ppt_limit) {
dev_err(smu->adev->dev,
"New power limit (%d) is over the max allowed %d\n",
ppt_limit, power_context->max_fast_ppt_limit);
return ret;
}
ret = smu_cmn_send_smc_msg_with_param(smu,
SMU_MSG_SetFastPPTLimit,
ppt_limit * 1000, /* convert from watt to milliwatt */
NULL);
if (ret)
return ret;
power_context->current_fast_ppt_limit = ppt_limit;
break;
default:
return -EINVAL;
}
return ret;
}
/**
* vangogh_set_gfxoff_residency
*
* @smu: amdgpu_device pointer
* @start: start/stop residency log
*
* This function will be used to log gfxoff residency
*
*
* Returns standard response codes.
*/
static u32 vangogh_set_gfxoff_residency(struct smu_context *smu, bool start)
{
int ret = 0;
u32 residency;
struct amdgpu_device *adev = smu->adev;
if (!(adev->pm.pp_feature & PP_GFXOFF_MASK))
return 0;
ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_LogGfxOffResidency,
start, &residency);
if (!start)
adev->gfx.gfx_off_residency = residency;
return ret;
}
/**
* vangogh_get_gfxoff_residency
*
* @smu: amdgpu_device pointer
*
* This function will be used to get gfxoff residency.
*
* Returns standard response codes.
*/
static u32 vangogh_get_gfxoff_residency(struct smu_context *smu, uint32_t *residency)
{
struct amdgpu_device *adev = smu->adev;
*residency = adev->gfx.gfx_off_residency;
return 0;
}
/**
* vangogh_get_gfxoff_entrycount - get gfxoff entry count
*
* @smu: amdgpu_device pointer
*
* This function will be used to get gfxoff entry count
*
* Returns standard response codes.
*/
static u32 vangogh_get_gfxoff_entrycount(struct smu_context *smu, uint64_t *entrycount)
{
int ret = 0, value = 0;
struct amdgpu_device *adev = smu->adev;
if (!(adev->pm.pp_feature & PP_GFXOFF_MASK))
return 0;
ret = smu_cmn_send_smc_msg(smu, SMU_MSG_GetGfxOffEntryCount, &value);
*entrycount = value + adev->gfx.gfx_off_entrycount;
return ret;
}
static const struct pptable_funcs vangogh_ppt_funcs = {
.check_fw_status = smu_v11_0_check_fw_status,
.check_fw_version = smu_v11_0_check_fw_version,
.init_smc_tables = vangogh_init_smc_tables,
.fini_smc_tables = smu_v11_0_fini_smc_tables,
.init_power = smu_v11_0_init_power,
.fini_power = smu_v11_0_fini_power,
.register_irq_handler = smu_v11_0_register_irq_handler,
.notify_memory_pool_location = smu_v11_0_notify_memory_pool_location,
.send_smc_msg_with_param = smu_cmn_send_smc_msg_with_param,
.send_smc_msg = smu_cmn_send_smc_msg,
.dpm_set_vcn_enable = vangogh_dpm_set_vcn_enable,
.dpm_set_jpeg_enable = vangogh_dpm_set_jpeg_enable,
.is_dpm_running = vangogh_is_dpm_running,
.read_sensor = vangogh_read_sensor,
.get_enabled_mask = smu_cmn_get_enabled_mask,
.get_pp_feature_mask = smu_cmn_get_pp_feature_mask,
.set_watermarks_table = vangogh_set_watermarks_table,
.set_driver_table_location = smu_v11_0_set_driver_table_location,
.interrupt_work = smu_v11_0_interrupt_work,
.get_gpu_metrics = vangogh_common_get_gpu_metrics,
.od_edit_dpm_table = vangogh_od_edit_dpm_table,
.print_clk_levels = vangogh_common_print_clk_levels,
.set_default_dpm_table = vangogh_set_default_dpm_tables,
.set_fine_grain_gfx_freq_parameters = vangogh_set_fine_grain_gfx_freq_parameters,
.system_features_control = vangogh_system_features_control,
.feature_is_enabled = smu_cmn_feature_is_enabled,
.set_power_profile_mode = vangogh_set_power_profile_mode,
.get_power_profile_mode = vangogh_get_power_profile_mode,
.get_dpm_clock_table = vangogh_get_dpm_clock_table,
.force_clk_levels = vangogh_force_clk_levels,
.set_performance_level = vangogh_set_performance_level,
.post_init = vangogh_post_smu_init,
.mode2_reset = vangogh_mode2_reset,
.gfx_off_control = smu_v11_0_gfx_off_control,
.get_gfx_off_status = vangogh_get_gfxoff_status,
.get_gfx_off_entrycount = vangogh_get_gfxoff_entrycount,
.get_gfx_off_residency = vangogh_get_gfxoff_residency,
.set_gfx_off_residency = vangogh_set_gfxoff_residency,
.get_ppt_limit = vangogh_get_ppt_limit,
.get_power_limit = vangogh_get_power_limit,
.set_power_limit = vangogh_set_power_limit,
.get_vbios_bootup_values = smu_v11_0_get_vbios_bootup_values,
};
void vangogh_set_ppt_funcs(struct smu_context *smu)
{
smu->ppt_funcs = &vangogh_ppt_funcs;
smu->message_map = vangogh_message_map;
smu->feature_map = vangogh_feature_mask_map;
smu->table_map = vangogh_table_map;
smu->workload_map = vangogh_workload_map;
smu->is_apu = true;
smu_v11_0_set_smu_mailbox_registers(smu);
}