linux-zen-server/drivers/gpu/drm/i915/display/intel_dsb.c

345 lines
8.8 KiB
C

// SPDX-License-Identifier: MIT
/*
* Copyright © 2019 Intel Corporation
*
*/
#include "gem/i915_gem_internal.h"
#include "i915_drv.h"
#include "i915_reg.h"
#include "intel_de.h"
#include "intel_display_types.h"
#include "intel_dsb.h"
struct i915_vma;
enum dsb_id {
INVALID_DSB = -1,
DSB1,
DSB2,
DSB3,
MAX_DSB_PER_PIPE
};
struct intel_dsb {
enum dsb_id id;
u32 *cmd_buf;
struct i915_vma *vma;
struct intel_crtc *crtc;
/*
* maximum number of dwords the buffer will hold.
*/
unsigned int size;
/*
* free_pos will point the first free dword and
* help in calculating tail of command buffer.
*/
unsigned int free_pos;
/*
* ins_start_offset will help to store start dword of the dsb
* instuction and help in identifying the batch of auto-increment
* register.
*/
unsigned int ins_start_offset;
};
/**
* DOC: DSB
*
* A DSB (Display State Buffer) is a queue of MMIO instructions in the memory
* which can be offloaded to DSB HW in Display Controller. DSB HW is a DMA
* engine that can be programmed to download the DSB from memory.
* It allows driver to batch submit display HW programming. This helps to
* reduce loading time and CPU activity, thereby making the context switch
* faster. DSB Support added from Gen12 Intel graphics based platform.
*
* DSB's can access only the pipe, plane, and transcoder Data Island Packet
* registers.
*
* DSB HW can support only register writes (both indexed and direct MMIO
* writes). There are no registers reads possible with DSB HW engine.
*/
/* DSB opcodes. */
#define DSB_OPCODE_SHIFT 24
#define DSB_OPCODE_NOOP 0x0
#define DSB_OPCODE_MMIO_WRITE 0x1
#define DSB_OPCODE_WAIT_USEC 0x2
#define DSB_OPCODE_WAIT_LINES 0x3
#define DSB_OPCODE_WAIT_VBLANKS 0x4
#define DSB_OPCODE_WAIT_DSL_IN 0x5
#define DSB_OPCODE_WAIT_DSL_OUT 0x6
#define DSB_OPCODE_INTERRUPT 0x7
#define DSB_OPCODE_INDEXED_WRITE 0x9
#define DSB_OPCODE_POLL 0xA
#define DSB_BYTE_EN 0xF
#define DSB_BYTE_EN_SHIFT 20
#define DSB_REG_VALUE_MASK 0xfffff
static bool assert_dsb_has_room(struct intel_dsb *dsb)
{
struct intel_crtc *crtc = dsb->crtc;
struct drm_i915_private *i915 = to_i915(crtc->base.dev);
/* each instruction is 2 dwords */
return !drm_WARN(&i915->drm, dsb->free_pos > dsb->size - 2,
"DSB buffer overflow\n");
}
static bool is_dsb_busy(struct drm_i915_private *i915, enum pipe pipe,
enum dsb_id id)
{
return intel_de_read(i915, DSB_CTRL(pipe, id)) & DSB_STATUS_BUSY;
}
static void intel_dsb_emit(struct intel_dsb *dsb, u32 ldw, u32 udw)
{
u32 *buf = dsb->cmd_buf;
if (!assert_dsb_has_room(dsb))
return;
/* Every instruction should be 8 byte aligned. */
dsb->free_pos = ALIGN(dsb->free_pos, 2);
dsb->ins_start_offset = dsb->free_pos;
buf[dsb->free_pos++] = ldw;
buf[dsb->free_pos++] = udw;
}
static bool intel_dsb_prev_ins_is_write(struct intel_dsb *dsb,
u32 opcode, i915_reg_t reg)
{
const u32 *buf = dsb->cmd_buf;
u32 prev_opcode, prev_reg;
prev_opcode = buf[dsb->ins_start_offset + 1] >> DSB_OPCODE_SHIFT;
prev_reg = buf[dsb->ins_start_offset + 1] & DSB_REG_VALUE_MASK;
return prev_opcode == opcode && prev_reg == i915_mmio_reg_offset(reg);
}
static bool intel_dsb_prev_ins_is_mmio_write(struct intel_dsb *dsb, i915_reg_t reg)
{
return intel_dsb_prev_ins_is_write(dsb, DSB_OPCODE_MMIO_WRITE, reg);
}
static bool intel_dsb_prev_ins_is_indexed_write(struct intel_dsb *dsb, i915_reg_t reg)
{
return intel_dsb_prev_ins_is_write(dsb, DSB_OPCODE_INDEXED_WRITE, reg);
}
/**
* intel_dsb_reg_write() - Emit register wriite to the DSB context
* @dsb: DSB context
* @reg: register address.
* @val: value.
*
* This function is used for writing register-value pair in command
* buffer of DSB.
*/
void intel_dsb_reg_write(struct intel_dsb *dsb,
i915_reg_t reg, u32 val)
{
/*
* For example the buffer will look like below for 3 dwords for auto
* increment register:
* +--------------------------------------------------------+
* | size = 3 | offset &| value1 | value2 | value3 | zero |
* | | opcode | | | | |
* +--------------------------------------------------------+
* + + + + + + +
* 0 4 8 12 16 20 24
* Byte
*
* As every instruction is 8 byte aligned the index of dsb instruction
* will start always from even number while dealing with u32 array. If
* we are writing odd no of dwords, Zeros will be added in the end for
* padding.
*/
if (!intel_dsb_prev_ins_is_mmio_write(dsb, reg) &&
!intel_dsb_prev_ins_is_indexed_write(dsb, reg)) {
intel_dsb_emit(dsb, val,
(DSB_OPCODE_MMIO_WRITE << DSB_OPCODE_SHIFT) |
(DSB_BYTE_EN << DSB_BYTE_EN_SHIFT) |
i915_mmio_reg_offset(reg));
} else {
u32 *buf = dsb->cmd_buf;
if (!assert_dsb_has_room(dsb))
return;
/* convert to indexed write? */
if (intel_dsb_prev_ins_is_mmio_write(dsb, reg)) {
u32 prev_val = buf[dsb->ins_start_offset + 0];
buf[dsb->ins_start_offset + 0] = 1; /* count */
buf[dsb->ins_start_offset + 1] =
(DSB_OPCODE_INDEXED_WRITE << DSB_OPCODE_SHIFT) |
i915_mmio_reg_offset(reg);
buf[dsb->ins_start_offset + 2] = prev_val;
dsb->free_pos++;
}
buf[dsb->free_pos++] = val;
/* Update the count */
buf[dsb->ins_start_offset]++;
/* if number of data words is odd, then the last dword should be 0.*/
if (dsb->free_pos & 0x1)
buf[dsb->free_pos] = 0;
}
}
static u32 intel_dsb_align_tail(struct intel_dsb *dsb)
{
u32 aligned_tail, tail;
tail = dsb->free_pos * 4;
aligned_tail = ALIGN(tail, CACHELINE_BYTES);
if (aligned_tail > tail)
memset(&dsb->cmd_buf[dsb->free_pos], 0,
aligned_tail - tail);
dsb->free_pos = aligned_tail / 4;
return aligned_tail;
}
/**
* intel_dsb_commit() - Trigger workload execution of DSB.
* @dsb: DSB context
*
* This function is used to do actual write to hardware using DSB.
*/
void intel_dsb_commit(struct intel_dsb *dsb)
{
struct intel_crtc *crtc = dsb->crtc;
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum pipe pipe = crtc->pipe;
u32 tail;
tail = intel_dsb_align_tail(dsb);
if (tail == 0)
return;
if (is_dsb_busy(dev_priv, pipe, dsb->id)) {
drm_err(&dev_priv->drm, "DSB engine is busy.\n");
goto reset;
}
intel_de_write(dev_priv, DSB_CTRL(pipe, dsb->id),
DSB_ENABLE);
intel_de_write(dev_priv, DSB_HEAD(pipe, dsb->id),
i915_ggtt_offset(dsb->vma));
intel_de_write(dev_priv, DSB_TAIL(pipe, dsb->id),
i915_ggtt_offset(dsb->vma) + tail);
drm_dbg_kms(&dev_priv->drm,
"DSB execution started - head 0x%x, tail 0x%x\n",
i915_ggtt_offset(dsb->vma),
i915_ggtt_offset(dsb->vma) + tail);
if (wait_for(!is_dsb_busy(dev_priv, pipe, dsb->id), 1))
drm_err(&dev_priv->drm,
"Timed out waiting for DSB workload completion.\n");
reset:
dsb->free_pos = 0;
dsb->ins_start_offset = 0;
intel_de_write(dev_priv, DSB_CTRL(pipe, dsb->id), 0);
}
/**
* intel_dsb_prepare() - Allocate, pin and map the DSB command buffer.
* @crtc: the CRTC
* @max_cmds: number of commands we need to fit into command buffer
*
* This function prepare the command buffer which is used to store dsb
* instructions with data.
*
* Returns:
* DSB context, NULL on failure
*/
struct intel_dsb *intel_dsb_prepare(struct intel_crtc *crtc,
unsigned int max_cmds)
{
struct drm_i915_private *i915 = to_i915(crtc->base.dev);
struct drm_i915_gem_object *obj;
intel_wakeref_t wakeref;
struct intel_dsb *dsb;
struct i915_vma *vma;
unsigned int size;
u32 *buf;
if (!HAS_DSB(i915))
return NULL;
dsb = kzalloc(sizeof(*dsb), GFP_KERNEL);
if (!dsb)
goto out;
wakeref = intel_runtime_pm_get(&i915->runtime_pm);
/* ~1 qword per instruction, full cachelines */
size = ALIGN(max_cmds * 8, CACHELINE_BYTES);
obj = i915_gem_object_create_internal(i915, PAGE_ALIGN(size));
if (IS_ERR(obj))
goto out_put_rpm;
vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, 0);
if (IS_ERR(vma)) {
i915_gem_object_put(obj);
goto out_put_rpm;
}
buf = i915_gem_object_pin_map_unlocked(vma->obj, I915_MAP_WC);
if (IS_ERR(buf)) {
i915_vma_unpin_and_release(&vma, I915_VMA_RELEASE_MAP);
goto out_put_rpm;
}
intel_runtime_pm_put(&i915->runtime_pm, wakeref);
dsb->id = DSB1;
dsb->vma = vma;
dsb->crtc = crtc;
dsb->cmd_buf = buf;
dsb->size = size / 4; /* in dwords */
dsb->free_pos = 0;
dsb->ins_start_offset = 0;
return dsb;
out_put_rpm:
intel_runtime_pm_put(&i915->runtime_pm, wakeref);
kfree(dsb);
out:
drm_info_once(&i915->drm,
"DSB queue setup failed, will fallback to MMIO for display HW programming\n");
return NULL;
}
/**
* intel_dsb_cleanup() - To cleanup DSB context.
* @dsb: DSB context
*
* This function cleanup the DSB context by unpinning and releasing
* the VMA object associated with it.
*/
void intel_dsb_cleanup(struct intel_dsb *dsb)
{
i915_vma_unpin_and_release(&dsb->vma, I915_VMA_RELEASE_MAP);
kfree(dsb);
}