linux-zen-server/drivers/gpu/drm/i915/gt/gen8_ppgtt.c

1005 lines
26 KiB
C

// SPDX-License-Identifier: MIT
/*
* Copyright © 2020 Intel Corporation
*/
#include <linux/log2.h>
#include "gem/i915_gem_lmem.h"
#include "gen8_ppgtt.h"
#include "i915_scatterlist.h"
#include "i915_trace.h"
#include "i915_pvinfo.h"
#include "i915_vgpu.h"
#include "intel_gt.h"
#include "intel_gtt.h"
static u64 gen8_pde_encode(const dma_addr_t addr,
const enum i915_cache_level level)
{
u64 pde = addr | GEN8_PAGE_PRESENT | GEN8_PAGE_RW;
if (level != I915_CACHE_NONE)
pde |= PPAT_CACHED_PDE;
else
pde |= PPAT_UNCACHED;
return pde;
}
static u64 gen8_pte_encode(dma_addr_t addr,
enum i915_cache_level level,
u32 flags)
{
gen8_pte_t pte = addr | GEN8_PAGE_PRESENT | GEN8_PAGE_RW;
if (unlikely(flags & PTE_READ_ONLY))
pte &= ~GEN8_PAGE_RW;
if (flags & PTE_LM)
pte |= GEN12_PPGTT_PTE_LM;
switch (level) {
case I915_CACHE_NONE:
pte |= PPAT_UNCACHED;
break;
case I915_CACHE_WT:
pte |= PPAT_DISPLAY_ELLC;
break;
default:
pte |= PPAT_CACHED;
break;
}
return pte;
}
static void gen8_ppgtt_notify_vgt(struct i915_ppgtt *ppgtt, bool create)
{
struct drm_i915_private *i915 = ppgtt->vm.i915;
struct intel_uncore *uncore = ppgtt->vm.gt->uncore;
enum vgt_g2v_type msg;
int i;
if (create)
atomic_inc(px_used(ppgtt->pd)); /* never remove */
else
atomic_dec(px_used(ppgtt->pd));
mutex_lock(&i915->vgpu.lock);
if (i915_vm_is_4lvl(&ppgtt->vm)) {
const u64 daddr = px_dma(ppgtt->pd);
intel_uncore_write(uncore,
vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
intel_uncore_write(uncore,
vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
msg = create ?
VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY;
} else {
for (i = 0; i < GEN8_3LVL_PDPES; i++) {
const u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
intel_uncore_write(uncore,
vgtif_reg(pdp[i].lo),
lower_32_bits(daddr));
intel_uncore_write(uncore,
vgtif_reg(pdp[i].hi),
upper_32_bits(daddr));
}
msg = create ?
VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY;
}
/* g2v_notify atomically (via hv trap) consumes the message packet. */
intel_uncore_write(uncore, vgtif_reg(g2v_notify), msg);
mutex_unlock(&i915->vgpu.lock);
}
/* Index shifts into the pagetable are offset by GEN8_PTE_SHIFT [12] */
#define GEN8_PAGE_SIZE (SZ_4K) /* page and page-directory sizes are the same */
#define GEN8_PTE_SHIFT (ilog2(GEN8_PAGE_SIZE))
#define GEN8_PDES (GEN8_PAGE_SIZE / sizeof(u64))
#define gen8_pd_shift(lvl) ((lvl) * ilog2(GEN8_PDES))
#define gen8_pd_index(i, lvl) i915_pde_index((i), gen8_pd_shift(lvl))
#define __gen8_pte_shift(lvl) (GEN8_PTE_SHIFT + gen8_pd_shift(lvl))
#define __gen8_pte_index(a, lvl) i915_pde_index((a), __gen8_pte_shift(lvl))
#define as_pd(x) container_of((x), typeof(struct i915_page_directory), pt)
static unsigned int
gen8_pd_range(u64 start, u64 end, int lvl, unsigned int *idx)
{
const int shift = gen8_pd_shift(lvl);
const u64 mask = ~0ull << gen8_pd_shift(lvl + 1);
GEM_BUG_ON(start >= end);
end += ~mask >> gen8_pd_shift(1);
*idx = i915_pde_index(start, shift);
if ((start ^ end) & mask)
return GEN8_PDES - *idx;
else
return i915_pde_index(end, shift) - *idx;
}
static bool gen8_pd_contains(u64 start, u64 end, int lvl)
{
const u64 mask = ~0ull << gen8_pd_shift(lvl + 1);
GEM_BUG_ON(start >= end);
return (start ^ end) & mask && (start & ~mask) == 0;
}
static unsigned int gen8_pt_count(u64 start, u64 end)
{
GEM_BUG_ON(start >= end);
if ((start ^ end) >> gen8_pd_shift(1))
return GEN8_PDES - (start & (GEN8_PDES - 1));
else
return end - start;
}
static unsigned int gen8_pd_top_count(const struct i915_address_space *vm)
{
unsigned int shift = __gen8_pte_shift(vm->top);
return (vm->total + (1ull << shift) - 1) >> shift;
}
static struct i915_page_directory *
gen8_pdp_for_page_index(struct i915_address_space * const vm, const u64 idx)
{
struct i915_ppgtt * const ppgtt = i915_vm_to_ppgtt(vm);
if (vm->top == 2)
return ppgtt->pd;
else
return i915_pd_entry(ppgtt->pd, gen8_pd_index(idx, vm->top));
}
static struct i915_page_directory *
gen8_pdp_for_page_address(struct i915_address_space * const vm, const u64 addr)
{
return gen8_pdp_for_page_index(vm, addr >> GEN8_PTE_SHIFT);
}
static void __gen8_ppgtt_cleanup(struct i915_address_space *vm,
struct i915_page_directory *pd,
int count, int lvl)
{
if (lvl) {
void **pde = pd->entry;
do {
if (!*pde)
continue;
__gen8_ppgtt_cleanup(vm, *pde, GEN8_PDES, lvl - 1);
} while (pde++, --count);
}
free_px(vm, &pd->pt, lvl);
}
static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
{
struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
if (intel_vgpu_active(vm->i915))
gen8_ppgtt_notify_vgt(ppgtt, false);
if (ppgtt->pd)
__gen8_ppgtt_cleanup(vm, ppgtt->pd,
gen8_pd_top_count(vm), vm->top);
free_scratch(vm);
}
static u64 __gen8_ppgtt_clear(struct i915_address_space * const vm,
struct i915_page_directory * const pd,
u64 start, const u64 end, int lvl)
{
const struct drm_i915_gem_object * const scratch = vm->scratch[lvl];
unsigned int idx, len;
GEM_BUG_ON(end > vm->total >> GEN8_PTE_SHIFT);
len = gen8_pd_range(start, end, lvl--, &idx);
DBG("%s(%p):{ lvl:%d, start:%llx, end:%llx, idx:%d, len:%d, used:%d }\n",
__func__, vm, lvl + 1, start, end,
idx, len, atomic_read(px_used(pd)));
GEM_BUG_ON(!len || len >= atomic_read(px_used(pd)));
do {
struct i915_page_table *pt = pd->entry[idx];
if (atomic_fetch_inc(&pt->used) >> gen8_pd_shift(1) &&
gen8_pd_contains(start, end, lvl)) {
DBG("%s(%p):{ lvl:%d, idx:%d, start:%llx, end:%llx } removing pd\n",
__func__, vm, lvl + 1, idx, start, end);
clear_pd_entry(pd, idx, scratch);
__gen8_ppgtt_cleanup(vm, as_pd(pt), I915_PDES, lvl);
start += (u64)I915_PDES << gen8_pd_shift(lvl);
continue;
}
if (lvl) {
start = __gen8_ppgtt_clear(vm, as_pd(pt),
start, end, lvl);
} else {
unsigned int count;
unsigned int pte = gen8_pd_index(start, 0);
unsigned int num_ptes;
u64 *vaddr;
count = gen8_pt_count(start, end);
DBG("%s(%p):{ lvl:%d, start:%llx, end:%llx, idx:%d, len:%d, used:%d } removing pte\n",
__func__, vm, lvl, start, end,
gen8_pd_index(start, 0), count,
atomic_read(&pt->used));
GEM_BUG_ON(!count || count >= atomic_read(&pt->used));
num_ptes = count;
if (pt->is_compact) {
GEM_BUG_ON(num_ptes % 16);
GEM_BUG_ON(pte % 16);
num_ptes /= 16;
pte /= 16;
}
vaddr = px_vaddr(pt);
memset64(vaddr + pte,
vm->scratch[0]->encode,
num_ptes);
atomic_sub(count, &pt->used);
start += count;
}
if (release_pd_entry(pd, idx, pt, scratch))
free_px(vm, pt, lvl);
} while (idx++, --len);
return start;
}
static void gen8_ppgtt_clear(struct i915_address_space *vm,
u64 start, u64 length)
{
GEM_BUG_ON(!IS_ALIGNED(start, BIT_ULL(GEN8_PTE_SHIFT)));
GEM_BUG_ON(!IS_ALIGNED(length, BIT_ULL(GEN8_PTE_SHIFT)));
GEM_BUG_ON(range_overflows(start, length, vm->total));
start >>= GEN8_PTE_SHIFT;
length >>= GEN8_PTE_SHIFT;
GEM_BUG_ON(length == 0);
__gen8_ppgtt_clear(vm, i915_vm_to_ppgtt(vm)->pd,
start, start + length, vm->top);
}
static void __gen8_ppgtt_alloc(struct i915_address_space * const vm,
struct i915_vm_pt_stash *stash,
struct i915_page_directory * const pd,
u64 * const start, const u64 end, int lvl)
{
unsigned int idx, len;
GEM_BUG_ON(end > vm->total >> GEN8_PTE_SHIFT);
len = gen8_pd_range(*start, end, lvl--, &idx);
DBG("%s(%p):{ lvl:%d, start:%llx, end:%llx, idx:%d, len:%d, used:%d }\n",
__func__, vm, lvl + 1, *start, end,
idx, len, atomic_read(px_used(pd)));
GEM_BUG_ON(!len || (idx + len - 1) >> gen8_pd_shift(1));
spin_lock(&pd->lock);
GEM_BUG_ON(!atomic_read(px_used(pd))); /* Must be pinned! */
do {
struct i915_page_table *pt = pd->entry[idx];
if (!pt) {
spin_unlock(&pd->lock);
DBG("%s(%p):{ lvl:%d, idx:%d } allocating new tree\n",
__func__, vm, lvl + 1, idx);
pt = stash->pt[!!lvl];
__i915_gem_object_pin_pages(pt->base);
fill_px(pt, vm->scratch[lvl]->encode);
spin_lock(&pd->lock);
if (likely(!pd->entry[idx])) {
stash->pt[!!lvl] = pt->stash;
atomic_set(&pt->used, 0);
set_pd_entry(pd, idx, pt);
} else {
pt = pd->entry[idx];
}
}
if (lvl) {
atomic_inc(&pt->used);
spin_unlock(&pd->lock);
__gen8_ppgtt_alloc(vm, stash,
as_pd(pt), start, end, lvl);
spin_lock(&pd->lock);
atomic_dec(&pt->used);
GEM_BUG_ON(!atomic_read(&pt->used));
} else {
unsigned int count = gen8_pt_count(*start, end);
DBG("%s(%p):{ lvl:%d, start:%llx, end:%llx, idx:%d, len:%d, used:%d } inserting pte\n",
__func__, vm, lvl, *start, end,
gen8_pd_index(*start, 0), count,
atomic_read(&pt->used));
atomic_add(count, &pt->used);
/* All other pdes may be simultaneously removed */
GEM_BUG_ON(atomic_read(&pt->used) > NALLOC * I915_PDES);
*start += count;
}
} while (idx++, --len);
spin_unlock(&pd->lock);
}
static void gen8_ppgtt_alloc(struct i915_address_space *vm,
struct i915_vm_pt_stash *stash,
u64 start, u64 length)
{
GEM_BUG_ON(!IS_ALIGNED(start, BIT_ULL(GEN8_PTE_SHIFT)));
GEM_BUG_ON(!IS_ALIGNED(length, BIT_ULL(GEN8_PTE_SHIFT)));
GEM_BUG_ON(range_overflows(start, length, vm->total));
start >>= GEN8_PTE_SHIFT;
length >>= GEN8_PTE_SHIFT;
GEM_BUG_ON(length == 0);
__gen8_ppgtt_alloc(vm, stash, i915_vm_to_ppgtt(vm)->pd,
&start, start + length, vm->top);
}
static void __gen8_ppgtt_foreach(struct i915_address_space *vm,
struct i915_page_directory *pd,
u64 *start, u64 end, int lvl,
void (*fn)(struct i915_address_space *vm,
struct i915_page_table *pt,
void *data),
void *data)
{
unsigned int idx, len;
len = gen8_pd_range(*start, end, lvl--, &idx);
spin_lock(&pd->lock);
do {
struct i915_page_table *pt = pd->entry[idx];
atomic_inc(&pt->used);
spin_unlock(&pd->lock);
if (lvl) {
__gen8_ppgtt_foreach(vm, as_pd(pt), start, end, lvl,
fn, data);
} else {
fn(vm, pt, data);
*start += gen8_pt_count(*start, end);
}
spin_lock(&pd->lock);
atomic_dec(&pt->used);
} while (idx++, --len);
spin_unlock(&pd->lock);
}
static void gen8_ppgtt_foreach(struct i915_address_space *vm,
u64 start, u64 length,
void (*fn)(struct i915_address_space *vm,
struct i915_page_table *pt,
void *data),
void *data)
{
start >>= GEN8_PTE_SHIFT;
length >>= GEN8_PTE_SHIFT;
__gen8_ppgtt_foreach(vm, i915_vm_to_ppgtt(vm)->pd,
&start, start + length, vm->top,
fn, data);
}
static __always_inline u64
gen8_ppgtt_insert_pte(struct i915_ppgtt *ppgtt,
struct i915_page_directory *pdp,
struct sgt_dma *iter,
u64 idx,
enum i915_cache_level cache_level,
u32 flags)
{
struct i915_page_directory *pd;
const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
gen8_pte_t *vaddr;
pd = i915_pd_entry(pdp, gen8_pd_index(idx, 2));
vaddr = px_vaddr(i915_pt_entry(pd, gen8_pd_index(idx, 1)));
do {
GEM_BUG_ON(sg_dma_len(iter->sg) < I915_GTT_PAGE_SIZE);
vaddr[gen8_pd_index(idx, 0)] = pte_encode | iter->dma;
iter->dma += I915_GTT_PAGE_SIZE;
if (iter->dma >= iter->max) {
iter->sg = __sg_next(iter->sg);
if (!iter->sg || sg_dma_len(iter->sg) == 0) {
idx = 0;
break;
}
iter->dma = sg_dma_address(iter->sg);
iter->max = iter->dma + sg_dma_len(iter->sg);
}
if (gen8_pd_index(++idx, 0) == 0) {
if (gen8_pd_index(idx, 1) == 0) {
/* Limited by sg length for 3lvl */
if (gen8_pd_index(idx, 2) == 0)
break;
pd = pdp->entry[gen8_pd_index(idx, 2)];
}
drm_clflush_virt_range(vaddr, PAGE_SIZE);
vaddr = px_vaddr(i915_pt_entry(pd, gen8_pd_index(idx, 1)));
}
} while (1);
drm_clflush_virt_range(vaddr, PAGE_SIZE);
return idx;
}
static void
xehpsdv_ppgtt_insert_huge(struct i915_address_space *vm,
struct i915_vma_resource *vma_res,
struct sgt_dma *iter,
enum i915_cache_level cache_level,
u32 flags)
{
const gen8_pte_t pte_encode = vm->pte_encode(0, cache_level, flags);
unsigned int rem = sg_dma_len(iter->sg);
u64 start = vma_res->start;
u64 end = start + vma_res->vma_size;
GEM_BUG_ON(!i915_vm_is_4lvl(vm));
do {
struct i915_page_directory * const pdp =
gen8_pdp_for_page_address(vm, start);
struct i915_page_directory * const pd =
i915_pd_entry(pdp, __gen8_pte_index(start, 2));
struct i915_page_table *pt =
i915_pt_entry(pd, __gen8_pte_index(start, 1));
gen8_pte_t encode = pte_encode;
unsigned int page_size;
gen8_pte_t *vaddr;
u16 index, max, nent, i;
max = I915_PDES;
nent = 1;
if (vma_res->bi.page_sizes.sg & I915_GTT_PAGE_SIZE_2M &&
IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_2M) &&
rem >= I915_GTT_PAGE_SIZE_2M &&
!__gen8_pte_index(start, 0)) {
index = __gen8_pte_index(start, 1);
encode |= GEN8_PDE_PS_2M;
page_size = I915_GTT_PAGE_SIZE_2M;
vaddr = px_vaddr(pd);
} else {
index = __gen8_pte_index(start, 0);
page_size = I915_GTT_PAGE_SIZE;
if (vma_res->bi.page_sizes.sg & I915_GTT_PAGE_SIZE_64K) {
/*
* Device local-memory on these platforms should
* always use 64K pages or larger (including GTT
* alignment), therefore if we know the whole
* page-table needs to be filled we can always
* safely use the compact-layout. Otherwise fall
* back to the TLB hint with PS64. If this is
* system memory we only bother with PS64.
*/
if ((encode & GEN12_PPGTT_PTE_LM) &&
end - start >= SZ_2M && !index) {
index = __gen8_pte_index(start, 0) / 16;
page_size = I915_GTT_PAGE_SIZE_64K;
max /= 16;
vaddr = px_vaddr(pd);
vaddr[__gen8_pte_index(start, 1)] |= GEN12_PDE_64K;
pt->is_compact = true;
} else if (IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
rem >= I915_GTT_PAGE_SIZE_64K &&
!(index % 16)) {
encode |= GEN12_PTE_PS64;
page_size = I915_GTT_PAGE_SIZE_64K;
nent = 16;
}
}
vaddr = px_vaddr(pt);
}
do {
GEM_BUG_ON(rem < page_size);
for (i = 0; i < nent; i++) {
vaddr[index++] =
encode | (iter->dma + i *
I915_GTT_PAGE_SIZE);
}
start += page_size;
iter->dma += page_size;
rem -= page_size;
if (iter->dma >= iter->max) {
iter->sg = __sg_next(iter->sg);
if (!iter->sg)
break;
rem = sg_dma_len(iter->sg);
if (!rem)
break;
iter->dma = sg_dma_address(iter->sg);
iter->max = iter->dma + rem;
if (unlikely(!IS_ALIGNED(iter->dma, page_size)))
break;
}
} while (rem >= page_size && index < max);
vma_res->page_sizes_gtt |= page_size;
} while (iter->sg && sg_dma_len(iter->sg));
}
static void gen8_ppgtt_insert_huge(struct i915_address_space *vm,
struct i915_vma_resource *vma_res,
struct sgt_dma *iter,
enum i915_cache_level cache_level,
u32 flags)
{
const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
unsigned int rem = sg_dma_len(iter->sg);
u64 start = vma_res->start;
GEM_BUG_ON(!i915_vm_is_4lvl(vm));
do {
struct i915_page_directory * const pdp =
gen8_pdp_for_page_address(vm, start);
struct i915_page_directory * const pd =
i915_pd_entry(pdp, __gen8_pte_index(start, 2));
gen8_pte_t encode = pte_encode;
unsigned int maybe_64K = -1;
unsigned int page_size;
gen8_pte_t *vaddr;
u16 index;
if (vma_res->bi.page_sizes.sg & I915_GTT_PAGE_SIZE_2M &&
IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_2M) &&
rem >= I915_GTT_PAGE_SIZE_2M &&
!__gen8_pte_index(start, 0)) {
index = __gen8_pte_index(start, 1);
encode |= GEN8_PDE_PS_2M;
page_size = I915_GTT_PAGE_SIZE_2M;
vaddr = px_vaddr(pd);
} else {
struct i915_page_table *pt =
i915_pt_entry(pd, __gen8_pte_index(start, 1));
index = __gen8_pte_index(start, 0);
page_size = I915_GTT_PAGE_SIZE;
if (!index &&
vma_res->bi.page_sizes.sg & I915_GTT_PAGE_SIZE_64K &&
IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
(IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
rem >= (I915_PDES - index) * I915_GTT_PAGE_SIZE))
maybe_64K = __gen8_pte_index(start, 1);
vaddr = px_vaddr(pt);
}
do {
GEM_BUG_ON(sg_dma_len(iter->sg) < page_size);
vaddr[index++] = encode | iter->dma;
start += page_size;
iter->dma += page_size;
rem -= page_size;
if (iter->dma >= iter->max) {
iter->sg = __sg_next(iter->sg);
if (!iter->sg)
break;
rem = sg_dma_len(iter->sg);
if (!rem)
break;
iter->dma = sg_dma_address(iter->sg);
iter->max = iter->dma + rem;
if (maybe_64K != -1 && index < I915_PDES &&
!(IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
(IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
rem >= (I915_PDES - index) * I915_GTT_PAGE_SIZE)))
maybe_64K = -1;
if (unlikely(!IS_ALIGNED(iter->dma, page_size)))
break;
}
} while (rem >= page_size && index < I915_PDES);
drm_clflush_virt_range(vaddr, PAGE_SIZE);
/*
* Is it safe to mark the 2M block as 64K? -- Either we have
* filled whole page-table with 64K entries, or filled part of
* it and have reached the end of the sg table and we have
* enough padding.
*/
if (maybe_64K != -1 &&
(index == I915_PDES ||
(i915_vm_has_scratch_64K(vm) &&
!iter->sg && IS_ALIGNED(vma_res->start +
vma_res->node_size,
I915_GTT_PAGE_SIZE_2M)))) {
vaddr = px_vaddr(pd);
vaddr[maybe_64K] |= GEN8_PDE_IPS_64K;
drm_clflush_virt_range(vaddr, PAGE_SIZE);
page_size = I915_GTT_PAGE_SIZE_64K;
/*
* We write all 4K page entries, even when using 64K
* pages. In order to verify that the HW isn't cheating
* by using the 4K PTE instead of the 64K PTE, we want
* to remove all the surplus entries. If the HW skipped
* the 64K PTE, it will read/write into the scratch page
* instead - which we detect as missing results during
* selftests.
*/
if (I915_SELFTEST_ONLY(vm->scrub_64K)) {
u16 i;
encode = vm->scratch[0]->encode;
vaddr = px_vaddr(i915_pt_entry(pd, maybe_64K));
for (i = 1; i < index; i += 16)
memset64(vaddr + i, encode, 15);
drm_clflush_virt_range(vaddr, PAGE_SIZE);
}
}
vma_res->page_sizes_gtt |= page_size;
} while (iter->sg && sg_dma_len(iter->sg));
}
static void gen8_ppgtt_insert(struct i915_address_space *vm,
struct i915_vma_resource *vma_res,
enum i915_cache_level cache_level,
u32 flags)
{
struct i915_ppgtt * const ppgtt = i915_vm_to_ppgtt(vm);
struct sgt_dma iter = sgt_dma(vma_res);
if (vma_res->bi.page_sizes.sg > I915_GTT_PAGE_SIZE) {
if (HAS_64K_PAGES(vm->i915))
xehpsdv_ppgtt_insert_huge(vm, vma_res, &iter, cache_level, flags);
else
gen8_ppgtt_insert_huge(vm, vma_res, &iter, cache_level, flags);
} else {
u64 idx = vma_res->start >> GEN8_PTE_SHIFT;
do {
struct i915_page_directory * const pdp =
gen8_pdp_for_page_index(vm, idx);
idx = gen8_ppgtt_insert_pte(ppgtt, pdp, &iter, idx,
cache_level, flags);
} while (idx);
vma_res->page_sizes_gtt = I915_GTT_PAGE_SIZE;
}
}
static void gen8_ppgtt_insert_entry(struct i915_address_space *vm,
dma_addr_t addr,
u64 offset,
enum i915_cache_level level,
u32 flags)
{
u64 idx = offset >> GEN8_PTE_SHIFT;
struct i915_page_directory * const pdp =
gen8_pdp_for_page_index(vm, idx);
struct i915_page_directory *pd =
i915_pd_entry(pdp, gen8_pd_index(idx, 2));
struct i915_page_table *pt = i915_pt_entry(pd, gen8_pd_index(idx, 1));
gen8_pte_t *vaddr;
GEM_BUG_ON(pt->is_compact);
vaddr = px_vaddr(pt);
vaddr[gen8_pd_index(idx, 0)] = gen8_pte_encode(addr, level, flags);
drm_clflush_virt_range(&vaddr[gen8_pd_index(idx, 0)], sizeof(*vaddr));
}
static void __xehpsdv_ppgtt_insert_entry_lm(struct i915_address_space *vm,
dma_addr_t addr,
u64 offset,
enum i915_cache_level level,
u32 flags)
{
u64 idx = offset >> GEN8_PTE_SHIFT;
struct i915_page_directory * const pdp =
gen8_pdp_for_page_index(vm, idx);
struct i915_page_directory *pd =
i915_pd_entry(pdp, gen8_pd_index(idx, 2));
struct i915_page_table *pt = i915_pt_entry(pd, gen8_pd_index(idx, 1));
gen8_pte_t *vaddr;
GEM_BUG_ON(!IS_ALIGNED(addr, SZ_64K));
GEM_BUG_ON(!IS_ALIGNED(offset, SZ_64K));
/* XXX: we don't strictly need to use this layout */
if (!pt->is_compact) {
vaddr = px_vaddr(pd);
vaddr[gen8_pd_index(idx, 1)] |= GEN12_PDE_64K;
pt->is_compact = true;
}
vaddr = px_vaddr(pt);
vaddr[gen8_pd_index(idx, 0) / 16] = gen8_pte_encode(addr, level, flags);
}
static void xehpsdv_ppgtt_insert_entry(struct i915_address_space *vm,
dma_addr_t addr,
u64 offset,
enum i915_cache_level level,
u32 flags)
{
if (flags & PTE_LM)
return __xehpsdv_ppgtt_insert_entry_lm(vm, addr, offset,
level, flags);
return gen8_ppgtt_insert_entry(vm, addr, offset, level, flags);
}
static int gen8_init_scratch(struct i915_address_space *vm)
{
u32 pte_flags;
int ret;
int i;
/*
* If everybody agrees to not to write into the scratch page,
* we can reuse it for all vm, keeping contexts and processes separate.
*/
if (vm->has_read_only && vm->gt->vm && !i915_is_ggtt(vm->gt->vm)) {
struct i915_address_space *clone = vm->gt->vm;
GEM_BUG_ON(!clone->has_read_only);
vm->scratch_order = clone->scratch_order;
for (i = 0; i <= vm->top; i++)
vm->scratch[i] = i915_gem_object_get(clone->scratch[i]);
return 0;
}
ret = setup_scratch_page(vm);
if (ret)
return ret;
pte_flags = vm->has_read_only;
if (i915_gem_object_is_lmem(vm->scratch[0]))
pte_flags |= PTE_LM;
vm->scratch[0]->encode =
gen8_pte_encode(px_dma(vm->scratch[0]),
I915_CACHE_NONE, pte_flags);
for (i = 1; i <= vm->top; i++) {
struct drm_i915_gem_object *obj;
obj = vm->alloc_pt_dma(vm, I915_GTT_PAGE_SIZE_4K);
if (IS_ERR(obj)) {
ret = PTR_ERR(obj);
goto free_scratch;
}
ret = map_pt_dma(vm, obj);
if (ret) {
i915_gem_object_put(obj);
goto free_scratch;
}
fill_px(obj, vm->scratch[i - 1]->encode);
obj->encode = gen8_pde_encode(px_dma(obj), I915_CACHE_NONE);
vm->scratch[i] = obj;
}
return 0;
free_scratch:
while (i--)
i915_gem_object_put(vm->scratch[i]);
vm->scratch[0] = NULL;
return ret;
}
static int gen8_preallocate_top_level_pdp(struct i915_ppgtt *ppgtt)
{
struct i915_address_space *vm = &ppgtt->vm;
struct i915_page_directory *pd = ppgtt->pd;
unsigned int idx;
GEM_BUG_ON(vm->top != 2);
GEM_BUG_ON(gen8_pd_top_count(vm) != GEN8_3LVL_PDPES);
for (idx = 0; idx < GEN8_3LVL_PDPES; idx++) {
struct i915_page_directory *pde;
int err;
pde = alloc_pd(vm);
if (IS_ERR(pde))
return PTR_ERR(pde);
err = map_pt_dma(vm, pde->pt.base);
if (err) {
free_pd(vm, pde);
return err;
}
fill_px(pde, vm->scratch[1]->encode);
set_pd_entry(pd, idx, pde);
atomic_inc(px_used(pde)); /* keep pinned */
}
wmb();
return 0;
}
static struct i915_page_directory *
gen8_alloc_top_pd(struct i915_address_space *vm)
{
const unsigned int count = gen8_pd_top_count(vm);
struct i915_page_directory *pd;
int err;
GEM_BUG_ON(count > I915_PDES);
pd = __alloc_pd(count);
if (unlikely(!pd))
return ERR_PTR(-ENOMEM);
pd->pt.base = vm->alloc_pt_dma(vm, I915_GTT_PAGE_SIZE_4K);
if (IS_ERR(pd->pt.base)) {
err = PTR_ERR(pd->pt.base);
pd->pt.base = NULL;
goto err_pd;
}
err = map_pt_dma(vm, pd->pt.base);
if (err)
goto err_pd;
fill_page_dma(px_base(pd), vm->scratch[vm->top]->encode, count);
atomic_inc(px_used(pd)); /* mark as pinned */
return pd;
err_pd:
free_pd(vm, pd);
return ERR_PTR(err);
}
/*
* GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
* with a net effect resembling a 2-level page table in normal x86 terms. Each
* PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
* space.
*
*/
struct i915_ppgtt *gen8_ppgtt_create(struct intel_gt *gt,
unsigned long lmem_pt_obj_flags)
{
struct i915_page_directory *pd;
struct i915_ppgtt *ppgtt;
int err;
ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
if (!ppgtt)
return ERR_PTR(-ENOMEM);
ppgtt_init(ppgtt, gt, lmem_pt_obj_flags);
ppgtt->vm.top = i915_vm_is_4lvl(&ppgtt->vm) ? 3 : 2;
ppgtt->vm.pd_shift = ilog2(SZ_4K * SZ_4K / sizeof(gen8_pte_t));
/*
* From bdw, there is hw support for read-only pages in the PPGTT.
*
* Gen11 has HSDES#:1807136187 unresolved. Disable ro support
* for now.
*
* Gen12 has inherited the same read-only fault issue from gen11.
*/
ppgtt->vm.has_read_only = !IS_GRAPHICS_VER(gt->i915, 11, 12);
if (HAS_LMEM(gt->i915))
ppgtt->vm.alloc_pt_dma = alloc_pt_lmem;
else
ppgtt->vm.alloc_pt_dma = alloc_pt_dma;
/*
* Using SMEM here instead of LMEM has the advantage of not reserving
* high performance memory for a "never" used filler page. It also
* removes the device access that would be required to initialise the
* scratch page, reducing pressure on an even scarcer resource.
*/
ppgtt->vm.alloc_scratch_dma = alloc_pt_dma;
ppgtt->vm.pte_encode = gen8_pte_encode;
ppgtt->vm.bind_async_flags = I915_VMA_LOCAL_BIND;
ppgtt->vm.insert_entries = gen8_ppgtt_insert;
if (HAS_64K_PAGES(gt->i915))
ppgtt->vm.insert_page = xehpsdv_ppgtt_insert_entry;
else
ppgtt->vm.insert_page = gen8_ppgtt_insert_entry;
ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc;
ppgtt->vm.clear_range = gen8_ppgtt_clear;
ppgtt->vm.foreach = gen8_ppgtt_foreach;
ppgtt->vm.cleanup = gen8_ppgtt_cleanup;
err = gen8_init_scratch(&ppgtt->vm);
if (err)
goto err_put;
pd = gen8_alloc_top_pd(&ppgtt->vm);
if (IS_ERR(pd)) {
err = PTR_ERR(pd);
goto err_put;
}
ppgtt->pd = pd;
if (!i915_vm_is_4lvl(&ppgtt->vm)) {
err = gen8_preallocate_top_level_pdp(ppgtt);
if (err)
goto err_put;
}
if (intel_vgpu_active(gt->i915))
gen8_ppgtt_notify_vgt(ppgtt, true);
return ppgtt;
err_put:
i915_vm_put(&ppgtt->vm);
return ERR_PTR(err);
}