658 lines
15 KiB
C
658 lines
15 KiB
C
/*
|
|
* Copyright (c) 2014-2016, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
* DEALINGS IN THE SOFTWARE.
|
|
*
|
|
* Shamelessly ripped off from ChromeOS's gk20a/clk_pllg.c
|
|
*
|
|
*/
|
|
#include "priv.h"
|
|
#include "gk20a.h"
|
|
|
|
#include <core/tegra.h>
|
|
#include <subdev/timer.h>
|
|
|
|
static const u8 _pl_to_div[] = {
|
|
/* PL: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 */
|
|
/* p: */ 1, 2, 3, 4, 5, 6, 8, 10, 12, 16, 12, 16, 20, 24, 32,
|
|
};
|
|
|
|
static u32 pl_to_div(u32 pl)
|
|
{
|
|
if (pl >= ARRAY_SIZE(_pl_to_div))
|
|
return 1;
|
|
|
|
return _pl_to_div[pl];
|
|
}
|
|
|
|
static u32 div_to_pl(u32 div)
|
|
{
|
|
u32 pl;
|
|
|
|
for (pl = 0; pl < ARRAY_SIZE(_pl_to_div) - 1; pl++) {
|
|
if (_pl_to_div[pl] >= div)
|
|
return pl;
|
|
}
|
|
|
|
return ARRAY_SIZE(_pl_to_div) - 1;
|
|
}
|
|
|
|
static const struct gk20a_clk_pllg_params gk20a_pllg_params = {
|
|
.min_vco = 1000000, .max_vco = 2064000,
|
|
.min_u = 12000, .max_u = 38000,
|
|
.min_m = 1, .max_m = 255,
|
|
.min_n = 8, .max_n = 255,
|
|
.min_pl = 1, .max_pl = 32,
|
|
};
|
|
|
|
void
|
|
gk20a_pllg_read_mnp(struct gk20a_clk *clk, struct gk20a_pll *pll)
|
|
{
|
|
struct nvkm_device *device = clk->base.subdev.device;
|
|
u32 val;
|
|
|
|
val = nvkm_rd32(device, GPCPLL_COEFF);
|
|
pll->m = (val >> GPCPLL_COEFF_M_SHIFT) & MASK(GPCPLL_COEFF_M_WIDTH);
|
|
pll->n = (val >> GPCPLL_COEFF_N_SHIFT) & MASK(GPCPLL_COEFF_N_WIDTH);
|
|
pll->pl = (val >> GPCPLL_COEFF_P_SHIFT) & MASK(GPCPLL_COEFF_P_WIDTH);
|
|
}
|
|
|
|
void
|
|
gk20a_pllg_write_mnp(struct gk20a_clk *clk, const struct gk20a_pll *pll)
|
|
{
|
|
struct nvkm_device *device = clk->base.subdev.device;
|
|
u32 val;
|
|
|
|
val = (pll->m & MASK(GPCPLL_COEFF_M_WIDTH)) << GPCPLL_COEFF_M_SHIFT;
|
|
val |= (pll->n & MASK(GPCPLL_COEFF_N_WIDTH)) << GPCPLL_COEFF_N_SHIFT;
|
|
val |= (pll->pl & MASK(GPCPLL_COEFF_P_WIDTH)) << GPCPLL_COEFF_P_SHIFT;
|
|
nvkm_wr32(device, GPCPLL_COEFF, val);
|
|
}
|
|
|
|
u32
|
|
gk20a_pllg_calc_rate(struct gk20a_clk *clk, struct gk20a_pll *pll)
|
|
{
|
|
u32 rate;
|
|
u32 divider;
|
|
|
|
rate = clk->parent_rate * pll->n;
|
|
divider = pll->m * clk->pl_to_div(pll->pl);
|
|
|
|
return rate / divider / 2;
|
|
}
|
|
|
|
int
|
|
gk20a_pllg_calc_mnp(struct gk20a_clk *clk, unsigned long rate,
|
|
struct gk20a_pll *pll)
|
|
{
|
|
struct nvkm_subdev *subdev = &clk->base.subdev;
|
|
u32 target_clk_f, ref_clk_f, target_freq;
|
|
u32 min_vco_f, max_vco_f;
|
|
u32 low_pl, high_pl, best_pl;
|
|
u32 target_vco_f;
|
|
u32 best_m, best_n;
|
|
u32 best_delta = ~0;
|
|
u32 pl;
|
|
|
|
target_clk_f = rate * 2 / KHZ;
|
|
ref_clk_f = clk->parent_rate / KHZ;
|
|
|
|
target_vco_f = target_clk_f + target_clk_f / 50;
|
|
max_vco_f = max(clk->params->max_vco, target_vco_f);
|
|
min_vco_f = clk->params->min_vco;
|
|
best_m = clk->params->max_m;
|
|
best_n = clk->params->min_n;
|
|
best_pl = clk->params->min_pl;
|
|
|
|
/* min_pl <= high_pl <= max_pl */
|
|
high_pl = (max_vco_f + target_vco_f - 1) / target_vco_f;
|
|
high_pl = min(high_pl, clk->params->max_pl);
|
|
high_pl = max(high_pl, clk->params->min_pl);
|
|
high_pl = clk->div_to_pl(high_pl);
|
|
|
|
/* min_pl <= low_pl <= max_pl */
|
|
low_pl = min_vco_f / target_vco_f;
|
|
low_pl = min(low_pl, clk->params->max_pl);
|
|
low_pl = max(low_pl, clk->params->min_pl);
|
|
low_pl = clk->div_to_pl(low_pl);
|
|
|
|
nvkm_debug(subdev, "low_PL %d(div%d), high_PL %d(div%d)", low_pl,
|
|
clk->pl_to_div(low_pl), high_pl, clk->pl_to_div(high_pl));
|
|
|
|
/* Select lowest possible VCO */
|
|
for (pl = low_pl; pl <= high_pl; pl++) {
|
|
u32 m, n, n2;
|
|
|
|
target_vco_f = target_clk_f * clk->pl_to_div(pl);
|
|
|
|
for (m = clk->params->min_m; m <= clk->params->max_m; m++) {
|
|
u32 u_f = ref_clk_f / m;
|
|
|
|
if (u_f < clk->params->min_u)
|
|
break;
|
|
if (u_f > clk->params->max_u)
|
|
continue;
|
|
|
|
n = (target_vco_f * m) / ref_clk_f;
|
|
n2 = ((target_vco_f * m) + (ref_clk_f - 1)) / ref_clk_f;
|
|
|
|
if (n > clk->params->max_n)
|
|
break;
|
|
|
|
for (; n <= n2; n++) {
|
|
u32 vco_f;
|
|
|
|
if (n < clk->params->min_n)
|
|
continue;
|
|
if (n > clk->params->max_n)
|
|
break;
|
|
|
|
vco_f = ref_clk_f * n / m;
|
|
|
|
if (vco_f >= min_vco_f && vco_f <= max_vco_f) {
|
|
u32 delta, lwv;
|
|
|
|
lwv = (vco_f + (clk->pl_to_div(pl) / 2))
|
|
/ clk->pl_to_div(pl);
|
|
delta = abs(lwv - target_clk_f);
|
|
|
|
if (delta < best_delta) {
|
|
best_delta = delta;
|
|
best_m = m;
|
|
best_n = n;
|
|
best_pl = pl;
|
|
|
|
if (best_delta == 0)
|
|
goto found_match;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
found_match:
|
|
WARN_ON(best_delta == ~0);
|
|
|
|
if (best_delta != 0)
|
|
nvkm_debug(subdev,
|
|
"no best match for target @ %dMHz on gpc_pll",
|
|
target_clk_f / KHZ);
|
|
|
|
pll->m = best_m;
|
|
pll->n = best_n;
|
|
pll->pl = best_pl;
|
|
|
|
target_freq = gk20a_pllg_calc_rate(clk, pll);
|
|
|
|
nvkm_debug(subdev,
|
|
"actual target freq %d KHz, M %d, N %d, PL %d(div%d)\n",
|
|
target_freq / KHZ, pll->m, pll->n, pll->pl,
|
|
clk->pl_to_div(pll->pl));
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
gk20a_pllg_slide(struct gk20a_clk *clk, u32 n)
|
|
{
|
|
struct nvkm_subdev *subdev = &clk->base.subdev;
|
|
struct nvkm_device *device = subdev->device;
|
|
struct gk20a_pll pll;
|
|
int ret = 0;
|
|
|
|
/* get old coefficients */
|
|
gk20a_pllg_read_mnp(clk, &pll);
|
|
/* do nothing if NDIV is the same */
|
|
if (n == pll.n)
|
|
return 0;
|
|
|
|
/* pll slowdown mode */
|
|
nvkm_mask(device, GPCPLL_NDIV_SLOWDOWN,
|
|
BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT),
|
|
BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT));
|
|
|
|
/* new ndiv ready for ramp */
|
|
pll.n = n;
|
|
udelay(1);
|
|
gk20a_pllg_write_mnp(clk, &pll);
|
|
|
|
/* dynamic ramp to new ndiv */
|
|
udelay(1);
|
|
nvkm_mask(device, GPCPLL_NDIV_SLOWDOWN,
|
|
BIT(GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT),
|
|
BIT(GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT));
|
|
|
|
/* wait for ramping to complete */
|
|
if (nvkm_wait_usec(device, 500, GPC_BCAST_NDIV_SLOWDOWN_DEBUG,
|
|
GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_MASK,
|
|
GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_MASK) < 0)
|
|
ret = -ETIMEDOUT;
|
|
|
|
/* exit slowdown mode */
|
|
nvkm_mask(device, GPCPLL_NDIV_SLOWDOWN,
|
|
BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT) |
|
|
BIT(GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT), 0);
|
|
nvkm_rd32(device, GPCPLL_NDIV_SLOWDOWN);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
gk20a_pllg_enable(struct gk20a_clk *clk)
|
|
{
|
|
struct nvkm_device *device = clk->base.subdev.device;
|
|
u32 val;
|
|
|
|
nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_ENABLE, GPCPLL_CFG_ENABLE);
|
|
nvkm_rd32(device, GPCPLL_CFG);
|
|
|
|
/* enable lock detection */
|
|
val = nvkm_rd32(device, GPCPLL_CFG);
|
|
if (val & GPCPLL_CFG_LOCK_DET_OFF) {
|
|
val &= ~GPCPLL_CFG_LOCK_DET_OFF;
|
|
nvkm_wr32(device, GPCPLL_CFG, val);
|
|
}
|
|
|
|
/* wait for lock */
|
|
if (nvkm_wait_usec(device, 300, GPCPLL_CFG, GPCPLL_CFG_LOCK,
|
|
GPCPLL_CFG_LOCK) < 0)
|
|
return -ETIMEDOUT;
|
|
|
|
/* switch to VCO mode */
|
|
nvkm_mask(device, SEL_VCO, BIT(SEL_VCO_GPC2CLK_OUT_SHIFT),
|
|
BIT(SEL_VCO_GPC2CLK_OUT_SHIFT));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
gk20a_pllg_disable(struct gk20a_clk *clk)
|
|
{
|
|
struct nvkm_device *device = clk->base.subdev.device;
|
|
|
|
/* put PLL in bypass before disabling it */
|
|
nvkm_mask(device, SEL_VCO, BIT(SEL_VCO_GPC2CLK_OUT_SHIFT), 0);
|
|
|
|
nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_ENABLE, 0);
|
|
nvkm_rd32(device, GPCPLL_CFG);
|
|
}
|
|
|
|
static int
|
|
gk20a_pllg_program_mnp(struct gk20a_clk *clk, const struct gk20a_pll *pll)
|
|
{
|
|
struct nvkm_subdev *subdev = &clk->base.subdev;
|
|
struct nvkm_device *device = subdev->device;
|
|
struct gk20a_pll cur_pll;
|
|
int ret;
|
|
|
|
gk20a_pllg_read_mnp(clk, &cur_pll);
|
|
|
|
/* split VCO-to-bypass jump in half by setting out divider 1:2 */
|
|
nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_VCODIV_MASK,
|
|
GPC2CLK_OUT_VCODIV2 << GPC2CLK_OUT_VCODIV_SHIFT);
|
|
/* Intentional 2nd write to assure linear divider operation */
|
|
nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_VCODIV_MASK,
|
|
GPC2CLK_OUT_VCODIV2 << GPC2CLK_OUT_VCODIV_SHIFT);
|
|
nvkm_rd32(device, GPC2CLK_OUT);
|
|
udelay(2);
|
|
|
|
gk20a_pllg_disable(clk);
|
|
|
|
gk20a_pllg_write_mnp(clk, pll);
|
|
|
|
ret = gk20a_pllg_enable(clk);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* restore out divider 1:1 */
|
|
udelay(2);
|
|
nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_VCODIV_MASK,
|
|
GPC2CLK_OUT_VCODIV1 << GPC2CLK_OUT_VCODIV_SHIFT);
|
|
/* Intentional 2nd write to assure linear divider operation */
|
|
nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_VCODIV_MASK,
|
|
GPC2CLK_OUT_VCODIV1 << GPC2CLK_OUT_VCODIV_SHIFT);
|
|
nvkm_rd32(device, GPC2CLK_OUT);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
gk20a_pllg_program_mnp_slide(struct gk20a_clk *clk, const struct gk20a_pll *pll)
|
|
{
|
|
struct gk20a_pll cur_pll;
|
|
int ret;
|
|
|
|
if (gk20a_pllg_is_enabled(clk)) {
|
|
gk20a_pllg_read_mnp(clk, &cur_pll);
|
|
|
|
/* just do NDIV slide if there is no change to M and PL */
|
|
if (pll->m == cur_pll.m && pll->pl == cur_pll.pl)
|
|
return gk20a_pllg_slide(clk, pll->n);
|
|
|
|
/* slide down to current NDIV_LO */
|
|
cur_pll.n = gk20a_pllg_n_lo(clk, &cur_pll);
|
|
ret = gk20a_pllg_slide(clk, cur_pll.n);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
/* program MNP with the new clock parameters and new NDIV_LO */
|
|
cur_pll = *pll;
|
|
cur_pll.n = gk20a_pllg_n_lo(clk, &cur_pll);
|
|
ret = gk20a_pllg_program_mnp(clk, &cur_pll);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* slide up to new NDIV */
|
|
return gk20a_pllg_slide(clk, pll->n);
|
|
}
|
|
|
|
static struct nvkm_pstate
|
|
gk20a_pstates[] = {
|
|
{
|
|
.base = {
|
|
.domain[nv_clk_src_gpc] = 72000,
|
|
.voltage = 0,
|
|
},
|
|
},
|
|
{
|
|
.base = {
|
|
.domain[nv_clk_src_gpc] = 108000,
|
|
.voltage = 1,
|
|
},
|
|
},
|
|
{
|
|
.base = {
|
|
.domain[nv_clk_src_gpc] = 180000,
|
|
.voltage = 2,
|
|
},
|
|
},
|
|
{
|
|
.base = {
|
|
.domain[nv_clk_src_gpc] = 252000,
|
|
.voltage = 3,
|
|
},
|
|
},
|
|
{
|
|
.base = {
|
|
.domain[nv_clk_src_gpc] = 324000,
|
|
.voltage = 4,
|
|
},
|
|
},
|
|
{
|
|
.base = {
|
|
.domain[nv_clk_src_gpc] = 396000,
|
|
.voltage = 5,
|
|
},
|
|
},
|
|
{
|
|
.base = {
|
|
.domain[nv_clk_src_gpc] = 468000,
|
|
.voltage = 6,
|
|
},
|
|
},
|
|
{
|
|
.base = {
|
|
.domain[nv_clk_src_gpc] = 540000,
|
|
.voltage = 7,
|
|
},
|
|
},
|
|
{
|
|
.base = {
|
|
.domain[nv_clk_src_gpc] = 612000,
|
|
.voltage = 8,
|
|
},
|
|
},
|
|
{
|
|
.base = {
|
|
.domain[nv_clk_src_gpc] = 648000,
|
|
.voltage = 9,
|
|
},
|
|
},
|
|
{
|
|
.base = {
|
|
.domain[nv_clk_src_gpc] = 684000,
|
|
.voltage = 10,
|
|
},
|
|
},
|
|
{
|
|
.base = {
|
|
.domain[nv_clk_src_gpc] = 708000,
|
|
.voltage = 11,
|
|
},
|
|
},
|
|
{
|
|
.base = {
|
|
.domain[nv_clk_src_gpc] = 756000,
|
|
.voltage = 12,
|
|
},
|
|
},
|
|
{
|
|
.base = {
|
|
.domain[nv_clk_src_gpc] = 804000,
|
|
.voltage = 13,
|
|
},
|
|
},
|
|
{
|
|
.base = {
|
|
.domain[nv_clk_src_gpc] = 852000,
|
|
.voltage = 14,
|
|
},
|
|
},
|
|
};
|
|
|
|
int
|
|
gk20a_clk_read(struct nvkm_clk *base, enum nv_clk_src src)
|
|
{
|
|
struct gk20a_clk *clk = gk20a_clk(base);
|
|
struct nvkm_subdev *subdev = &clk->base.subdev;
|
|
struct nvkm_device *device = subdev->device;
|
|
struct gk20a_pll pll;
|
|
|
|
switch (src) {
|
|
case nv_clk_src_crystal:
|
|
return device->crystal;
|
|
case nv_clk_src_gpc:
|
|
gk20a_pllg_read_mnp(clk, &pll);
|
|
return gk20a_pllg_calc_rate(clk, &pll) / GK20A_CLK_GPC_MDIV;
|
|
default:
|
|
nvkm_error(subdev, "invalid clock source %d\n", src);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
int
|
|
gk20a_clk_calc(struct nvkm_clk *base, struct nvkm_cstate *cstate)
|
|
{
|
|
struct gk20a_clk *clk = gk20a_clk(base);
|
|
|
|
return gk20a_pllg_calc_mnp(clk, cstate->domain[nv_clk_src_gpc] *
|
|
GK20A_CLK_GPC_MDIV, &clk->pll);
|
|
}
|
|
|
|
int
|
|
gk20a_clk_prog(struct nvkm_clk *base)
|
|
{
|
|
struct gk20a_clk *clk = gk20a_clk(base);
|
|
int ret;
|
|
|
|
ret = gk20a_pllg_program_mnp_slide(clk, &clk->pll);
|
|
if (ret)
|
|
ret = gk20a_pllg_program_mnp(clk, &clk->pll);
|
|
|
|
return ret;
|
|
}
|
|
|
|
void
|
|
gk20a_clk_tidy(struct nvkm_clk *base)
|
|
{
|
|
}
|
|
|
|
int
|
|
gk20a_clk_setup_slide(struct gk20a_clk *clk)
|
|
{
|
|
struct nvkm_subdev *subdev = &clk->base.subdev;
|
|
struct nvkm_device *device = subdev->device;
|
|
u32 step_a, step_b;
|
|
|
|
switch (clk->parent_rate) {
|
|
case 12000000:
|
|
case 12800000:
|
|
case 13000000:
|
|
step_a = 0x2b;
|
|
step_b = 0x0b;
|
|
break;
|
|
case 19200000:
|
|
step_a = 0x12;
|
|
step_b = 0x08;
|
|
break;
|
|
case 38400000:
|
|
step_a = 0x04;
|
|
step_b = 0x05;
|
|
break;
|
|
default:
|
|
nvkm_error(subdev, "invalid parent clock rate %u KHz",
|
|
clk->parent_rate / KHZ);
|
|
return -EINVAL;
|
|
}
|
|
|
|
nvkm_mask(device, GPCPLL_CFG2, 0xff << GPCPLL_CFG2_PLL_STEPA_SHIFT,
|
|
step_a << GPCPLL_CFG2_PLL_STEPA_SHIFT);
|
|
nvkm_mask(device, GPCPLL_CFG3, 0xff << GPCPLL_CFG3_PLL_STEPB_SHIFT,
|
|
step_b << GPCPLL_CFG3_PLL_STEPB_SHIFT);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
gk20a_clk_fini(struct nvkm_clk *base)
|
|
{
|
|
struct nvkm_device *device = base->subdev.device;
|
|
struct gk20a_clk *clk = gk20a_clk(base);
|
|
|
|
/* slide to VCO min */
|
|
if (gk20a_pllg_is_enabled(clk)) {
|
|
struct gk20a_pll pll;
|
|
u32 n_lo;
|
|
|
|
gk20a_pllg_read_mnp(clk, &pll);
|
|
n_lo = gk20a_pllg_n_lo(clk, &pll);
|
|
gk20a_pllg_slide(clk, n_lo);
|
|
}
|
|
|
|
gk20a_pllg_disable(clk);
|
|
|
|
/* set IDDQ */
|
|
nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_IDDQ, 1);
|
|
}
|
|
|
|
static int
|
|
gk20a_clk_init(struct nvkm_clk *base)
|
|
{
|
|
struct gk20a_clk *clk = gk20a_clk(base);
|
|
struct nvkm_subdev *subdev = &clk->base.subdev;
|
|
struct nvkm_device *device = subdev->device;
|
|
int ret;
|
|
|
|
/* get out from IDDQ */
|
|
nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_IDDQ, 0);
|
|
nvkm_rd32(device, GPCPLL_CFG);
|
|
udelay(5);
|
|
|
|
nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_INIT_MASK,
|
|
GPC2CLK_OUT_INIT_VAL);
|
|
|
|
ret = gk20a_clk_setup_slide(clk);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Start with lowest frequency */
|
|
base->func->calc(base, &base->func->pstates[0].base);
|
|
ret = base->func->prog(&clk->base);
|
|
if (ret) {
|
|
nvkm_error(subdev, "cannot initialize clock\n");
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct nvkm_clk_func
|
|
gk20a_clk = {
|
|
.init = gk20a_clk_init,
|
|
.fini = gk20a_clk_fini,
|
|
.read = gk20a_clk_read,
|
|
.calc = gk20a_clk_calc,
|
|
.prog = gk20a_clk_prog,
|
|
.tidy = gk20a_clk_tidy,
|
|
.pstates = gk20a_pstates,
|
|
.nr_pstates = ARRAY_SIZE(gk20a_pstates),
|
|
.domains = {
|
|
{ nv_clk_src_crystal, 0xff },
|
|
{ nv_clk_src_gpc, 0xff, 0, "core", GK20A_CLK_GPC_MDIV },
|
|
{ nv_clk_src_max }
|
|
}
|
|
};
|
|
|
|
int
|
|
gk20a_clk_ctor(struct nvkm_device *device, enum nvkm_subdev_type type, int inst,
|
|
const struct nvkm_clk_func *func, const struct gk20a_clk_pllg_params *params,
|
|
struct gk20a_clk *clk)
|
|
{
|
|
struct nvkm_device_tegra *tdev = device->func->tegra(device);
|
|
int ret;
|
|
int i;
|
|
|
|
/* Finish initializing the pstates */
|
|
for (i = 0; i < func->nr_pstates; i++) {
|
|
INIT_LIST_HEAD(&func->pstates[i].list);
|
|
func->pstates[i].pstate = i + 1;
|
|
}
|
|
|
|
clk->params = params;
|
|
clk->parent_rate = clk_get_rate(tdev->clk);
|
|
|
|
ret = nvkm_clk_ctor(func, device, type, inst, true, &clk->base);
|
|
if (ret)
|
|
return ret;
|
|
|
|
nvkm_debug(&clk->base.subdev, "parent clock rate: %d Khz\n",
|
|
clk->parent_rate / KHZ);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
gk20a_clk_new(struct nvkm_device *device, enum nvkm_subdev_type type, int inst,
|
|
struct nvkm_clk **pclk)
|
|
{
|
|
struct gk20a_clk *clk;
|
|
int ret;
|
|
|
|
clk = kzalloc(sizeof(*clk), GFP_KERNEL);
|
|
if (!clk)
|
|
return -ENOMEM;
|
|
*pclk = &clk->base;
|
|
|
|
ret = gk20a_clk_ctor(device, type, inst, &gk20a_clk, &gk20a_pllg_params, clk);
|
|
|
|
clk->pl_to_div = pl_to_div;
|
|
clk->div_to_pl = div_to_pl;
|
|
return ret;
|
|
}
|