linux-zen-server/drivers/gpu/drm/sprd/sprd_dsi.c

1078 lines
27 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2020 Unisoc Inc.
*/
#include <linux/component.h>
#include <linux/module.h>
#include <linux/of_address.h>
#include <linux/of_device.h>
#include <linux/of_irq.h>
#include <linux/of_graph.h>
#include <video/mipi_display.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_bridge.h>
#include <drm/drm_of.h>
#include <drm/drm_probe_helper.h>
#include "sprd_drm.h"
#include "sprd_dpu.h"
#include "sprd_dsi.h"
#define SOFT_RESET 0x04
#define MASK_PROTOCOL_INT 0x0C
#define MASK_INTERNAL_INT 0x14
#define DSI_MODE_CFG 0x18
#define VIRTUAL_CHANNEL_ID 0x1C
#define GEN_RX_VCID GENMASK(1, 0)
#define VIDEO_PKT_VCID GENMASK(3, 2)
#define DPI_VIDEO_FORMAT 0x20
#define DPI_VIDEO_MODE_FORMAT GENMASK(5, 0)
#define LOOSELY18_EN BIT(6)
#define VIDEO_PKT_CONFIG 0x24
#define VIDEO_PKT_SIZE GENMASK(15, 0)
#define VIDEO_LINE_CHUNK_NUM GENMASK(31, 16)
#define VIDEO_LINE_HBLK_TIME 0x28
#define VIDEO_LINE_HBP_TIME GENMASK(15, 0)
#define VIDEO_LINE_HSA_TIME GENMASK(31, 16)
#define VIDEO_LINE_TIME 0x2C
#define VIDEO_VBLK_LINES 0x30
#define VFP_LINES GENMASK(9, 0)
#define VBP_LINES GENMASK(19, 10)
#define VSA_LINES GENMASK(29, 20)
#define VIDEO_VACTIVE_LINES 0x34
#define VID_MODE_CFG 0x38
#define VID_MODE_TYPE GENMASK(1, 0)
#define LP_VSA_EN BIT(8)
#define LP_VBP_EN BIT(9)
#define LP_VFP_EN BIT(10)
#define LP_VACT_EN BIT(11)
#define LP_HBP_EN BIT(12)
#define LP_HFP_EN BIT(13)
#define FRAME_BTA_ACK_EN BIT(14)
#define TIMEOUT_CNT_CLK_CONFIG 0x40
#define HTX_TO_CONFIG 0x44
#define LRX_H_TO_CONFIG 0x48
#define TX_ESC_CLK_CONFIG 0x5C
#define CMD_MODE_CFG 0x68
#define TEAR_FX_EN BIT(0)
#define GEN_HDR 0x6C
#define GEN_DT GENMASK(5, 0)
#define GEN_VC GENMASK(7, 6)
#define GEN_PLD_DATA 0x70
#define PHY_CLK_LANE_LP_CTRL 0x74
#define PHY_CLKLANE_TX_REQ_HS BIT(0)
#define AUTO_CLKLANE_CTRL_EN BIT(1)
#define PHY_INTERFACE_CTRL 0x78
#define RF_PHY_SHUTDOWN BIT(0)
#define RF_PHY_RESET_N BIT(1)
#define RF_PHY_CLK_EN BIT(2)
#define CMD_MODE_STATUS 0x98
#define GEN_CMD_RDATA_FIFO_EMPTY BIT(1)
#define GEN_CMD_WDATA_FIFO_EMPTY BIT(3)
#define GEN_CMD_CMD_FIFO_EMPTY BIT(5)
#define GEN_CMD_RDCMD_DONE BIT(7)
#define PHY_STATUS 0x9C
#define PHY_LOCK BIT(1)
#define PHY_MIN_STOP_TIME 0xA0
#define PHY_LANE_NUM_CONFIG 0xA4
#define PHY_CLKLANE_TIME_CONFIG 0xA8
#define PHY_CLKLANE_LP_TO_HS_TIME GENMASK(15, 0)
#define PHY_CLKLANE_HS_TO_LP_TIME GENMASK(31, 16)
#define PHY_DATALANE_TIME_CONFIG 0xAC
#define PHY_DATALANE_LP_TO_HS_TIME GENMASK(15, 0)
#define PHY_DATALANE_HS_TO_LP_TIME GENMASK(31, 16)
#define MAX_READ_TIME 0xB0
#define RX_PKT_CHECK_CONFIG 0xB4
#define RX_PKT_ECC_EN BIT(0)
#define RX_PKT_CRC_EN BIT(1)
#define TA_EN 0xB8
#define EOTP_EN 0xBC
#define TX_EOTP_EN BIT(0)
#define RX_EOTP_EN BIT(1)
#define VIDEO_NULLPKT_SIZE 0xC0
#define DCS_WM_PKT_SIZE 0xC4
#define VIDEO_SIG_DELAY_CONFIG 0xD0
#define VIDEO_SIG_DELAY GENMASK(23, 0)
#define PHY_TST_CTRL0 0xF0
#define PHY_TESTCLR BIT(0)
#define PHY_TESTCLK BIT(1)
#define PHY_TST_CTRL1 0xF4
#define PHY_TESTDIN GENMASK(7, 0)
#define PHY_TESTDOUT GENMASK(15, 8)
#define PHY_TESTEN BIT(16)
#define host_to_dsi(host) \
container_of(host, struct sprd_dsi, host)
static inline u32
dsi_reg_rd(struct dsi_context *ctx, u32 offset, u32 mask,
u32 shift)
{
return (readl(ctx->base + offset) & mask) >> shift;
}
static inline void
dsi_reg_wr(struct dsi_context *ctx, u32 offset, u32 mask,
u32 shift, u32 val)
{
u32 ret;
ret = readl(ctx->base + offset);
ret &= ~mask;
ret |= (val << shift) & mask;
writel(ret, ctx->base + offset);
}
static inline void
dsi_reg_up(struct dsi_context *ctx, u32 offset, u32 mask,
u32 val)
{
u32 ret = readl(ctx->base + offset);
writel((ret & ~mask) | (val & mask), ctx->base + offset);
}
static int regmap_tst_io_write(void *context, u32 reg, u32 val)
{
struct sprd_dsi *dsi = context;
struct dsi_context *ctx = &dsi->ctx;
if (val > 0xff || reg > 0xff)
return -EINVAL;
drm_dbg(dsi->drm, "reg = 0x%02x, val = 0x%02x\n", reg, val);
dsi_reg_up(ctx, PHY_TST_CTRL1, PHY_TESTEN, PHY_TESTEN);
dsi_reg_wr(ctx, PHY_TST_CTRL1, PHY_TESTDIN, 0, reg);
dsi_reg_up(ctx, PHY_TST_CTRL0, PHY_TESTCLK, PHY_TESTCLK);
dsi_reg_up(ctx, PHY_TST_CTRL0, PHY_TESTCLK, 0);
dsi_reg_up(ctx, PHY_TST_CTRL1, PHY_TESTEN, 0);
dsi_reg_wr(ctx, PHY_TST_CTRL1, PHY_TESTDIN, 0, val);
dsi_reg_up(ctx, PHY_TST_CTRL0, PHY_TESTCLK, PHY_TESTCLK);
dsi_reg_up(ctx, PHY_TST_CTRL0, PHY_TESTCLK, 0);
return 0;
}
static int regmap_tst_io_read(void *context, u32 reg, u32 *val)
{
struct sprd_dsi *dsi = context;
struct dsi_context *ctx = &dsi->ctx;
int ret;
if (reg > 0xff)
return -EINVAL;
dsi_reg_up(ctx, PHY_TST_CTRL1, PHY_TESTEN, PHY_TESTEN);
dsi_reg_wr(ctx, PHY_TST_CTRL1, PHY_TESTDIN, 0, reg);
dsi_reg_up(ctx, PHY_TST_CTRL0, PHY_TESTCLK, PHY_TESTCLK);
dsi_reg_up(ctx, PHY_TST_CTRL0, PHY_TESTCLK, 0);
dsi_reg_up(ctx, PHY_TST_CTRL1, PHY_TESTEN, 0);
udelay(1);
ret = dsi_reg_rd(ctx, PHY_TST_CTRL1, PHY_TESTDOUT, 8);
if (ret < 0)
return ret;
*val = ret;
drm_dbg(dsi->drm, "reg = 0x%02x, val = 0x%02x\n", reg, *val);
return 0;
}
static struct regmap_bus regmap_tst_io = {
.reg_write = regmap_tst_io_write,
.reg_read = regmap_tst_io_read,
};
static const struct regmap_config byte_config = {
.reg_bits = 8,
.val_bits = 8,
};
static int dphy_wait_pll_locked(struct dsi_context *ctx)
{
struct sprd_dsi *dsi = container_of(ctx, struct sprd_dsi, ctx);
int i;
for (i = 0; i < 50000; i++) {
if (dsi_reg_rd(ctx, PHY_STATUS, PHY_LOCK, 1))
return 0;
udelay(3);
}
drm_err(dsi->drm, "dphy pll can not be locked\n");
return -ETIMEDOUT;
}
static int dsi_wait_tx_payload_fifo_empty(struct dsi_context *ctx)
{
int i;
for (i = 0; i < 5000; i++) {
if (dsi_reg_rd(ctx, CMD_MODE_STATUS, GEN_CMD_WDATA_FIFO_EMPTY, 3))
return 0;
udelay(1);
}
return -ETIMEDOUT;
}
static int dsi_wait_tx_cmd_fifo_empty(struct dsi_context *ctx)
{
int i;
for (i = 0; i < 5000; i++) {
if (dsi_reg_rd(ctx, CMD_MODE_STATUS, GEN_CMD_CMD_FIFO_EMPTY, 5))
return 0;
udelay(1);
}
return -ETIMEDOUT;
}
static int dsi_wait_rd_resp_completed(struct dsi_context *ctx)
{
int i;
for (i = 0; i < 10000; i++) {
if (dsi_reg_rd(ctx, CMD_MODE_STATUS, GEN_CMD_RDCMD_DONE, 7))
return 0;
udelay(10);
}
return -ETIMEDOUT;
}
static u16 calc_bytes_per_pixel_x100(int coding)
{
u16 bpp_x100;
switch (coding) {
case COLOR_CODE_16BIT_CONFIG1:
case COLOR_CODE_16BIT_CONFIG2:
case COLOR_CODE_16BIT_CONFIG3:
bpp_x100 = 200;
break;
case COLOR_CODE_18BIT_CONFIG1:
case COLOR_CODE_18BIT_CONFIG2:
bpp_x100 = 225;
break;
case COLOR_CODE_24BIT:
bpp_x100 = 300;
break;
case COLOR_CODE_COMPRESSTION:
bpp_x100 = 100;
break;
case COLOR_CODE_20BIT_YCC422_LOOSELY:
bpp_x100 = 250;
break;
case COLOR_CODE_24BIT_YCC422:
bpp_x100 = 300;
break;
case COLOR_CODE_16BIT_YCC422:
bpp_x100 = 200;
break;
case COLOR_CODE_30BIT:
bpp_x100 = 375;
break;
case COLOR_CODE_36BIT:
bpp_x100 = 450;
break;
case COLOR_CODE_12BIT_YCC420:
bpp_x100 = 150;
break;
default:
DRM_ERROR("invalid color coding");
bpp_x100 = 0;
break;
}
return bpp_x100;
}
static u8 calc_video_size_step(int coding)
{
u8 video_size_step;
switch (coding) {
case COLOR_CODE_16BIT_CONFIG1:
case COLOR_CODE_16BIT_CONFIG2:
case COLOR_CODE_16BIT_CONFIG3:
case COLOR_CODE_18BIT_CONFIG1:
case COLOR_CODE_18BIT_CONFIG2:
case COLOR_CODE_24BIT:
case COLOR_CODE_COMPRESSTION:
return video_size_step = 1;
case COLOR_CODE_20BIT_YCC422_LOOSELY:
case COLOR_CODE_24BIT_YCC422:
case COLOR_CODE_16BIT_YCC422:
case COLOR_CODE_30BIT:
case COLOR_CODE_36BIT:
case COLOR_CODE_12BIT_YCC420:
return video_size_step = 2;
default:
DRM_ERROR("invalid color coding");
return 0;
}
}
static u16 round_video_size(int coding, u16 video_size)
{
switch (coding) {
case COLOR_CODE_16BIT_YCC422:
case COLOR_CODE_24BIT_YCC422:
case COLOR_CODE_20BIT_YCC422_LOOSELY:
case COLOR_CODE_12BIT_YCC420:
/* round up active H pixels to a multiple of 2 */
if ((video_size % 2) != 0)
video_size += 1;
break;
default:
break;
}
return video_size;
}
#define SPRD_MIPI_DSI_FMT_DSC 0xff
static u32 fmt_to_coding(u32 fmt)
{
switch (fmt) {
case MIPI_DSI_FMT_RGB565:
return COLOR_CODE_16BIT_CONFIG1;
case MIPI_DSI_FMT_RGB666:
case MIPI_DSI_FMT_RGB666_PACKED:
return COLOR_CODE_18BIT_CONFIG1;
case MIPI_DSI_FMT_RGB888:
return COLOR_CODE_24BIT;
case SPRD_MIPI_DSI_FMT_DSC:
return COLOR_CODE_COMPRESSTION;
default:
DRM_ERROR("Unsupported format (%d)\n", fmt);
return COLOR_CODE_24BIT;
}
}
#define ns_to_cycle(ns, byte_clk) \
DIV_ROUND_UP((ns) * (byte_clk), 1000000)
static void sprd_dsi_init(struct dsi_context *ctx)
{
struct sprd_dsi *dsi = container_of(ctx, struct sprd_dsi, ctx);
u32 byte_clk = dsi->slave->hs_rate / 8;
u16 data_hs2lp, data_lp2hs, clk_hs2lp, clk_lp2hs;
u16 max_rd_time;
int div;
writel(0, ctx->base + SOFT_RESET);
writel(0xffffffff, ctx->base + MASK_PROTOCOL_INT);
writel(0xffffffff, ctx->base + MASK_INTERNAL_INT);
writel(1, ctx->base + DSI_MODE_CFG);
dsi_reg_up(ctx, EOTP_EN, RX_EOTP_EN, 0);
dsi_reg_up(ctx, EOTP_EN, TX_EOTP_EN, 0);
dsi_reg_up(ctx, RX_PKT_CHECK_CONFIG, RX_PKT_ECC_EN, RX_PKT_ECC_EN);
dsi_reg_up(ctx, RX_PKT_CHECK_CONFIG, RX_PKT_CRC_EN, RX_PKT_CRC_EN);
writel(1, ctx->base + TA_EN);
dsi_reg_up(ctx, VIRTUAL_CHANNEL_ID, VIDEO_PKT_VCID, 0);
dsi_reg_up(ctx, VIRTUAL_CHANNEL_ID, GEN_RX_VCID, 0);
div = DIV_ROUND_UP(byte_clk, dsi->slave->lp_rate);
writel(div, ctx->base + TX_ESC_CLK_CONFIG);
max_rd_time = ns_to_cycle(ctx->max_rd_time, byte_clk);
writel(max_rd_time, ctx->base + MAX_READ_TIME);
data_hs2lp = ns_to_cycle(ctx->data_hs2lp, byte_clk);
data_lp2hs = ns_to_cycle(ctx->data_lp2hs, byte_clk);
clk_hs2lp = ns_to_cycle(ctx->clk_hs2lp, byte_clk);
clk_lp2hs = ns_to_cycle(ctx->clk_lp2hs, byte_clk);
dsi_reg_wr(ctx, PHY_DATALANE_TIME_CONFIG,
PHY_DATALANE_HS_TO_LP_TIME, 16, data_hs2lp);
dsi_reg_wr(ctx, PHY_DATALANE_TIME_CONFIG,
PHY_DATALANE_LP_TO_HS_TIME, 0, data_lp2hs);
dsi_reg_wr(ctx, PHY_CLKLANE_TIME_CONFIG,
PHY_CLKLANE_HS_TO_LP_TIME, 16, clk_hs2lp);
dsi_reg_wr(ctx, PHY_CLKLANE_TIME_CONFIG,
PHY_CLKLANE_LP_TO_HS_TIME, 0, clk_lp2hs);
writel(1, ctx->base + SOFT_RESET);
}
/*
* Free up resources and shutdown host controller and PHY
*/
static void sprd_dsi_fini(struct dsi_context *ctx)
{
writel(0xffffffff, ctx->base + MASK_PROTOCOL_INT);
writel(0xffffffff, ctx->base + MASK_INTERNAL_INT);
writel(0, ctx->base + SOFT_RESET);
}
/*
* If not in burst mode, it will compute the video and null packet sizes
* according to necessity.
* Configure timers for data lanes and/or clock lane to return to LP when
* bandwidth is not filled by data.
*/
static int sprd_dsi_dpi_video(struct dsi_context *ctx)
{
struct sprd_dsi *dsi = container_of(ctx, struct sprd_dsi, ctx);
struct videomode *vm = &ctx->vm;
u32 byte_clk = dsi->slave->hs_rate / 8;
u16 bpp_x100;
u16 video_size;
u32 ratio_x1000;
u16 null_pkt_size = 0;
u8 video_size_step;
u32 hs_to;
u32 total_bytes;
u32 bytes_per_chunk;
u32 chunks = 0;
u32 bytes_left = 0;
u32 chunk_overhead;
const u8 pkt_header = 6;
u8 coding;
int div;
u16 hline;
u16 byte_cycle;
coding = fmt_to_coding(dsi->slave->format);
video_size = round_video_size(coding, vm->hactive);
bpp_x100 = calc_bytes_per_pixel_x100(coding);
video_size_step = calc_video_size_step(coding);
ratio_x1000 = byte_clk * 1000 / (vm->pixelclock / 1000);
hline = vm->hactive + vm->hsync_len + vm->hfront_porch +
vm->hback_porch;
writel(0, ctx->base + SOFT_RESET);
dsi_reg_wr(ctx, VID_MODE_CFG, FRAME_BTA_ACK_EN, 15, ctx->frame_ack_en);
dsi_reg_wr(ctx, DPI_VIDEO_FORMAT, DPI_VIDEO_MODE_FORMAT, 0, coding);
dsi_reg_wr(ctx, VID_MODE_CFG, VID_MODE_TYPE, 0, ctx->burst_mode);
byte_cycle = 95 * hline * ratio_x1000 / 100000;
dsi_reg_wr(ctx, VIDEO_SIG_DELAY_CONFIG, VIDEO_SIG_DELAY, 0, byte_cycle);
byte_cycle = hline * ratio_x1000 / 1000;
writel(byte_cycle, ctx->base + VIDEO_LINE_TIME);
byte_cycle = vm->hsync_len * ratio_x1000 / 1000;
dsi_reg_wr(ctx, VIDEO_LINE_HBLK_TIME, VIDEO_LINE_HSA_TIME, 16, byte_cycle);
byte_cycle = vm->hback_porch * ratio_x1000 / 1000;
dsi_reg_wr(ctx, VIDEO_LINE_HBLK_TIME, VIDEO_LINE_HBP_TIME, 0, byte_cycle);
writel(vm->vactive, ctx->base + VIDEO_VACTIVE_LINES);
dsi_reg_wr(ctx, VIDEO_VBLK_LINES, VFP_LINES, 0, vm->vfront_porch);
dsi_reg_wr(ctx, VIDEO_VBLK_LINES, VBP_LINES, 10, vm->vback_porch);
dsi_reg_wr(ctx, VIDEO_VBLK_LINES, VSA_LINES, 20, vm->vsync_len);
dsi_reg_up(ctx, VID_MODE_CFG, LP_HBP_EN | LP_HFP_EN | LP_VACT_EN |
LP_VFP_EN | LP_VBP_EN | LP_VSA_EN, LP_HBP_EN | LP_HFP_EN |
LP_VACT_EN | LP_VFP_EN | LP_VBP_EN | LP_VSA_EN);
hs_to = (hline * vm->vactive) + (2 * bpp_x100) / 100;
for (div = 0x80; (div < hs_to) && (div > 2); div--) {
if ((hs_to % div) == 0) {
writel(div, ctx->base + TIMEOUT_CNT_CLK_CONFIG);
writel(hs_to / div, ctx->base + LRX_H_TO_CONFIG);
writel(hs_to / div, ctx->base + HTX_TO_CONFIG);
break;
}
}
if (ctx->burst_mode == VIDEO_BURST_WITH_SYNC_PULSES) {
dsi_reg_wr(ctx, VIDEO_PKT_CONFIG, VIDEO_PKT_SIZE, 0, video_size);
writel(0, ctx->base + VIDEO_NULLPKT_SIZE);
dsi_reg_up(ctx, VIDEO_PKT_CONFIG, VIDEO_LINE_CHUNK_NUM, 0);
} else {
/* non burst transmission */
null_pkt_size = 0;
/* bytes to be sent - first as one chunk */
bytes_per_chunk = vm->hactive * bpp_x100 / 100 + pkt_header;
/* hline total bytes from the DPI interface */
total_bytes = (vm->hactive + vm->hfront_porch) *
ratio_x1000 / dsi->slave->lanes / 1000;
/* check if the pixels actually fit on the DSI link */
if (total_bytes < bytes_per_chunk) {
drm_err(dsi->drm, "current resolution can not be set\n");
return -EINVAL;
}
chunk_overhead = total_bytes - bytes_per_chunk;
/* overhead higher than 1 -> enable multi packets */
if (chunk_overhead > 1) {
/* multi packets */
for (video_size = video_size_step;
video_size < vm->hactive;
video_size += video_size_step) {
if (vm->hactive * 1000 / video_size % 1000)
continue;
chunks = vm->hactive / video_size;
bytes_per_chunk = bpp_x100 * video_size / 100
+ pkt_header;
if (total_bytes >= (bytes_per_chunk * chunks)) {
bytes_left = total_bytes -
bytes_per_chunk * chunks;
break;
}
}
/* prevent overflow (unsigned - unsigned) */
if (bytes_left > (pkt_header * chunks)) {
null_pkt_size = (bytes_left -
pkt_header * chunks) / chunks;
/* avoid register overflow */
if (null_pkt_size > 1023)
null_pkt_size = 1023;
}
} else {
/* single packet */
chunks = 1;
/* must be a multiple of 4 except 18 loosely */
for (video_size = vm->hactive;
(video_size % video_size_step) != 0;
video_size++)
;
}
dsi_reg_wr(ctx, VIDEO_PKT_CONFIG, VIDEO_PKT_SIZE, 0, video_size);
writel(null_pkt_size, ctx->base + VIDEO_NULLPKT_SIZE);
dsi_reg_wr(ctx, VIDEO_PKT_CONFIG, VIDEO_LINE_CHUNK_NUM, 16, chunks);
}
writel(ctx->int0_mask, ctx->base + MASK_PROTOCOL_INT);
writel(ctx->int1_mask, ctx->base + MASK_INTERNAL_INT);
writel(1, ctx->base + SOFT_RESET);
return 0;
}
static void sprd_dsi_edpi_video(struct dsi_context *ctx)
{
struct sprd_dsi *dsi = container_of(ctx, struct sprd_dsi, ctx);
const u32 fifo_depth = 1096;
const u32 word_length = 4;
u32 hactive = ctx->vm.hactive;
u32 bpp_x100;
u32 max_fifo_len;
u8 coding;
coding = fmt_to_coding(dsi->slave->format);
bpp_x100 = calc_bytes_per_pixel_x100(coding);
max_fifo_len = word_length * fifo_depth * 100 / bpp_x100;
writel(0, ctx->base + SOFT_RESET);
dsi_reg_wr(ctx, DPI_VIDEO_FORMAT, DPI_VIDEO_MODE_FORMAT, 0, coding);
dsi_reg_wr(ctx, CMD_MODE_CFG, TEAR_FX_EN, 0, ctx->te_ack_en);
if (max_fifo_len > hactive)
writel(hactive, ctx->base + DCS_WM_PKT_SIZE);
else
writel(max_fifo_len, ctx->base + DCS_WM_PKT_SIZE);
writel(ctx->int0_mask, ctx->base + MASK_PROTOCOL_INT);
writel(ctx->int1_mask, ctx->base + MASK_INTERNAL_INT);
writel(1, ctx->base + SOFT_RESET);
}
/*
* Send a packet on the generic interface,
* this function has an active delay to wait for the buffer to clear.
* The delay is limited to:
* (param_length / 4) x DSIH_FIFO_ACTIVE_WAIT x register access time
* the controller restricts the sending of.
*
* This function will not be able to send Null and Blanking packets due to
* controller restriction
*/
static int sprd_dsi_wr_pkt(struct dsi_context *ctx, u8 vc, u8 type,
const u8 *param, u16 len)
{
struct sprd_dsi *dsi = container_of(ctx, struct sprd_dsi, ctx);
u8 wc_lsbyte, wc_msbyte;
u32 payload;
int i, j, ret;
if (vc > 3)
return -EINVAL;
/* 1st: for long packet, must config payload first */
ret = dsi_wait_tx_payload_fifo_empty(ctx);
if (ret) {
drm_err(dsi->drm, "tx payload fifo is not empty\n");
return ret;
}
if (len > 2) {
for (i = 0, j = 0; i < len; i += j) {
payload = 0;
for (j = 0; (j < 4) && ((j + i) < (len)); j++)
payload |= param[i + j] << (j * 8);
writel(payload, ctx->base + GEN_PLD_DATA);
}
wc_lsbyte = len & 0xff;
wc_msbyte = len >> 8;
} else {
wc_lsbyte = (len > 0) ? param[0] : 0;
wc_msbyte = (len > 1) ? param[1] : 0;
}
/* 2nd: then set packet header */
ret = dsi_wait_tx_cmd_fifo_empty(ctx);
if (ret) {
drm_err(dsi->drm, "tx cmd fifo is not empty\n");
return ret;
}
writel(type | (vc << 6) | (wc_lsbyte << 8) | (wc_msbyte << 16),
ctx->base + GEN_HDR);
return 0;
}
/*
* Send READ packet to peripheral using the generic interface,
* this will force command mode and stop video mode (because of BTA).
*
* This function has an active delay to wait for the buffer to clear,
* the delay is limited to 2 x DSIH_FIFO_ACTIVE_WAIT
* (waiting for command buffer, and waiting for receiving)
* @note this function will enable BTA
*/
static int sprd_dsi_rd_pkt(struct dsi_context *ctx, u8 vc, u8 type,
u8 msb_byte, u8 lsb_byte,
u8 *buffer, u8 bytes_to_read)
{
struct sprd_dsi *dsi = container_of(ctx, struct sprd_dsi, ctx);
int i, ret;
int count = 0;
u32 temp;
if (vc > 3)
return -EINVAL;
/* 1st: send read command to peripheral */
ret = dsi_reg_rd(ctx, CMD_MODE_STATUS, GEN_CMD_CMD_FIFO_EMPTY, 5);
if (!ret)
return -EIO;
writel(type | (vc << 6) | (lsb_byte << 8) | (msb_byte << 16),
ctx->base + GEN_HDR);
/* 2nd: wait peripheral response completed */
ret = dsi_wait_rd_resp_completed(ctx);
if (ret) {
drm_err(dsi->drm, "wait read response time out\n");
return ret;
}
/* 3rd: get data from rx payload fifo */
ret = dsi_reg_rd(ctx, CMD_MODE_STATUS, GEN_CMD_RDATA_FIFO_EMPTY, 1);
if (ret) {
drm_err(dsi->drm, "rx payload fifo empty\n");
return -EIO;
}
for (i = 0; i < 100; i++) {
temp = readl(ctx->base + GEN_PLD_DATA);
if (count < bytes_to_read)
buffer[count++] = temp & 0xff;
if (count < bytes_to_read)
buffer[count++] = (temp >> 8) & 0xff;
if (count < bytes_to_read)
buffer[count++] = (temp >> 16) & 0xff;
if (count < bytes_to_read)
buffer[count++] = (temp >> 24) & 0xff;
ret = dsi_reg_rd(ctx, CMD_MODE_STATUS, GEN_CMD_RDATA_FIFO_EMPTY, 1);
if (ret)
return count;
}
return 0;
}
static void sprd_dsi_set_work_mode(struct dsi_context *ctx, u8 mode)
{
if (mode == DSI_MODE_CMD)
writel(1, ctx->base + DSI_MODE_CFG);
else
writel(0, ctx->base + DSI_MODE_CFG);
}
static void sprd_dsi_state_reset(struct dsi_context *ctx)
{
writel(0, ctx->base + SOFT_RESET);
udelay(100);
writel(1, ctx->base + SOFT_RESET);
}
static int sprd_dphy_init(struct dsi_context *ctx)
{
struct sprd_dsi *dsi = container_of(ctx, struct sprd_dsi, ctx);
int ret;
dsi_reg_up(ctx, PHY_INTERFACE_CTRL, RF_PHY_RESET_N, 0);
dsi_reg_up(ctx, PHY_INTERFACE_CTRL, RF_PHY_SHUTDOWN, 0);
dsi_reg_up(ctx, PHY_INTERFACE_CTRL, RF_PHY_CLK_EN, 0);
dsi_reg_up(ctx, PHY_TST_CTRL0, PHY_TESTCLR, 0);
dsi_reg_up(ctx, PHY_TST_CTRL0, PHY_TESTCLR, PHY_TESTCLR);
dsi_reg_up(ctx, PHY_TST_CTRL0, PHY_TESTCLR, 0);
dphy_pll_config(ctx);
dphy_timing_config(ctx);
dsi_reg_up(ctx, PHY_INTERFACE_CTRL, RF_PHY_SHUTDOWN, RF_PHY_SHUTDOWN);
dsi_reg_up(ctx, PHY_INTERFACE_CTRL, RF_PHY_RESET_N, RF_PHY_RESET_N);
writel(0x1C, ctx->base + PHY_MIN_STOP_TIME);
dsi_reg_up(ctx, PHY_INTERFACE_CTRL, RF_PHY_CLK_EN, RF_PHY_CLK_EN);
writel(dsi->slave->lanes - 1, ctx->base + PHY_LANE_NUM_CONFIG);
ret = dphy_wait_pll_locked(ctx);
if (ret) {
drm_err(dsi->drm, "dphy initial failed\n");
return ret;
}
return 0;
}
static void sprd_dphy_fini(struct dsi_context *ctx)
{
dsi_reg_up(ctx, PHY_INTERFACE_CTRL, RF_PHY_RESET_N, 0);
dsi_reg_up(ctx, PHY_INTERFACE_CTRL, RF_PHY_SHUTDOWN, 0);
dsi_reg_up(ctx, PHY_INTERFACE_CTRL, RF_PHY_RESET_N, RF_PHY_RESET_N);
}
static void sprd_dsi_encoder_mode_set(struct drm_encoder *encoder,
struct drm_display_mode *mode,
struct drm_display_mode *adj_mode)
{
struct sprd_dsi *dsi = encoder_to_dsi(encoder);
drm_display_mode_to_videomode(adj_mode, &dsi->ctx.vm);
}
static void sprd_dsi_encoder_enable(struct drm_encoder *encoder)
{
struct sprd_dsi *dsi = encoder_to_dsi(encoder);
struct sprd_dpu *dpu = to_sprd_crtc(encoder->crtc);
struct dsi_context *ctx = &dsi->ctx;
if (ctx->enabled) {
drm_warn(dsi->drm, "dsi is initialized\n");
return;
}
sprd_dsi_init(ctx);
if (ctx->work_mode == DSI_MODE_VIDEO)
sprd_dsi_dpi_video(ctx);
else
sprd_dsi_edpi_video(ctx);
sprd_dphy_init(ctx);
sprd_dsi_set_work_mode(ctx, ctx->work_mode);
sprd_dsi_state_reset(ctx);
if (dsi->slave->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS) {
dsi_reg_up(ctx, PHY_CLK_LANE_LP_CTRL, AUTO_CLKLANE_CTRL_EN,
AUTO_CLKLANE_CTRL_EN);
} else {
dsi_reg_up(ctx, PHY_CLK_LANE_LP_CTRL, RF_PHY_CLK_EN, RF_PHY_CLK_EN);
dsi_reg_up(ctx, PHY_CLK_LANE_LP_CTRL, PHY_CLKLANE_TX_REQ_HS,
PHY_CLKLANE_TX_REQ_HS);
dphy_wait_pll_locked(ctx);
}
sprd_dpu_run(dpu);
ctx->enabled = true;
}
static void sprd_dsi_encoder_disable(struct drm_encoder *encoder)
{
struct sprd_dsi *dsi = encoder_to_dsi(encoder);
struct sprd_dpu *dpu = to_sprd_crtc(encoder->crtc);
struct dsi_context *ctx = &dsi->ctx;
if (!ctx->enabled) {
drm_warn(dsi->drm, "dsi isn't initialized\n");
return;
}
sprd_dpu_stop(dpu);
sprd_dphy_fini(ctx);
sprd_dsi_fini(ctx);
ctx->enabled = false;
}
static const struct drm_encoder_helper_funcs sprd_encoder_helper_funcs = {
.mode_set = sprd_dsi_encoder_mode_set,
.enable = sprd_dsi_encoder_enable,
.disable = sprd_dsi_encoder_disable
};
static const struct drm_encoder_funcs sprd_encoder_funcs = {
.destroy = drm_encoder_cleanup,
};
static int sprd_dsi_encoder_init(struct sprd_dsi *dsi,
struct device *dev)
{
struct drm_encoder *encoder = &dsi->encoder;
u32 crtc_mask;
int ret;
crtc_mask = drm_of_find_possible_crtcs(dsi->drm, dev->of_node);
if (!crtc_mask) {
drm_err(dsi->drm, "failed to find crtc mask\n");
return -EINVAL;
}
drm_dbg(dsi->drm, "find possible crtcs: 0x%08x\n", crtc_mask);
encoder->possible_crtcs = crtc_mask;
ret = drm_encoder_init(dsi->drm, encoder, &sprd_encoder_funcs,
DRM_MODE_ENCODER_DSI, NULL);
if (ret) {
drm_err(dsi->drm, "failed to init dsi encoder\n");
return ret;
}
drm_encoder_helper_add(encoder, &sprd_encoder_helper_funcs);
return 0;
}
static int sprd_dsi_bridge_init(struct sprd_dsi *dsi,
struct device *dev)
{
int ret;
dsi->panel_bridge = devm_drm_of_get_bridge(dev, dev->of_node, 1, 0);
if (IS_ERR(dsi->panel_bridge))
return PTR_ERR(dsi->panel_bridge);
ret = drm_bridge_attach(&dsi->encoder, dsi->panel_bridge, NULL, 0);
if (ret)
return ret;
return 0;
}
static int sprd_dsi_context_init(struct sprd_dsi *dsi,
struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct dsi_context *ctx = &dsi->ctx;
struct resource *res;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res) {
dev_err(dev, "failed to get I/O resource\n");
return -EINVAL;
}
ctx->base = devm_ioremap(dev, res->start, resource_size(res));
if (!ctx->base) {
drm_err(dsi->drm, "failed to map dsi host registers\n");
return -ENXIO;
}
ctx->regmap = devm_regmap_init(dev, &regmap_tst_io, dsi, &byte_config);
if (IS_ERR(ctx->regmap)) {
drm_err(dsi->drm, "dphy regmap init failed\n");
return PTR_ERR(ctx->regmap);
}
ctx->data_hs2lp = 120;
ctx->data_lp2hs = 500;
ctx->clk_hs2lp = 4;
ctx->clk_lp2hs = 15;
ctx->max_rd_time = 6000;
ctx->int0_mask = 0xffffffff;
ctx->int1_mask = 0xffffffff;
ctx->enabled = true;
return 0;
}
static int sprd_dsi_bind(struct device *dev, struct device *master, void *data)
{
struct drm_device *drm = data;
struct sprd_dsi *dsi = dev_get_drvdata(dev);
int ret;
dsi->drm = drm;
ret = sprd_dsi_encoder_init(dsi, dev);
if (ret)
return ret;
ret = sprd_dsi_bridge_init(dsi, dev);
if (ret)
return ret;
ret = sprd_dsi_context_init(dsi, dev);
if (ret)
return ret;
return 0;
}
static void sprd_dsi_unbind(struct device *dev,
struct device *master, void *data)
{
struct sprd_dsi *dsi = dev_get_drvdata(dev);
drm_of_panel_bridge_remove(dev->of_node, 1, 0);
drm_encoder_cleanup(&dsi->encoder);
}
static const struct component_ops dsi_component_ops = {
.bind = sprd_dsi_bind,
.unbind = sprd_dsi_unbind,
};
static int sprd_dsi_host_attach(struct mipi_dsi_host *host,
struct mipi_dsi_device *slave)
{
struct sprd_dsi *dsi = host_to_dsi(host);
struct dsi_context *ctx = &dsi->ctx;
dsi->slave = slave;
if (slave->mode_flags & MIPI_DSI_MODE_VIDEO)
ctx->work_mode = DSI_MODE_VIDEO;
else
ctx->work_mode = DSI_MODE_CMD;
if (slave->mode_flags & MIPI_DSI_MODE_VIDEO_BURST)
ctx->burst_mode = VIDEO_BURST_WITH_SYNC_PULSES;
else if (slave->mode_flags & MIPI_DSI_MODE_VIDEO_SYNC_PULSE)
ctx->burst_mode = VIDEO_NON_BURST_WITH_SYNC_PULSES;
else
ctx->burst_mode = VIDEO_NON_BURST_WITH_SYNC_EVENTS;
return component_add(host->dev, &dsi_component_ops);
}
static int sprd_dsi_host_detach(struct mipi_dsi_host *host,
struct mipi_dsi_device *slave)
{
component_del(host->dev, &dsi_component_ops);
return 0;
}
static ssize_t sprd_dsi_host_transfer(struct mipi_dsi_host *host,
const struct mipi_dsi_msg *msg)
{
struct sprd_dsi *dsi = host_to_dsi(host);
const u8 *tx_buf = msg->tx_buf;
if (msg->rx_buf && msg->rx_len) {
u8 lsb = (msg->tx_len > 0) ? tx_buf[0] : 0;
u8 msb = (msg->tx_len > 1) ? tx_buf[1] : 0;
return sprd_dsi_rd_pkt(&dsi->ctx, msg->channel, msg->type,
msb, lsb, msg->rx_buf, msg->rx_len);
}
if (msg->tx_buf && msg->tx_len)
return sprd_dsi_wr_pkt(&dsi->ctx, msg->channel, msg->type,
tx_buf, msg->tx_len);
return 0;
}
static const struct mipi_dsi_host_ops sprd_dsi_host_ops = {
.attach = sprd_dsi_host_attach,
.detach = sprd_dsi_host_detach,
.transfer = sprd_dsi_host_transfer,
};
static const struct of_device_id dsi_match_table[] = {
{ .compatible = "sprd,sharkl3-dsi-host" },
{ /* sentinel */ },
};
static int sprd_dsi_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct sprd_dsi *dsi;
dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL);
if (!dsi)
return -ENOMEM;
dev_set_drvdata(dev, dsi);
dsi->host.ops = &sprd_dsi_host_ops;
dsi->host.dev = dev;
return mipi_dsi_host_register(&dsi->host);
}
static int sprd_dsi_remove(struct platform_device *pdev)
{
struct sprd_dsi *dsi = dev_get_drvdata(&pdev->dev);
mipi_dsi_host_unregister(&dsi->host);
return 0;
}
struct platform_driver sprd_dsi_driver = {
.probe = sprd_dsi_probe,
.remove = sprd_dsi_remove,
.driver = {
.name = "sprd-dsi-drv",
.of_match_table = dsi_match_table,
},
};
MODULE_AUTHOR("Leon He <leon.he@unisoc.com>");
MODULE_AUTHOR("Kevin Tang <kevin.tang@unisoc.com>");
MODULE_DESCRIPTION("Unisoc MIPI DSI HOST Controller Driver");
MODULE_LICENSE("GPL v2");