1042 lines
29 KiB
C
1042 lines
29 KiB
C
// SPDX-License-Identifier: BSD-3-Clause
|
|
/*
|
|
* Copyright (c) 2020, MIPI Alliance, Inc.
|
|
*
|
|
* Author: Nicolas Pitre <npitre@baylibre.com>
|
|
*/
|
|
|
|
#include <linux/bitfield.h>
|
|
#include <linux/device.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/i3c/master.h>
|
|
#include <linux/io.h>
|
|
|
|
#include "hci.h"
|
|
#include "cmd.h"
|
|
#include "ibi.h"
|
|
|
|
|
|
/*
|
|
* PIO Access Area
|
|
*/
|
|
|
|
#define pio_reg_read(r) readl(hci->PIO_regs + (PIO_##r))
|
|
#define pio_reg_write(r, v) writel(v, hci->PIO_regs + (PIO_##r))
|
|
|
|
#define PIO_COMMAND_QUEUE_PORT 0x00
|
|
#define PIO_RESPONSE_QUEUE_PORT 0x04
|
|
#define PIO_XFER_DATA_PORT 0x08
|
|
#define PIO_IBI_PORT 0x0c
|
|
|
|
#define PIO_QUEUE_THLD_CTRL 0x10
|
|
#define QUEUE_IBI_STATUS_THLD GENMASK(31, 24)
|
|
#define QUEUE_IBI_DATA_THLD GENMASK(23, 16)
|
|
#define QUEUE_RESP_BUF_THLD GENMASK(15, 8)
|
|
#define QUEUE_CMD_EMPTY_BUF_THLD GENMASK(7, 0)
|
|
|
|
#define PIO_DATA_BUFFER_THLD_CTRL 0x14
|
|
#define DATA_RX_START_THLD GENMASK(26, 24)
|
|
#define DATA_TX_START_THLD GENMASK(18, 16)
|
|
#define DATA_RX_BUF_THLD GENMASK(10, 8)
|
|
#define DATA_TX_BUF_THLD GENMASK(2, 0)
|
|
|
|
#define PIO_QUEUE_SIZE 0x18
|
|
#define TX_DATA_BUFFER_SIZE GENMASK(31, 24)
|
|
#define RX_DATA_BUFFER_SIZE GENMASK(23, 16)
|
|
#define IBI_STATUS_SIZE GENMASK(15, 8)
|
|
#define CR_QUEUE_SIZE GENMASK(7, 0)
|
|
|
|
#define PIO_INTR_STATUS 0x20
|
|
#define PIO_INTR_STATUS_ENABLE 0x24
|
|
#define PIO_INTR_SIGNAL_ENABLE 0x28
|
|
#define PIO_INTR_FORCE 0x2c
|
|
#define STAT_TRANSFER_BLOCKED BIT(25)
|
|
#define STAT_PERR_RESP_UFLOW BIT(24)
|
|
#define STAT_PERR_CMD_OFLOW BIT(23)
|
|
#define STAT_PERR_IBI_UFLOW BIT(22)
|
|
#define STAT_PERR_RX_UFLOW BIT(21)
|
|
#define STAT_PERR_TX_OFLOW BIT(20)
|
|
#define STAT_ERR_RESP_QUEUE_FULL BIT(19)
|
|
#define STAT_WARN_RESP_QUEUE_FULL BIT(18)
|
|
#define STAT_ERR_IBI_QUEUE_FULL BIT(17)
|
|
#define STAT_WARN_IBI_QUEUE_FULL BIT(16)
|
|
#define STAT_ERR_RX_DATA_FULL BIT(15)
|
|
#define STAT_WARN_RX_DATA_FULL BIT(14)
|
|
#define STAT_ERR_TX_DATA_EMPTY BIT(13)
|
|
#define STAT_WARN_TX_DATA_EMPTY BIT(12)
|
|
#define STAT_TRANSFER_ERR BIT(9)
|
|
#define STAT_WARN_INS_STOP_MODE BIT(7)
|
|
#define STAT_TRANSFER_ABORT BIT(5)
|
|
#define STAT_RESP_READY BIT(4)
|
|
#define STAT_CMD_QUEUE_READY BIT(3)
|
|
#define STAT_IBI_STATUS_THLD BIT(2)
|
|
#define STAT_RX_THLD BIT(1)
|
|
#define STAT_TX_THLD BIT(0)
|
|
|
|
#define PIO_QUEUE_CUR_STATUS 0x38
|
|
#define CUR_IBI_Q_LEVEL GENMASK(28, 20)
|
|
#define CUR_RESP_Q_LEVEL GENMASK(18, 10)
|
|
#define CUR_CMD_Q_EMPTY_LEVEL GENMASK(8, 0)
|
|
|
|
#define PIO_DATA_BUFFER_CUR_STATUS 0x3c
|
|
#define CUR_RX_BUF_LVL GENMASK(26, 16)
|
|
#define CUR_TX_BUF_LVL GENMASK(10, 0)
|
|
|
|
/*
|
|
* Handy status bit combinations
|
|
*/
|
|
|
|
#define STAT_LATENCY_WARNINGS (STAT_WARN_RESP_QUEUE_FULL | \
|
|
STAT_WARN_IBI_QUEUE_FULL | \
|
|
STAT_WARN_RX_DATA_FULL | \
|
|
STAT_WARN_TX_DATA_EMPTY | \
|
|
STAT_WARN_INS_STOP_MODE)
|
|
|
|
#define STAT_LATENCY_ERRORS (STAT_ERR_RESP_QUEUE_FULL | \
|
|
STAT_ERR_IBI_QUEUE_FULL | \
|
|
STAT_ERR_RX_DATA_FULL | \
|
|
STAT_ERR_TX_DATA_EMPTY)
|
|
|
|
#define STAT_PROG_ERRORS (STAT_TRANSFER_BLOCKED | \
|
|
STAT_PERR_RESP_UFLOW | \
|
|
STAT_PERR_CMD_OFLOW | \
|
|
STAT_PERR_IBI_UFLOW | \
|
|
STAT_PERR_RX_UFLOW | \
|
|
STAT_PERR_TX_OFLOW)
|
|
|
|
#define STAT_ALL_ERRORS (STAT_TRANSFER_ABORT | \
|
|
STAT_TRANSFER_ERR | \
|
|
STAT_LATENCY_ERRORS | \
|
|
STAT_PROG_ERRORS)
|
|
|
|
struct hci_pio_dev_ibi_data {
|
|
struct i3c_generic_ibi_pool *pool;
|
|
unsigned int max_len;
|
|
};
|
|
|
|
struct hci_pio_ibi_data {
|
|
struct i3c_ibi_slot *slot;
|
|
void *data_ptr;
|
|
unsigned int addr;
|
|
unsigned int seg_len, seg_cnt;
|
|
unsigned int max_len;
|
|
bool last_seg;
|
|
};
|
|
|
|
struct hci_pio_data {
|
|
spinlock_t lock;
|
|
struct hci_xfer *curr_xfer, *xfer_queue;
|
|
struct hci_xfer *curr_rx, *rx_queue;
|
|
struct hci_xfer *curr_tx, *tx_queue;
|
|
struct hci_xfer *curr_resp, *resp_queue;
|
|
struct hci_pio_ibi_data ibi;
|
|
unsigned int rx_thresh_size, tx_thresh_size;
|
|
unsigned int max_ibi_thresh;
|
|
u32 reg_queue_thresh;
|
|
u32 enabled_irqs;
|
|
};
|
|
|
|
static int hci_pio_init(struct i3c_hci *hci)
|
|
{
|
|
struct hci_pio_data *pio;
|
|
u32 val, size_val, rx_thresh, tx_thresh, ibi_val;
|
|
|
|
pio = kzalloc(sizeof(*pio), GFP_KERNEL);
|
|
if (!pio)
|
|
return -ENOMEM;
|
|
|
|
hci->io_data = pio;
|
|
spin_lock_init(&pio->lock);
|
|
|
|
size_val = pio_reg_read(QUEUE_SIZE);
|
|
dev_info(&hci->master.dev, "CMD/RESP FIFO = %ld entries\n",
|
|
FIELD_GET(CR_QUEUE_SIZE, size_val));
|
|
dev_info(&hci->master.dev, "IBI FIFO = %ld bytes\n",
|
|
4 * FIELD_GET(IBI_STATUS_SIZE, size_val));
|
|
dev_info(&hci->master.dev, "RX data FIFO = %d bytes\n",
|
|
4 * (2 << FIELD_GET(RX_DATA_BUFFER_SIZE, size_val)));
|
|
dev_info(&hci->master.dev, "TX data FIFO = %d bytes\n",
|
|
4 * (2 << FIELD_GET(TX_DATA_BUFFER_SIZE, size_val)));
|
|
|
|
/*
|
|
* Let's initialize data thresholds to half of the actual FIFO size.
|
|
* The start thresholds aren't used (set to 0) as the FIFO is always
|
|
* serviced before the corresponding command is queued.
|
|
*/
|
|
rx_thresh = FIELD_GET(RX_DATA_BUFFER_SIZE, size_val);
|
|
tx_thresh = FIELD_GET(TX_DATA_BUFFER_SIZE, size_val);
|
|
if (hci->version_major == 1) {
|
|
/* those are expressed as 2^[n+1), so just sub 1 if not 0 */
|
|
if (rx_thresh)
|
|
rx_thresh -= 1;
|
|
if (tx_thresh)
|
|
tx_thresh -= 1;
|
|
pio->rx_thresh_size = 2 << rx_thresh;
|
|
pio->tx_thresh_size = 2 << tx_thresh;
|
|
} else {
|
|
/* size is 2^(n+1) and threshold is 2^n i.e. already halved */
|
|
pio->rx_thresh_size = 1 << rx_thresh;
|
|
pio->tx_thresh_size = 1 << tx_thresh;
|
|
}
|
|
val = FIELD_PREP(DATA_RX_BUF_THLD, rx_thresh) |
|
|
FIELD_PREP(DATA_TX_BUF_THLD, tx_thresh);
|
|
pio_reg_write(DATA_BUFFER_THLD_CTRL, val);
|
|
|
|
/*
|
|
* Let's raise an interrupt as soon as there is one free cmd slot
|
|
* or one available response or IBI. For IBI data let's use half the
|
|
* IBI queue size within allowed bounds.
|
|
*/
|
|
ibi_val = FIELD_GET(IBI_STATUS_SIZE, size_val);
|
|
pio->max_ibi_thresh = clamp_val(ibi_val/2, 1, 63);
|
|
val = FIELD_PREP(QUEUE_IBI_STATUS_THLD, 1) |
|
|
FIELD_PREP(QUEUE_IBI_DATA_THLD, pio->max_ibi_thresh) |
|
|
FIELD_PREP(QUEUE_RESP_BUF_THLD, 1) |
|
|
FIELD_PREP(QUEUE_CMD_EMPTY_BUF_THLD, 1);
|
|
pio_reg_write(QUEUE_THLD_CTRL, val);
|
|
pio->reg_queue_thresh = val;
|
|
|
|
/* Disable all IRQs but allow all status bits */
|
|
pio_reg_write(INTR_SIGNAL_ENABLE, 0x0);
|
|
pio_reg_write(INTR_STATUS_ENABLE, 0xffffffff);
|
|
|
|
/* Always accept error interrupts (will be activated on first xfer) */
|
|
pio->enabled_irqs = STAT_ALL_ERRORS;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void hci_pio_cleanup(struct i3c_hci *hci)
|
|
{
|
|
struct hci_pio_data *pio = hci->io_data;
|
|
|
|
pio_reg_write(INTR_SIGNAL_ENABLE, 0x0);
|
|
|
|
if (pio) {
|
|
DBG("status = %#x/%#x",
|
|
pio_reg_read(INTR_STATUS), pio_reg_read(INTR_SIGNAL_ENABLE));
|
|
BUG_ON(pio->curr_xfer);
|
|
BUG_ON(pio->curr_rx);
|
|
BUG_ON(pio->curr_tx);
|
|
BUG_ON(pio->curr_resp);
|
|
kfree(pio);
|
|
hci->io_data = NULL;
|
|
}
|
|
}
|
|
|
|
static void hci_pio_write_cmd(struct i3c_hci *hci, struct hci_xfer *xfer)
|
|
{
|
|
DBG("cmd_desc[%d] = 0x%08x", 0, xfer->cmd_desc[0]);
|
|
DBG("cmd_desc[%d] = 0x%08x", 1, xfer->cmd_desc[1]);
|
|
pio_reg_write(COMMAND_QUEUE_PORT, xfer->cmd_desc[0]);
|
|
pio_reg_write(COMMAND_QUEUE_PORT, xfer->cmd_desc[1]);
|
|
if (hci->cmd == &mipi_i3c_hci_cmd_v2) {
|
|
DBG("cmd_desc[%d] = 0x%08x", 2, xfer->cmd_desc[2]);
|
|
DBG("cmd_desc[%d] = 0x%08x", 3, xfer->cmd_desc[3]);
|
|
pio_reg_write(COMMAND_QUEUE_PORT, xfer->cmd_desc[2]);
|
|
pio_reg_write(COMMAND_QUEUE_PORT, xfer->cmd_desc[3]);
|
|
}
|
|
}
|
|
|
|
static bool hci_pio_do_rx(struct i3c_hci *hci, struct hci_pio_data *pio)
|
|
{
|
|
struct hci_xfer *xfer = pio->curr_rx;
|
|
unsigned int nr_words;
|
|
u32 *p;
|
|
|
|
p = xfer->data;
|
|
p += (xfer->data_len - xfer->data_left) / 4;
|
|
|
|
while (xfer->data_left >= 4) {
|
|
/* bail out if FIFO hasn't reached the threshold value yet */
|
|
if (!(pio_reg_read(INTR_STATUS) & STAT_RX_THLD))
|
|
return false;
|
|
nr_words = min(xfer->data_left / 4, pio->rx_thresh_size);
|
|
/* extract data from FIFO */
|
|
xfer->data_left -= nr_words * 4;
|
|
DBG("now %d left %d", nr_words * 4, xfer->data_left);
|
|
while (nr_words--)
|
|
*p++ = pio_reg_read(XFER_DATA_PORT);
|
|
}
|
|
|
|
/* trailing data is retrieved upon response reception */
|
|
return !xfer->data_left;
|
|
}
|
|
|
|
static void hci_pio_do_trailing_rx(struct i3c_hci *hci,
|
|
struct hci_pio_data *pio, unsigned int count)
|
|
{
|
|
struct hci_xfer *xfer = pio->curr_rx;
|
|
u32 *p;
|
|
|
|
DBG("%d remaining", count);
|
|
|
|
p = xfer->data;
|
|
p += (xfer->data_len - xfer->data_left) / 4;
|
|
|
|
if (count >= 4) {
|
|
unsigned int nr_words = count / 4;
|
|
/* extract data from FIFO */
|
|
xfer->data_left -= nr_words * 4;
|
|
DBG("now %d left %d", nr_words * 4, xfer->data_left);
|
|
while (nr_words--)
|
|
*p++ = pio_reg_read(XFER_DATA_PORT);
|
|
}
|
|
|
|
count &= 3;
|
|
if (count) {
|
|
/*
|
|
* There are trailing bytes in the last word.
|
|
* Fetch it and extract bytes in an endian independent way.
|
|
* Unlike the TX case, we must not write memory past the
|
|
* end of the destination buffer.
|
|
*/
|
|
u8 *p_byte = (u8 *)p;
|
|
u32 data = pio_reg_read(XFER_DATA_PORT);
|
|
|
|
xfer->data_word_before_partial = data;
|
|
xfer->data_left -= count;
|
|
data = (__force u32) cpu_to_le32(data);
|
|
while (count--) {
|
|
*p_byte++ = data;
|
|
data >>= 8;
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool hci_pio_do_tx(struct i3c_hci *hci, struct hci_pio_data *pio)
|
|
{
|
|
struct hci_xfer *xfer = pio->curr_tx;
|
|
unsigned int nr_words;
|
|
u32 *p;
|
|
|
|
p = xfer->data;
|
|
p += (xfer->data_len - xfer->data_left) / 4;
|
|
|
|
while (xfer->data_left >= 4) {
|
|
/* bail out if FIFO free space is below set threshold */
|
|
if (!(pio_reg_read(INTR_STATUS) & STAT_TX_THLD))
|
|
return false;
|
|
/* we can fill up to that TX threshold */
|
|
nr_words = min(xfer->data_left / 4, pio->tx_thresh_size);
|
|
/* push data into the FIFO */
|
|
xfer->data_left -= nr_words * 4;
|
|
DBG("now %d left %d", nr_words * 4, xfer->data_left);
|
|
while (nr_words--)
|
|
pio_reg_write(XFER_DATA_PORT, *p++);
|
|
}
|
|
|
|
if (xfer->data_left) {
|
|
/*
|
|
* There are trailing bytes to send. We can simply load
|
|
* them from memory as a word which will keep those bytes
|
|
* in their proper place even on a BE system. This will
|
|
* also get some bytes past the actual buffer but no one
|
|
* should care as they won't be sent out.
|
|
*/
|
|
if (!(pio_reg_read(INTR_STATUS) & STAT_TX_THLD))
|
|
return false;
|
|
DBG("trailing %d", xfer->data_left);
|
|
pio_reg_write(XFER_DATA_PORT, *p);
|
|
xfer->data_left = 0;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool hci_pio_process_rx(struct i3c_hci *hci, struct hci_pio_data *pio)
|
|
{
|
|
while (pio->curr_rx && hci_pio_do_rx(hci, pio))
|
|
pio->curr_rx = pio->curr_rx->next_data;
|
|
return !pio->curr_rx;
|
|
}
|
|
|
|
static bool hci_pio_process_tx(struct i3c_hci *hci, struct hci_pio_data *pio)
|
|
{
|
|
while (pio->curr_tx && hci_pio_do_tx(hci, pio))
|
|
pio->curr_tx = pio->curr_tx->next_data;
|
|
return !pio->curr_tx;
|
|
}
|
|
|
|
static void hci_pio_queue_data(struct i3c_hci *hci, struct hci_pio_data *pio)
|
|
{
|
|
struct hci_xfer *xfer = pio->curr_xfer;
|
|
struct hci_xfer *prev_queue_tail;
|
|
|
|
if (!xfer->data) {
|
|
xfer->data_len = xfer->data_left = 0;
|
|
return;
|
|
}
|
|
|
|
if (xfer->rnw) {
|
|
prev_queue_tail = pio->rx_queue;
|
|
pio->rx_queue = xfer;
|
|
if (pio->curr_rx) {
|
|
prev_queue_tail->next_data = xfer;
|
|
} else {
|
|
pio->curr_rx = xfer;
|
|
if (!hci_pio_process_rx(hci, pio))
|
|
pio->enabled_irqs |= STAT_RX_THLD;
|
|
}
|
|
} else {
|
|
prev_queue_tail = pio->tx_queue;
|
|
pio->tx_queue = xfer;
|
|
if (pio->curr_tx) {
|
|
prev_queue_tail->next_data = xfer;
|
|
} else {
|
|
pio->curr_tx = xfer;
|
|
if (!hci_pio_process_tx(hci, pio))
|
|
pio->enabled_irqs |= STAT_TX_THLD;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void hci_pio_push_to_next_rx(struct i3c_hci *hci, struct hci_xfer *xfer,
|
|
unsigned int words_to_keep)
|
|
{
|
|
u32 *from = xfer->data;
|
|
u32 from_last;
|
|
unsigned int received, count;
|
|
|
|
received = (xfer->data_len - xfer->data_left) / 4;
|
|
if ((xfer->data_len - xfer->data_left) & 3) {
|
|
from_last = xfer->data_word_before_partial;
|
|
received += 1;
|
|
} else {
|
|
from_last = from[received];
|
|
}
|
|
from += words_to_keep;
|
|
count = received - words_to_keep;
|
|
|
|
while (count) {
|
|
unsigned int room, left, chunk, bytes_to_move;
|
|
u32 last_word;
|
|
|
|
xfer = xfer->next_data;
|
|
if (!xfer) {
|
|
dev_err(&hci->master.dev, "pushing RX data to unexistent xfer\n");
|
|
return;
|
|
}
|
|
|
|
room = DIV_ROUND_UP(xfer->data_len, 4);
|
|
left = DIV_ROUND_UP(xfer->data_left, 4);
|
|
chunk = min(count, room);
|
|
if (chunk > left) {
|
|
hci_pio_push_to_next_rx(hci, xfer, chunk - left);
|
|
left = chunk;
|
|
xfer->data_left = left * 4;
|
|
}
|
|
|
|
bytes_to_move = xfer->data_len - xfer->data_left;
|
|
if (bytes_to_move & 3) {
|
|
/* preserve word to become partial */
|
|
u32 *p = xfer->data;
|
|
|
|
xfer->data_word_before_partial = p[bytes_to_move / 4];
|
|
}
|
|
memmove(xfer->data + chunk, xfer->data, bytes_to_move);
|
|
|
|
/* treat last word specially because of partial word issues */
|
|
chunk -= 1;
|
|
|
|
memcpy(xfer->data, from, chunk * 4);
|
|
xfer->data_left -= chunk * 4;
|
|
from += chunk;
|
|
count -= chunk;
|
|
|
|
last_word = (count == 1) ? from_last : *from++;
|
|
if (xfer->data_left < 4) {
|
|
/*
|
|
* Like in hci_pio_do_trailing_rx(), preserve original
|
|
* word to be stored partially then store bytes it
|
|
* in an endian independent way.
|
|
*/
|
|
u8 *p_byte = xfer->data;
|
|
|
|
p_byte += chunk * 4;
|
|
xfer->data_word_before_partial = last_word;
|
|
last_word = (__force u32) cpu_to_le32(last_word);
|
|
while (xfer->data_left--) {
|
|
*p_byte++ = last_word;
|
|
last_word >>= 8;
|
|
}
|
|
} else {
|
|
u32 *p = xfer->data;
|
|
|
|
p[chunk] = last_word;
|
|
xfer->data_left -= 4;
|
|
}
|
|
count--;
|
|
}
|
|
}
|
|
|
|
static void hci_pio_err(struct i3c_hci *hci, struct hci_pio_data *pio,
|
|
u32 status);
|
|
|
|
static bool hci_pio_process_resp(struct i3c_hci *hci, struct hci_pio_data *pio)
|
|
{
|
|
while (pio->curr_resp &&
|
|
(pio_reg_read(INTR_STATUS) & STAT_RESP_READY)) {
|
|
struct hci_xfer *xfer = pio->curr_resp;
|
|
u32 resp = pio_reg_read(RESPONSE_QUEUE_PORT);
|
|
unsigned int tid = RESP_TID(resp);
|
|
|
|
DBG("resp = 0x%08x", resp);
|
|
if (tid != xfer->cmd_tid) {
|
|
dev_err(&hci->master.dev,
|
|
"response tid=%d when expecting %d\n",
|
|
tid, xfer->cmd_tid);
|
|
/* let's pretend it is a prog error... any of them */
|
|
hci_pio_err(hci, pio, STAT_PROG_ERRORS);
|
|
return false;
|
|
}
|
|
xfer->response = resp;
|
|
|
|
if (pio->curr_rx == xfer) {
|
|
/*
|
|
* Response availability implies RX completion.
|
|
* Retrieve trailing RX data if any.
|
|
* Note that short reads are possible.
|
|
*/
|
|
unsigned int received, expected, to_keep;
|
|
|
|
received = xfer->data_len - xfer->data_left;
|
|
expected = RESP_DATA_LENGTH(xfer->response);
|
|
if (expected > received) {
|
|
hci_pio_do_trailing_rx(hci, pio,
|
|
expected - received);
|
|
} else if (received > expected) {
|
|
/* we consumed data meant for next xfer */
|
|
to_keep = DIV_ROUND_UP(expected, 4);
|
|
hci_pio_push_to_next_rx(hci, xfer, to_keep);
|
|
}
|
|
|
|
/* then process the RX list pointer */
|
|
if (hci_pio_process_rx(hci, pio))
|
|
pio->enabled_irqs &= ~STAT_RX_THLD;
|
|
}
|
|
|
|
/*
|
|
* We're about to give back ownership of the xfer structure
|
|
* to the waiting instance. Make sure no reference to it
|
|
* still exists.
|
|
*/
|
|
if (pio->curr_rx == xfer) {
|
|
DBG("short RX ?");
|
|
pio->curr_rx = pio->curr_rx->next_data;
|
|
} else if (pio->curr_tx == xfer) {
|
|
DBG("short TX ?");
|
|
pio->curr_tx = pio->curr_tx->next_data;
|
|
} else if (xfer->data_left) {
|
|
DBG("PIO xfer count = %d after response",
|
|
xfer->data_left);
|
|
}
|
|
|
|
pio->curr_resp = xfer->next_resp;
|
|
if (xfer->completion)
|
|
complete(xfer->completion);
|
|
}
|
|
return !pio->curr_resp;
|
|
}
|
|
|
|
static void hci_pio_queue_resp(struct i3c_hci *hci, struct hci_pio_data *pio)
|
|
{
|
|
struct hci_xfer *xfer = pio->curr_xfer;
|
|
struct hci_xfer *prev_queue_tail;
|
|
|
|
if (!(xfer->cmd_desc[0] & CMD_0_ROC))
|
|
return;
|
|
|
|
prev_queue_tail = pio->resp_queue;
|
|
pio->resp_queue = xfer;
|
|
if (pio->curr_resp) {
|
|
prev_queue_tail->next_resp = xfer;
|
|
} else {
|
|
pio->curr_resp = xfer;
|
|
if (!hci_pio_process_resp(hci, pio))
|
|
pio->enabled_irqs |= STAT_RESP_READY;
|
|
}
|
|
}
|
|
|
|
static bool hci_pio_process_cmd(struct i3c_hci *hci, struct hci_pio_data *pio)
|
|
{
|
|
while (pio->curr_xfer &&
|
|
(pio_reg_read(INTR_STATUS) & STAT_CMD_QUEUE_READY)) {
|
|
/*
|
|
* Always process the data FIFO before sending the command
|
|
* so needed TX data or RX space is available upfront.
|
|
*/
|
|
hci_pio_queue_data(hci, pio);
|
|
/*
|
|
* Then queue our response request. This will also process
|
|
* the response FIFO in case it got suddenly filled up
|
|
* with results from previous commands.
|
|
*/
|
|
hci_pio_queue_resp(hci, pio);
|
|
/*
|
|
* Finally send the command.
|
|
*/
|
|
hci_pio_write_cmd(hci, pio->curr_xfer);
|
|
/*
|
|
* And move on.
|
|
*/
|
|
pio->curr_xfer = pio->curr_xfer->next_xfer;
|
|
}
|
|
return !pio->curr_xfer;
|
|
}
|
|
|
|
static int hci_pio_queue_xfer(struct i3c_hci *hci, struct hci_xfer *xfer, int n)
|
|
{
|
|
struct hci_pio_data *pio = hci->io_data;
|
|
struct hci_xfer *prev_queue_tail;
|
|
int i;
|
|
|
|
DBG("n = %d", n);
|
|
|
|
/* link xfer instances together and initialize data count */
|
|
for (i = 0; i < n; i++) {
|
|
xfer[i].next_xfer = (i + 1 < n) ? &xfer[i + 1] : NULL;
|
|
xfer[i].next_data = NULL;
|
|
xfer[i].next_resp = NULL;
|
|
xfer[i].data_left = xfer[i].data_len;
|
|
}
|
|
|
|
spin_lock_irq(&pio->lock);
|
|
prev_queue_tail = pio->xfer_queue;
|
|
pio->xfer_queue = &xfer[n - 1];
|
|
if (pio->curr_xfer) {
|
|
prev_queue_tail->next_xfer = xfer;
|
|
} else {
|
|
pio->curr_xfer = xfer;
|
|
if (!hci_pio_process_cmd(hci, pio))
|
|
pio->enabled_irqs |= STAT_CMD_QUEUE_READY;
|
|
pio_reg_write(INTR_SIGNAL_ENABLE, pio->enabled_irqs);
|
|
DBG("status = %#x/%#x",
|
|
pio_reg_read(INTR_STATUS), pio_reg_read(INTR_SIGNAL_ENABLE));
|
|
}
|
|
spin_unlock_irq(&pio->lock);
|
|
return 0;
|
|
}
|
|
|
|
static bool hci_pio_dequeue_xfer_common(struct i3c_hci *hci,
|
|
struct hci_pio_data *pio,
|
|
struct hci_xfer *xfer, int n)
|
|
{
|
|
struct hci_xfer *p, **p_prev_next;
|
|
int i;
|
|
|
|
/*
|
|
* To safely dequeue a transfer request, it must be either entirely
|
|
* processed, or not yet processed at all. If our request tail is
|
|
* reachable from either the data or resp list that means the command
|
|
* was submitted and not yet completed.
|
|
*/
|
|
for (p = pio->curr_resp; p; p = p->next_resp)
|
|
for (i = 0; i < n; i++)
|
|
if (p == &xfer[i])
|
|
goto pio_screwed;
|
|
for (p = pio->curr_rx; p; p = p->next_data)
|
|
for (i = 0; i < n; i++)
|
|
if (p == &xfer[i])
|
|
goto pio_screwed;
|
|
for (p = pio->curr_tx; p; p = p->next_data)
|
|
for (i = 0; i < n; i++)
|
|
if (p == &xfer[i])
|
|
goto pio_screwed;
|
|
|
|
/*
|
|
* The command was completed, or wasn't yet submitted.
|
|
* Unlink it from the que if the later.
|
|
*/
|
|
p_prev_next = &pio->curr_xfer;
|
|
for (p = pio->curr_xfer; p; p = p->next_xfer) {
|
|
if (p == &xfer[0]) {
|
|
*p_prev_next = xfer[n - 1].next_xfer;
|
|
break;
|
|
}
|
|
p_prev_next = &p->next_xfer;
|
|
}
|
|
|
|
/* return true if we actually unqueued something */
|
|
return !!p;
|
|
|
|
pio_screwed:
|
|
/*
|
|
* Life is tough. We must invalidate the hardware state and
|
|
* discard everything that is still queued.
|
|
*/
|
|
for (p = pio->curr_resp; p; p = p->next_resp) {
|
|
p->response = FIELD_PREP(RESP_ERR_FIELD, RESP_ERR_HC_TERMINATED);
|
|
if (p->completion)
|
|
complete(p->completion);
|
|
}
|
|
for (p = pio->curr_xfer; p; p = p->next_xfer) {
|
|
p->response = FIELD_PREP(RESP_ERR_FIELD, RESP_ERR_HC_TERMINATED);
|
|
if (p->completion)
|
|
complete(p->completion);
|
|
}
|
|
pio->curr_xfer = pio->curr_rx = pio->curr_tx = pio->curr_resp = NULL;
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool hci_pio_dequeue_xfer(struct i3c_hci *hci, struct hci_xfer *xfer, int n)
|
|
{
|
|
struct hci_pio_data *pio = hci->io_data;
|
|
int ret;
|
|
|
|
spin_lock_irq(&pio->lock);
|
|
DBG("n=%d status=%#x/%#x", n,
|
|
pio_reg_read(INTR_STATUS), pio_reg_read(INTR_SIGNAL_ENABLE));
|
|
DBG("main_status = %#x/%#x",
|
|
readl(hci->base_regs + 0x20), readl(hci->base_regs + 0x28));
|
|
|
|
ret = hci_pio_dequeue_xfer_common(hci, pio, xfer, n);
|
|
spin_unlock_irq(&pio->lock);
|
|
return ret;
|
|
}
|
|
|
|
static void hci_pio_err(struct i3c_hci *hci, struct hci_pio_data *pio,
|
|
u32 status)
|
|
{
|
|
/* TODO: this ought to be more sophisticated eventually */
|
|
|
|
if (pio_reg_read(INTR_STATUS) & STAT_RESP_READY) {
|
|
/* this may happen when an error is signaled with ROC unset */
|
|
u32 resp = pio_reg_read(RESPONSE_QUEUE_PORT);
|
|
|
|
dev_err(&hci->master.dev,
|
|
"orphan response (%#x) on error\n", resp);
|
|
}
|
|
|
|
/* dump states on programming errors */
|
|
if (status & STAT_PROG_ERRORS) {
|
|
u32 queue = pio_reg_read(QUEUE_CUR_STATUS);
|
|
u32 data = pio_reg_read(DATA_BUFFER_CUR_STATUS);
|
|
|
|
dev_err(&hci->master.dev,
|
|
"prog error %#lx (C/R/I = %ld/%ld/%ld, TX/RX = %ld/%ld)\n",
|
|
status & STAT_PROG_ERRORS,
|
|
FIELD_GET(CUR_CMD_Q_EMPTY_LEVEL, queue),
|
|
FIELD_GET(CUR_RESP_Q_LEVEL, queue),
|
|
FIELD_GET(CUR_IBI_Q_LEVEL, queue),
|
|
FIELD_GET(CUR_TX_BUF_LVL, data),
|
|
FIELD_GET(CUR_RX_BUF_LVL, data));
|
|
}
|
|
|
|
/* just bust out everything with pending responses for now */
|
|
hci_pio_dequeue_xfer_common(hci, pio, pio->curr_resp, 1);
|
|
/* ... and half-way TX transfers if any */
|
|
if (pio->curr_tx && pio->curr_tx->data_left != pio->curr_tx->data_len)
|
|
hci_pio_dequeue_xfer_common(hci, pio, pio->curr_tx, 1);
|
|
/* then reset the hardware */
|
|
mipi_i3c_hci_pio_reset(hci);
|
|
mipi_i3c_hci_resume(hci);
|
|
|
|
DBG("status=%#x/%#x",
|
|
pio_reg_read(INTR_STATUS), pio_reg_read(INTR_SIGNAL_ENABLE));
|
|
}
|
|
|
|
static void hci_pio_set_ibi_thresh(struct i3c_hci *hci,
|
|
struct hci_pio_data *pio,
|
|
unsigned int thresh_val)
|
|
{
|
|
u32 regval = pio->reg_queue_thresh;
|
|
|
|
regval &= ~QUEUE_IBI_STATUS_THLD;
|
|
regval |= FIELD_PREP(QUEUE_IBI_STATUS_THLD, thresh_val);
|
|
/* write the threshold reg only if it changes */
|
|
if (regval != pio->reg_queue_thresh) {
|
|
pio_reg_write(QUEUE_THLD_CTRL, regval);
|
|
pio->reg_queue_thresh = regval;
|
|
DBG("%d", thresh_val);
|
|
}
|
|
}
|
|
|
|
static bool hci_pio_get_ibi_segment(struct i3c_hci *hci,
|
|
struct hci_pio_data *pio)
|
|
{
|
|
struct hci_pio_ibi_data *ibi = &pio->ibi;
|
|
unsigned int nr_words, thresh_val;
|
|
u32 *p;
|
|
|
|
p = ibi->data_ptr;
|
|
p += (ibi->seg_len - ibi->seg_cnt) / 4;
|
|
|
|
while ((nr_words = ibi->seg_cnt/4)) {
|
|
/* determine our IBI queue threshold value */
|
|
thresh_val = min(nr_words, pio->max_ibi_thresh);
|
|
hci_pio_set_ibi_thresh(hci, pio, thresh_val);
|
|
/* bail out if we don't have that amount of data ready */
|
|
if (!(pio_reg_read(INTR_STATUS) & STAT_IBI_STATUS_THLD))
|
|
return false;
|
|
/* extract the data from the IBI port */
|
|
nr_words = thresh_val;
|
|
ibi->seg_cnt -= nr_words * 4;
|
|
DBG("now %d left %d", nr_words * 4, ibi->seg_cnt);
|
|
while (nr_words--)
|
|
*p++ = pio_reg_read(IBI_PORT);
|
|
}
|
|
|
|
if (ibi->seg_cnt) {
|
|
/*
|
|
* There are trailing bytes in the last word.
|
|
* Fetch it and extract bytes in an endian independent way.
|
|
* Unlike the TX case, we must not write past the end of
|
|
* the destination buffer.
|
|
*/
|
|
u32 data;
|
|
u8 *p_byte = (u8 *)p;
|
|
|
|
hci_pio_set_ibi_thresh(hci, pio, 1);
|
|
if (!(pio_reg_read(INTR_STATUS) & STAT_IBI_STATUS_THLD))
|
|
return false;
|
|
DBG("trailing %d", ibi->seg_cnt);
|
|
data = pio_reg_read(IBI_PORT);
|
|
data = (__force u32) cpu_to_le32(data);
|
|
while (ibi->seg_cnt--) {
|
|
*p_byte++ = data;
|
|
data >>= 8;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool hci_pio_prep_new_ibi(struct i3c_hci *hci, struct hci_pio_data *pio)
|
|
{
|
|
struct hci_pio_ibi_data *ibi = &pio->ibi;
|
|
struct i3c_dev_desc *dev;
|
|
struct i3c_hci_dev_data *dev_data;
|
|
struct hci_pio_dev_ibi_data *dev_ibi;
|
|
u32 ibi_status;
|
|
|
|
/*
|
|
* We have a new IBI. Try to set up its payload retrieval.
|
|
* When returning true, the IBI data has to be consumed whether
|
|
* or not we are set up to capture it. If we return true with
|
|
* ibi->slot == NULL that means the data payload has to be
|
|
* drained out of the IBI port and dropped.
|
|
*/
|
|
|
|
ibi_status = pio_reg_read(IBI_PORT);
|
|
DBG("status = %#x", ibi_status);
|
|
ibi->addr = FIELD_GET(IBI_TARGET_ADDR, ibi_status);
|
|
if (ibi_status & IBI_ERROR) {
|
|
dev_err(&hci->master.dev, "IBI error from %#x\n", ibi->addr);
|
|
return false;
|
|
}
|
|
|
|
ibi->last_seg = ibi_status & IBI_LAST_STATUS;
|
|
ibi->seg_len = FIELD_GET(IBI_DATA_LENGTH, ibi_status);
|
|
ibi->seg_cnt = ibi->seg_len;
|
|
|
|
dev = i3c_hci_addr_to_dev(hci, ibi->addr);
|
|
if (!dev) {
|
|
dev_err(&hci->master.dev,
|
|
"IBI for unknown device %#x\n", ibi->addr);
|
|
return true;
|
|
}
|
|
|
|
dev_data = i3c_dev_get_master_data(dev);
|
|
dev_ibi = dev_data->ibi_data;
|
|
ibi->max_len = dev_ibi->max_len;
|
|
|
|
if (ibi->seg_len > ibi->max_len) {
|
|
dev_err(&hci->master.dev, "IBI payload too big (%d > %d)\n",
|
|
ibi->seg_len, ibi->max_len);
|
|
return true;
|
|
}
|
|
|
|
ibi->slot = i3c_generic_ibi_get_free_slot(dev_ibi->pool);
|
|
if (!ibi->slot) {
|
|
dev_err(&hci->master.dev, "no free slot for IBI\n");
|
|
} else {
|
|
ibi->slot->len = 0;
|
|
ibi->data_ptr = ibi->slot->data;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static void hci_pio_free_ibi_slot(struct i3c_hci *hci, struct hci_pio_data *pio)
|
|
{
|
|
struct hci_pio_ibi_data *ibi = &pio->ibi;
|
|
struct hci_pio_dev_ibi_data *dev_ibi;
|
|
|
|
if (ibi->slot) {
|
|
dev_ibi = ibi->slot->dev->common.master_priv;
|
|
i3c_generic_ibi_recycle_slot(dev_ibi->pool, ibi->slot);
|
|
ibi->slot = NULL;
|
|
}
|
|
}
|
|
|
|
static bool hci_pio_process_ibi(struct i3c_hci *hci, struct hci_pio_data *pio)
|
|
{
|
|
struct hci_pio_ibi_data *ibi = &pio->ibi;
|
|
|
|
if (!ibi->slot && !ibi->seg_cnt && ibi->last_seg)
|
|
if (!hci_pio_prep_new_ibi(hci, pio))
|
|
return false;
|
|
|
|
for (;;) {
|
|
u32 ibi_status;
|
|
unsigned int ibi_addr;
|
|
|
|
if (ibi->slot) {
|
|
if (!hci_pio_get_ibi_segment(hci, pio))
|
|
return false;
|
|
ibi->slot->len += ibi->seg_len;
|
|
ibi->data_ptr += ibi->seg_len;
|
|
if (ibi->last_seg) {
|
|
/* was the last segment: submit it and leave */
|
|
i3c_master_queue_ibi(ibi->slot->dev, ibi->slot);
|
|
ibi->slot = NULL;
|
|
hci_pio_set_ibi_thresh(hci, pio, 1);
|
|
return true;
|
|
}
|
|
} else if (ibi->seg_cnt) {
|
|
/*
|
|
* No slot but a non-zero count. This is the result
|
|
* of some error and the payload must be drained.
|
|
* This normally does not happen therefore no need
|
|
* to be extra optimized here.
|
|
*/
|
|
hci_pio_set_ibi_thresh(hci, pio, 1);
|
|
do {
|
|
if (!(pio_reg_read(INTR_STATUS) & STAT_IBI_STATUS_THLD))
|
|
return false;
|
|
pio_reg_read(IBI_PORT);
|
|
} while (--ibi->seg_cnt);
|
|
if (ibi->last_seg)
|
|
return true;
|
|
}
|
|
|
|
/* try to move to the next segment right away */
|
|
hci_pio_set_ibi_thresh(hci, pio, 1);
|
|
if (!(pio_reg_read(INTR_STATUS) & STAT_IBI_STATUS_THLD))
|
|
return false;
|
|
ibi_status = pio_reg_read(IBI_PORT);
|
|
ibi_addr = FIELD_GET(IBI_TARGET_ADDR, ibi_status);
|
|
if (ibi->addr != ibi_addr) {
|
|
/* target address changed before last segment */
|
|
dev_err(&hci->master.dev,
|
|
"unexp IBI address changed from %d to %d\n",
|
|
ibi->addr, ibi_addr);
|
|
hci_pio_free_ibi_slot(hci, pio);
|
|
}
|
|
ibi->last_seg = ibi_status & IBI_LAST_STATUS;
|
|
ibi->seg_len = FIELD_GET(IBI_DATA_LENGTH, ibi_status);
|
|
ibi->seg_cnt = ibi->seg_len;
|
|
if (ibi->slot && ibi->slot->len + ibi->seg_len > ibi->max_len) {
|
|
dev_err(&hci->master.dev,
|
|
"IBI payload too big (%d > %d)\n",
|
|
ibi->slot->len + ibi->seg_len, ibi->max_len);
|
|
hci_pio_free_ibi_slot(hci, pio);
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static int hci_pio_request_ibi(struct i3c_hci *hci, struct i3c_dev_desc *dev,
|
|
const struct i3c_ibi_setup *req)
|
|
{
|
|
struct i3c_hci_dev_data *dev_data = i3c_dev_get_master_data(dev);
|
|
struct i3c_generic_ibi_pool *pool;
|
|
struct hci_pio_dev_ibi_data *dev_ibi;
|
|
|
|
dev_ibi = kmalloc(sizeof(*dev_ibi), GFP_KERNEL);
|
|
if (!dev_ibi)
|
|
return -ENOMEM;
|
|
pool = i3c_generic_ibi_alloc_pool(dev, req);
|
|
if (IS_ERR(pool)) {
|
|
kfree(dev_ibi);
|
|
return PTR_ERR(pool);
|
|
}
|
|
dev_ibi->pool = pool;
|
|
dev_ibi->max_len = req->max_payload_len;
|
|
dev_data->ibi_data = dev_ibi;
|
|
return 0;
|
|
}
|
|
|
|
static void hci_pio_free_ibi(struct i3c_hci *hci, struct i3c_dev_desc *dev)
|
|
{
|
|
struct i3c_hci_dev_data *dev_data = i3c_dev_get_master_data(dev);
|
|
struct hci_pio_dev_ibi_data *dev_ibi = dev_data->ibi_data;
|
|
|
|
dev_data->ibi_data = NULL;
|
|
i3c_generic_ibi_free_pool(dev_ibi->pool);
|
|
kfree(dev_ibi);
|
|
}
|
|
|
|
static void hci_pio_recycle_ibi_slot(struct i3c_hci *hci,
|
|
struct i3c_dev_desc *dev,
|
|
struct i3c_ibi_slot *slot)
|
|
{
|
|
struct i3c_hci_dev_data *dev_data = i3c_dev_get_master_data(dev);
|
|
struct hci_pio_dev_ibi_data *dev_ibi = dev_data->ibi_data;
|
|
|
|
i3c_generic_ibi_recycle_slot(dev_ibi->pool, slot);
|
|
}
|
|
|
|
static bool hci_pio_irq_handler(struct i3c_hci *hci, unsigned int unused)
|
|
{
|
|
struct hci_pio_data *pio = hci->io_data;
|
|
u32 status;
|
|
|
|
spin_lock(&pio->lock);
|
|
status = pio_reg_read(INTR_STATUS);
|
|
DBG("(in) status: %#x/%#x", status, pio->enabled_irqs);
|
|
status &= pio->enabled_irqs | STAT_LATENCY_WARNINGS;
|
|
if (!status) {
|
|
spin_unlock(&pio->lock);
|
|
return false;
|
|
}
|
|
|
|
if (status & STAT_IBI_STATUS_THLD)
|
|
hci_pio_process_ibi(hci, pio);
|
|
|
|
if (status & STAT_RX_THLD)
|
|
if (hci_pio_process_rx(hci, pio))
|
|
pio->enabled_irqs &= ~STAT_RX_THLD;
|
|
if (status & STAT_TX_THLD)
|
|
if (hci_pio_process_tx(hci, pio))
|
|
pio->enabled_irqs &= ~STAT_TX_THLD;
|
|
if (status & STAT_RESP_READY)
|
|
if (hci_pio_process_resp(hci, pio))
|
|
pio->enabled_irqs &= ~STAT_RESP_READY;
|
|
|
|
if (unlikely(status & STAT_LATENCY_WARNINGS)) {
|
|
pio_reg_write(INTR_STATUS, status & STAT_LATENCY_WARNINGS);
|
|
dev_warn_ratelimited(&hci->master.dev,
|
|
"encountered warning condition %#lx\n",
|
|
status & STAT_LATENCY_WARNINGS);
|
|
}
|
|
|
|
if (unlikely(status & STAT_ALL_ERRORS)) {
|
|
pio_reg_write(INTR_STATUS, status & STAT_ALL_ERRORS);
|
|
hci_pio_err(hci, pio, status & STAT_ALL_ERRORS);
|
|
}
|
|
|
|
if (status & STAT_CMD_QUEUE_READY)
|
|
if (hci_pio_process_cmd(hci, pio))
|
|
pio->enabled_irqs &= ~STAT_CMD_QUEUE_READY;
|
|
|
|
pio_reg_write(INTR_SIGNAL_ENABLE, pio->enabled_irqs);
|
|
DBG("(out) status: %#x/%#x",
|
|
pio_reg_read(INTR_STATUS), pio_reg_read(INTR_SIGNAL_ENABLE));
|
|
spin_unlock(&pio->lock);
|
|
return true;
|
|
}
|
|
|
|
const struct hci_io_ops mipi_i3c_hci_pio = {
|
|
.init = hci_pio_init,
|
|
.cleanup = hci_pio_cleanup,
|
|
.queue_xfer = hci_pio_queue_xfer,
|
|
.dequeue_xfer = hci_pio_dequeue_xfer,
|
|
.irq_handler = hci_pio_irq_handler,
|
|
.request_ibi = hci_pio_request_ibi,
|
|
.free_ibi = hci_pio_free_ibi,
|
|
.recycle_ibi_slot = hci_pio_recycle_ibi_slot,
|
|
};
|