linux-zen-server/drivers/iio/accel/bmi088-accel-core.c

633 lines
16 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* 3-axis accelerometer driver supporting following Bosch-Sensortec chips:
* - BMI088
*
* Copyright (c) 2018-2021, Topic Embedded Products
*/
#include <linux/bitfield.h>
#include <linux/delay.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/pm.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <linux/slab.h>
#include <asm/unaligned.h>
#include "bmi088-accel.h"
#define BMI088_ACCEL_REG_CHIP_ID 0x00
#define BMI088_ACCEL_REG_ERROR 0x02
#define BMI088_ACCEL_REG_INT_STATUS 0x1D
#define BMI088_ACCEL_INT_STATUS_BIT_DRDY BIT(7)
#define BMI088_ACCEL_REG_RESET 0x7E
#define BMI088_ACCEL_RESET_VAL 0xB6
#define BMI088_ACCEL_REG_PWR_CTRL 0x7D
#define BMI088_ACCEL_REG_PWR_CONF 0x7C
#define BMI088_ACCEL_REG_INT_MAP_DATA 0x58
#define BMI088_ACCEL_INT_MAP_DATA_BIT_INT1_DRDY BIT(2)
#define BMI088_ACCEL_INT_MAP_DATA_BIT_INT2_FWM BIT(5)
#define BMI088_ACCEL_REG_INT1_IO_CONF 0x53
#define BMI088_ACCEL_INT1_IO_CONF_BIT_ENABLE_OUT BIT(3)
#define BMI088_ACCEL_INT1_IO_CONF_BIT_LVL BIT(1)
#define BMI088_ACCEL_REG_INT2_IO_CONF 0x54
#define BMI088_ACCEL_INT2_IO_CONF_BIT_ENABLE_OUT BIT(3)
#define BMI088_ACCEL_INT2_IO_CONF_BIT_LVL BIT(1)
#define BMI088_ACCEL_REG_ACC_CONF 0x40
#define BMI088_ACCEL_MODE_ODR_MASK 0x0f
#define BMI088_ACCEL_REG_ACC_RANGE 0x41
#define BMI088_ACCEL_RANGE_3G 0x00
#define BMI088_ACCEL_RANGE_6G 0x01
#define BMI088_ACCEL_RANGE_12G 0x02
#define BMI088_ACCEL_RANGE_24G 0x03
#define BMI088_ACCEL_REG_TEMP 0x22
#define BMI088_ACCEL_REG_TEMP_SHIFT 5
#define BMI088_ACCEL_TEMP_UNIT 125
#define BMI088_ACCEL_TEMP_OFFSET 23000
#define BMI088_ACCEL_REG_XOUT_L 0x12
#define BMI088_ACCEL_AXIS_TO_REG(axis) \
(BMI088_ACCEL_REG_XOUT_L + (axis * 2))
#define BMI088_ACCEL_MAX_STARTUP_TIME_US 1000
#define BMI088_AUTO_SUSPEND_DELAY_MS 2000
#define BMI088_ACCEL_REG_FIFO_STATUS 0x0E
#define BMI088_ACCEL_REG_FIFO_CONFIG0 0x48
#define BMI088_ACCEL_REG_FIFO_CONFIG1 0x49
#define BMI088_ACCEL_REG_FIFO_DATA 0x3F
#define BMI088_ACCEL_FIFO_LENGTH 100
#define BMI088_ACCEL_FIFO_MODE_FIFO 0x40
#define BMI088_ACCEL_FIFO_MODE_STREAM 0x80
#define BMIO088_ACCEL_ACC_RANGE_MSK GENMASK(1, 0)
enum bmi088_accel_axis {
AXIS_X,
AXIS_Y,
AXIS_Z,
};
static const int bmi088_sample_freqs[] = {
12, 500000,
25, 0,
50, 0,
100, 0,
200, 0,
400, 0,
800, 0,
1600, 0,
};
/* Available OSR (over sampling rate) sets the 3dB cut-off frequency */
enum bmi088_osr_modes {
BMI088_ACCEL_MODE_OSR_NORMAL = 0xA,
BMI088_ACCEL_MODE_OSR_2 = 0x9,
BMI088_ACCEL_MODE_OSR_4 = 0x8,
};
/* Available ODR (output data rates) in Hz */
enum bmi088_odr_modes {
BMI088_ACCEL_MODE_ODR_12_5 = 0x5,
BMI088_ACCEL_MODE_ODR_25 = 0x6,
BMI088_ACCEL_MODE_ODR_50 = 0x7,
BMI088_ACCEL_MODE_ODR_100 = 0x8,
BMI088_ACCEL_MODE_ODR_200 = 0x9,
BMI088_ACCEL_MODE_ODR_400 = 0xa,
BMI088_ACCEL_MODE_ODR_800 = 0xb,
BMI088_ACCEL_MODE_ODR_1600 = 0xc,
};
struct bmi088_scale_info {
int scale;
u8 reg_range;
};
struct bmi088_accel_chip_info {
const char *name;
u8 chip_id;
const struct iio_chan_spec *channels;
int num_channels;
const int scale_table[4][2];
};
struct bmi088_accel_data {
struct regmap *regmap;
const struct bmi088_accel_chip_info *chip_info;
u8 buffer[2] __aligned(IIO_DMA_MINALIGN); /* shared DMA safe buffer */
};
static const struct regmap_range bmi088_volatile_ranges[] = {
/* All registers below 0x40 are volatile, except the CHIP ID. */
regmap_reg_range(BMI088_ACCEL_REG_ERROR, 0x3f),
/* Mark the RESET as volatile too, it is self-clearing */
regmap_reg_range(BMI088_ACCEL_REG_RESET, BMI088_ACCEL_REG_RESET),
};
static const struct regmap_access_table bmi088_volatile_table = {
.yes_ranges = bmi088_volatile_ranges,
.n_yes_ranges = ARRAY_SIZE(bmi088_volatile_ranges),
};
const struct regmap_config bmi088_regmap_conf = {
.reg_bits = 8,
.val_bits = 8,
.max_register = 0x7E,
.volatile_table = &bmi088_volatile_table,
.cache_type = REGCACHE_RBTREE,
};
EXPORT_SYMBOL_NS_GPL(bmi088_regmap_conf, IIO_BMI088);
static int bmi088_accel_power_up(struct bmi088_accel_data *data)
{
int ret;
/* Enable accelerometer and temperature sensor */
ret = regmap_write(data->regmap, BMI088_ACCEL_REG_PWR_CTRL, 0x4);
if (ret)
return ret;
/* Datasheet recommends to wait at least 5ms before communication */
usleep_range(5000, 6000);
/* Disable suspend mode */
ret = regmap_write(data->regmap, BMI088_ACCEL_REG_PWR_CONF, 0x0);
if (ret)
return ret;
/* Recommended at least 1ms before further communication */
usleep_range(1000, 1200);
return 0;
}
static int bmi088_accel_power_down(struct bmi088_accel_data *data)
{
int ret;
/* Enable suspend mode */
ret = regmap_write(data->regmap, BMI088_ACCEL_REG_PWR_CONF, 0x3);
if (ret)
return ret;
/* Recommended at least 1ms before further communication */
usleep_range(1000, 1200);
/* Disable accelerometer and temperature sensor */
ret = regmap_write(data->regmap, BMI088_ACCEL_REG_PWR_CTRL, 0x0);
if (ret)
return ret;
/* Datasheet recommends to wait at least 5ms before communication */
usleep_range(5000, 6000);
return 0;
}
static int bmi088_accel_get_sample_freq(struct bmi088_accel_data *data,
int *val, int *val2)
{
unsigned int value;
int ret;
ret = regmap_read(data->regmap, BMI088_ACCEL_REG_ACC_CONF,
&value);
if (ret)
return ret;
value &= BMI088_ACCEL_MODE_ODR_MASK;
value -= BMI088_ACCEL_MODE_ODR_12_5;
value <<= 1;
if (value >= ARRAY_SIZE(bmi088_sample_freqs) - 1)
return -EINVAL;
*val = bmi088_sample_freqs[value];
*val2 = bmi088_sample_freqs[value + 1];
return IIO_VAL_INT_PLUS_MICRO;
}
static int bmi088_accel_set_sample_freq(struct bmi088_accel_data *data, int val)
{
unsigned int regval;
int index = 0;
while (index < ARRAY_SIZE(bmi088_sample_freqs) &&
bmi088_sample_freqs[index] != val)
index += 2;
if (index >= ARRAY_SIZE(bmi088_sample_freqs))
return -EINVAL;
regval = (index >> 1) + BMI088_ACCEL_MODE_ODR_12_5;
return regmap_update_bits(data->regmap, BMI088_ACCEL_REG_ACC_CONF,
BMI088_ACCEL_MODE_ODR_MASK, regval);
}
static int bmi088_accel_set_scale(struct bmi088_accel_data *data, int val, int val2)
{
unsigned int i;
for (i = 0; i < 4; i++)
if (val == data->chip_info->scale_table[i][0] &&
val2 == data->chip_info->scale_table[i][1])
break;
if (i == 4)
return -EINVAL;
return regmap_write(data->regmap, BMI088_ACCEL_REG_ACC_RANGE, i);
}
static int bmi088_accel_get_temp(struct bmi088_accel_data *data, int *val)
{
int ret;
s16 temp;
ret = regmap_bulk_read(data->regmap, BMI088_ACCEL_REG_TEMP,
&data->buffer, sizeof(__be16));
if (ret)
return ret;
/* data->buffer is cacheline aligned */
temp = be16_to_cpu(*(__be16 *)data->buffer);
*val = temp >> BMI088_ACCEL_REG_TEMP_SHIFT;
return IIO_VAL_INT;
}
static int bmi088_accel_get_axis(struct bmi088_accel_data *data,
struct iio_chan_spec const *chan,
int *val)
{
int ret;
s16 raw_val;
ret = regmap_bulk_read(data->regmap,
BMI088_ACCEL_AXIS_TO_REG(chan->scan_index),
data->buffer, sizeof(__le16));
if (ret)
return ret;
raw_val = le16_to_cpu(*(__le16 *)data->buffer);
*val = raw_val;
return IIO_VAL_INT;
}
static int bmi088_accel_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val, int *val2, long mask)
{
struct bmi088_accel_data *data = iio_priv(indio_dev);
struct device *dev = regmap_get_device(data->regmap);
int ret;
int reg;
switch (mask) {
case IIO_CHAN_INFO_RAW:
switch (chan->type) {
case IIO_TEMP:
ret = pm_runtime_resume_and_get(dev);
if (ret)
return ret;
ret = bmi088_accel_get_temp(data, val);
goto out_read_raw_pm_put;
case IIO_ACCEL:
ret = pm_runtime_resume_and_get(dev);
if (ret)
return ret;
ret = iio_device_claim_direct_mode(indio_dev);
if (ret)
goto out_read_raw_pm_put;
ret = bmi088_accel_get_axis(data, chan, val);
iio_device_release_direct_mode(indio_dev);
if (!ret)
ret = IIO_VAL_INT;
goto out_read_raw_pm_put;
default:
return -EINVAL;
}
case IIO_CHAN_INFO_OFFSET:
switch (chan->type) {
case IIO_TEMP:
/* Offset applies before scale */
*val = BMI088_ACCEL_TEMP_OFFSET/BMI088_ACCEL_TEMP_UNIT;
return IIO_VAL_INT;
default:
return -EINVAL;
}
case IIO_CHAN_INFO_SCALE:
switch (chan->type) {
case IIO_TEMP:
/* 0.125 degrees per LSB */
*val = BMI088_ACCEL_TEMP_UNIT;
return IIO_VAL_INT;
case IIO_ACCEL:
ret = pm_runtime_resume_and_get(dev);
if (ret)
return ret;
ret = regmap_read(data->regmap,
BMI088_ACCEL_REG_ACC_RANGE, &reg);
if (ret)
goto out_read_raw_pm_put;
reg = FIELD_GET(BMIO088_ACCEL_ACC_RANGE_MSK, reg);
*val = data->chip_info->scale_table[reg][0];
*val2 = data->chip_info->scale_table[reg][1];
ret = IIO_VAL_INT_PLUS_MICRO;
goto out_read_raw_pm_put;
default:
return -EINVAL;
}
case IIO_CHAN_INFO_SAMP_FREQ:
ret = pm_runtime_resume_and_get(dev);
if (ret)
return ret;
ret = bmi088_accel_get_sample_freq(data, val, val2);
goto out_read_raw_pm_put;
default:
break;
}
return -EINVAL;
out_read_raw_pm_put:
pm_runtime_mark_last_busy(dev);
pm_runtime_put_autosuspend(dev);
return ret;
}
static int bmi088_accel_read_avail(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
const int **vals, int *type, int *length,
long mask)
{
struct bmi088_accel_data *data = iio_priv(indio_dev);
switch (mask) {
case IIO_CHAN_INFO_SCALE:
*vals = (const int *)data->chip_info->scale_table;
*length = 8;
*type = IIO_VAL_INT_PLUS_MICRO;
return IIO_AVAIL_LIST;
case IIO_CHAN_INFO_SAMP_FREQ:
*type = IIO_VAL_INT_PLUS_MICRO;
*vals = bmi088_sample_freqs;
*length = ARRAY_SIZE(bmi088_sample_freqs);
return IIO_AVAIL_LIST;
default:
return -EINVAL;
}
}
static int bmi088_accel_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int val, int val2, long mask)
{
struct bmi088_accel_data *data = iio_priv(indio_dev);
struct device *dev = regmap_get_device(data->regmap);
int ret;
switch (mask) {
case IIO_CHAN_INFO_SCALE:
ret = pm_runtime_resume_and_get(dev);
if (ret)
return ret;
ret = bmi088_accel_set_scale(data, val, val2);
pm_runtime_mark_last_busy(dev);
pm_runtime_put_autosuspend(dev);
return ret;
case IIO_CHAN_INFO_SAMP_FREQ:
ret = pm_runtime_resume_and_get(dev);
if (ret)
return ret;
ret = bmi088_accel_set_sample_freq(data, val);
pm_runtime_mark_last_busy(dev);
pm_runtime_put_autosuspend(dev);
return ret;
default:
return -EINVAL;
}
}
#define BMI088_ACCEL_CHANNEL(_axis) { \
.type = IIO_ACCEL, \
.modified = 1, \
.channel2 = IIO_MOD_##_axis, \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
BIT(IIO_CHAN_INFO_SAMP_FREQ), \
.info_mask_shared_by_type_available = BIT(IIO_CHAN_INFO_SAMP_FREQ) | \
BIT(IIO_CHAN_INFO_SCALE), \
.scan_index = AXIS_##_axis, \
}
static const struct iio_chan_spec bmi088_accel_channels[] = {
{
.type = IIO_TEMP,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_SCALE) |
BIT(IIO_CHAN_INFO_OFFSET),
.scan_index = -1,
},
BMI088_ACCEL_CHANNEL(X),
BMI088_ACCEL_CHANNEL(Y),
BMI088_ACCEL_CHANNEL(Z),
IIO_CHAN_SOFT_TIMESTAMP(3),
};
static const struct bmi088_accel_chip_info bmi088_accel_chip_info_tbl[] = {
[BOSCH_BMI085] = {
.name = "bmi085-accel",
.chip_id = 0x1F,
.channels = bmi088_accel_channels,
.num_channels = ARRAY_SIZE(bmi088_accel_channels),
.scale_table = {{0, 598}, {0, 1196}, {0, 2393}, {0, 4785}},
},
[BOSCH_BMI088] = {
.name = "bmi088-accel",
.chip_id = 0x1E,
.channels = bmi088_accel_channels,
.num_channels = ARRAY_SIZE(bmi088_accel_channels),
.scale_table = {{0, 897}, {0, 1794}, {0, 3589}, {0, 7178}},
},
[BOSCH_BMI090L] = {
.name = "bmi090l-accel",
.chip_id = 0x1A,
.channels = bmi088_accel_channels,
.num_channels = ARRAY_SIZE(bmi088_accel_channels),
.scale_table = {{0, 897}, {0, 1794}, {0, 3589}, {0, 7178}},
},
};
static const struct iio_info bmi088_accel_info = {
.read_raw = bmi088_accel_read_raw,
.write_raw = bmi088_accel_write_raw,
.read_avail = bmi088_accel_read_avail,
};
static const unsigned long bmi088_accel_scan_masks[] = {
BIT(AXIS_X) | BIT(AXIS_Y) | BIT(AXIS_Z),
0
};
static int bmi088_accel_chip_init(struct bmi088_accel_data *data, enum bmi_device_type type)
{
struct device *dev = regmap_get_device(data->regmap);
int ret, i;
unsigned int val;
if (type >= BOSCH_UNKNOWN)
return -ENODEV;
/* Do a dummy read to enable SPI interface, won't harm I2C */
regmap_read(data->regmap, BMI088_ACCEL_REG_INT_STATUS, &val);
/*
* Reset chip to get it in a known good state. A delay of 1ms after
* reset is required according to the data sheet
*/
ret = regmap_write(data->regmap, BMI088_ACCEL_REG_RESET,
BMI088_ACCEL_RESET_VAL);
if (ret)
return ret;
usleep_range(1000, 2000);
/* Do a dummy read again after a reset to enable the SPI interface */
regmap_read(data->regmap, BMI088_ACCEL_REG_INT_STATUS, &val);
/* Read chip ID */
ret = regmap_read(data->regmap, BMI088_ACCEL_REG_CHIP_ID, &val);
if (ret) {
dev_err(dev, "Error: Reading chip id\n");
return ret;
}
/* Validate chip ID */
for (i = 0; i < ARRAY_SIZE(bmi088_accel_chip_info_tbl); i++)
if (bmi088_accel_chip_info_tbl[i].chip_id == val)
break;
if (i == ARRAY_SIZE(bmi088_accel_chip_info_tbl))
data->chip_info = &bmi088_accel_chip_info_tbl[type];
else
data->chip_info = &bmi088_accel_chip_info_tbl[i];
if (i != type)
dev_warn(dev, "unexpected chip id 0x%X\n", val);
return 0;
}
int bmi088_accel_core_probe(struct device *dev, struct regmap *regmap,
int irq, enum bmi_device_type type)
{
struct bmi088_accel_data *data;
struct iio_dev *indio_dev;
int ret;
indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
if (!indio_dev)
return -ENOMEM;
data = iio_priv(indio_dev);
dev_set_drvdata(dev, indio_dev);
data->regmap = regmap;
ret = bmi088_accel_chip_init(data, type);
if (ret)
return ret;
indio_dev->channels = data->chip_info->channels;
indio_dev->num_channels = data->chip_info->num_channels;
indio_dev->name = data->chip_info->name;
indio_dev->available_scan_masks = bmi088_accel_scan_masks;
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->info = &bmi088_accel_info;
/* Enable runtime PM */
pm_runtime_get_noresume(dev);
pm_runtime_set_suspended(dev);
pm_runtime_enable(dev);
/* We need ~6ms to startup, so set the delay to 6 seconds */
pm_runtime_set_autosuspend_delay(dev, 6000);
pm_runtime_use_autosuspend(dev);
pm_runtime_put(dev);
ret = iio_device_register(indio_dev);
if (ret)
dev_err(dev, "Unable to register iio device\n");
return ret;
}
EXPORT_SYMBOL_NS_GPL(bmi088_accel_core_probe, IIO_BMI088);
void bmi088_accel_core_remove(struct device *dev)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct bmi088_accel_data *data = iio_priv(indio_dev);
iio_device_unregister(indio_dev);
pm_runtime_disable(dev);
pm_runtime_set_suspended(dev);
bmi088_accel_power_down(data);
}
EXPORT_SYMBOL_NS_GPL(bmi088_accel_core_remove, IIO_BMI088);
static int bmi088_accel_runtime_suspend(struct device *dev)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct bmi088_accel_data *data = iio_priv(indio_dev);
return bmi088_accel_power_down(data);
}
static int bmi088_accel_runtime_resume(struct device *dev)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct bmi088_accel_data *data = iio_priv(indio_dev);
return bmi088_accel_power_up(data);
}
EXPORT_NS_GPL_RUNTIME_DEV_PM_OPS(bmi088_accel_pm_ops,
bmi088_accel_runtime_suspend,
bmi088_accel_runtime_resume, NULL,
IIO_BMI088);
MODULE_AUTHOR("Niek van Agt <niek.van.agt@topicproducts.com>");
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("BMI088 accelerometer driver (core)");