linux-zen-server/drivers/iio/adc/ad7280a.c

1112 lines
30 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

// SPDX-License-Identifier: GPL-2.0
/*
* AD7280A Lithium Ion Battery Monitoring System
*
* Copyright 2011 Analog Devices Inc.
*/
#include <linux/bitfield.h>
#include <linux/bits.h>
#include <linux/crc8.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mod_devicetable.h>
#include <linux/mutex.h>
#include <linux/slab.h>
#include <linux/sysfs.h>
#include <linux/spi/spi.h>
#include <linux/iio/events.h>
#include <linux/iio/iio.h>
/* Registers */
#define AD7280A_CELL_VOLTAGE_1_REG 0x0 /* D11 to D0, Read only */
#define AD7280A_CELL_VOLTAGE_2_REG 0x1 /* D11 to D0, Read only */
#define AD7280A_CELL_VOLTAGE_3_REG 0x2 /* D11 to D0, Read only */
#define AD7280A_CELL_VOLTAGE_4_REG 0x3 /* D11 to D0, Read only */
#define AD7280A_CELL_VOLTAGE_5_REG 0x4 /* D11 to D0, Read only */
#define AD7280A_CELL_VOLTAGE_6_REG 0x5 /* D11 to D0, Read only */
#define AD7280A_AUX_ADC_1_REG 0x6 /* D11 to D0, Read only */
#define AD7280A_AUX_ADC_2_REG 0x7 /* D11 to D0, Read only */
#define AD7280A_AUX_ADC_3_REG 0x8 /* D11 to D0, Read only */
#define AD7280A_AUX_ADC_4_REG 0x9 /* D11 to D0, Read only */
#define AD7280A_AUX_ADC_5_REG 0xA /* D11 to D0, Read only */
#define AD7280A_AUX_ADC_6_REG 0xB /* D11 to D0, Read only */
#define AD7280A_SELF_TEST_REG 0xC /* D11 to D0, Read only */
#define AD7280A_CTRL_HB_REG 0xD /* D15 to D8, Read/write */
#define AD7280A_CTRL_HB_CONV_INPUT_MSK GENMASK(7, 6)
#define AD7280A_CTRL_HB_CONV_INPUT_ALL 0
#define AD7280A_CTRL_HB_CONV_INPUT_6CELL_AUX1_3_5 1
#define AD7280A_CTRL_HB_CONV_INPUT_6CELL 2
#define AD7280A_CTRL_HB_CONV_INPUT_SELF_TEST 3
#define AD7280A_CTRL_HB_CONV_RREAD_MSK GENMASK(5, 4)
#define AD7280A_CTRL_HB_CONV_RREAD_ALL 0
#define AD7280A_CTRL_HB_CONV_RREAD_6CELL_AUX1_3_5 1
#define AD7280A_CTRL_HB_CONV_RREAD_6CELL 2
#define AD7280A_CTRL_HB_CONV_RREAD_NO 3
#define AD7280A_CTRL_HB_CONV_START_MSK BIT(3)
#define AD7280A_CTRL_HB_CONV_START_CNVST 0
#define AD7280A_CTRL_HB_CONV_START_CS 1
#define AD7280A_CTRL_HB_CONV_AVG_MSK GENMASK(2, 1)
#define AD7280A_CTRL_HB_CONV_AVG_DIS 0
#define AD7280A_CTRL_HB_CONV_AVG_2 1
#define AD7280A_CTRL_HB_CONV_AVG_4 2
#define AD7280A_CTRL_HB_CONV_AVG_8 3
#define AD7280A_CTRL_HB_PWRDN_SW BIT(0)
#define AD7280A_CTRL_LB_REG 0xE /* D7 to D0, Read/write */
#define AD7280A_CTRL_LB_SWRST_MSK BIT(7)
#define AD7280A_CTRL_LB_ACQ_TIME_MSK GENMASK(6, 5)
#define AD7280A_CTRL_LB_ACQ_TIME_400ns 0
#define AD7280A_CTRL_LB_ACQ_TIME_800ns 1
#define AD7280A_CTRL_LB_ACQ_TIME_1200ns 2
#define AD7280A_CTRL_LB_ACQ_TIME_1600ns 3
#define AD7280A_CTRL_LB_MUST_SET BIT(4)
#define AD7280A_CTRL_LB_THERMISTOR_MSK BIT(3)
#define AD7280A_CTRL_LB_LOCK_DEV_ADDR_MSK BIT(2)
#define AD7280A_CTRL_LB_INC_DEV_ADDR_MSK BIT(1)
#define AD7280A_CTRL_LB_DAISY_CHAIN_RB_MSK BIT(0)
#define AD7280A_CELL_OVERVOLTAGE_REG 0xF /* D7 to D0, Read/write */
#define AD7280A_CELL_UNDERVOLTAGE_REG 0x10 /* D7 to D0, Read/write */
#define AD7280A_AUX_ADC_OVERVOLTAGE_REG 0x11 /* D7 to D0, Read/write */
#define AD7280A_AUX_ADC_UNDERVOLTAGE_REG 0x12 /* D7 to D0, Read/write */
#define AD7280A_ALERT_REG 0x13 /* D7 to D0, Read/write */
#define AD7280A_ALERT_REMOVE_MSK GENMASK(3, 0)
#define AD7280A_ALERT_REMOVE_AUX5 BIT(0)
#define AD7280A_ALERT_REMOVE_AUX3_AUX5 BIT(1)
#define AD7280A_ALERT_REMOVE_VIN5 BIT(2)
#define AD7280A_ALERT_REMOVE_VIN4_VIN5 BIT(3)
#define AD7280A_ALERT_GEN_STATIC_HIGH BIT(6)
#define AD7280A_ALERT_RELAY_SIG_CHAIN_DOWN (BIT(7) | BIT(6))
#define AD7280A_CELL_BALANCE_REG 0x14 /* D7 to D0, Read/write */
#define AD7280A_CELL_BALANCE_CHAN_BITMAP_MSK GENMASK(7, 2)
#define AD7280A_CB1_TIMER_REG 0x15 /* D7 to D0, Read/write */
#define AD7280A_CB_TIMER_VAL_MSK GENMASK(7, 3)
#define AD7280A_CB2_TIMER_REG 0x16 /* D7 to D0, Read/write */
#define AD7280A_CB3_TIMER_REG 0x17 /* D7 to D0, Read/write */
#define AD7280A_CB4_TIMER_REG 0x18 /* D7 to D0, Read/write */
#define AD7280A_CB5_TIMER_REG 0x19 /* D7 to D0, Read/write */
#define AD7280A_CB6_TIMER_REG 0x1A /* D7 to D0, Read/write */
#define AD7280A_PD_TIMER_REG 0x1B /* D7 to D0, Read/write */
#define AD7280A_READ_REG 0x1C /* D7 to D0, Read/write */
#define AD7280A_READ_ADDR_MSK GENMASK(7, 2)
#define AD7280A_CNVST_CTRL_REG 0x1D /* D7 to D0, Read/write */
/* Transfer fields */
#define AD7280A_TRANS_WRITE_DEVADDR_MSK GENMASK(31, 27)
#define AD7280A_TRANS_WRITE_ADDR_MSK GENMASK(26, 21)
#define AD7280A_TRANS_WRITE_VAL_MSK GENMASK(20, 13)
#define AD7280A_TRANS_WRITE_ALL_MSK BIT(12)
#define AD7280A_TRANS_WRITE_CRC_MSK GENMASK(10, 3)
#define AD7280A_TRANS_WRITE_RES_PATTERN 0x2
/* Layouts differ for channel vs other registers */
#define AD7280A_TRANS_READ_DEVADDR_MSK GENMASK(31, 27)
#define AD7280A_TRANS_READ_CONV_CHANADDR_MSK GENMASK(26, 23)
#define AD7280A_TRANS_READ_CONV_DATA_MSK GENMASK(22, 11)
#define AD7280A_TRANS_READ_REG_REGADDR_MSK GENMASK(26, 21)
#define AD7280A_TRANS_READ_REG_DATA_MSK GENMASK(20, 13)
#define AD7280A_TRANS_READ_WRITE_ACK_MSK BIT(10)
#define AD7280A_TRANS_READ_CRC_MSK GENMASK(9, 2)
/* Magic value used to indicate this special case */
#define AD7280A_ALL_CELLS (0xAD << 16)
#define AD7280A_MAX_SPI_CLK_HZ 700000 /* < 1MHz */
#define AD7280A_MAX_CHAIN 8
#define AD7280A_CELLS_PER_DEV 6
#define AD7280A_BITS 12
#define AD7280A_NUM_CH (AD7280A_AUX_ADC_6_REG - \
AD7280A_CELL_VOLTAGE_1_REG + 1)
#define AD7280A_CALC_VOLTAGE_CHAN_NUM(d, c) (((d) * AD7280A_CELLS_PER_DEV) + \
(c))
#define AD7280A_CALC_TEMP_CHAN_NUM(d, c) (((d) * AD7280A_CELLS_PER_DEV) + \
(c) - AD7280A_CELLS_PER_DEV)
#define AD7280A_DEVADDR_MASTER 0
#define AD7280A_DEVADDR_ALL 0x1F
static const unsigned short ad7280a_n_avg[4] = {1, 2, 4, 8};
static const unsigned short ad7280a_t_acq_ns[4] = {470, 1030, 1510, 1945};
/* 5-bit device address is sent LSB first */
static unsigned int ad7280a_devaddr(unsigned int addr)
{
return ((addr & 0x1) << 4) |
((addr & 0x2) << 2) |
(addr & 0x4) |
((addr & 0x8) >> 2) |
((addr & 0x10) >> 4);
}
/*
* During a read a valid write is mandatory.
* So writing to the highest available address (Address 0x1F) and setting the
* address all parts bit to 0 is recommended.
* So the TXVAL is AD7280A_DEVADDR_ALL + CRC
*/
#define AD7280A_READ_TXVAL 0xF800030A
/*
* AD7280 CRC
*
* P(x) = x^8 + x^5 + x^3 + x^2 + x^1 + x^0 = 0b100101111 => 0x2F
*/
#define POLYNOM 0x2F
struct ad7280_state {
struct spi_device *spi;
struct iio_chan_spec *channels;
unsigned int chain_last_alert_ignore;
bool thermistor_term_en;
int slave_num;
int scan_cnt;
int readback_delay_us;
unsigned char crc_tab[CRC8_TABLE_SIZE];
u8 oversampling_ratio;
u8 acquisition_time;
unsigned char ctrl_lb;
unsigned char cell_threshhigh;
unsigned char cell_threshlow;
unsigned char aux_threshhigh;
unsigned char aux_threshlow;
unsigned char cb_mask[AD7280A_MAX_CHAIN];
struct mutex lock; /* protect sensor state */
__be32 tx __aligned(IIO_DMA_MINALIGN);
__be32 rx;
};
static unsigned char ad7280_calc_crc8(unsigned char *crc_tab, unsigned int val)
{
unsigned char crc;
crc = crc_tab[val >> 16 & 0xFF];
crc = crc_tab[crc ^ (val >> 8 & 0xFF)];
return crc ^ (val & 0xFF);
}
static int ad7280_check_crc(struct ad7280_state *st, unsigned int val)
{
unsigned char crc = ad7280_calc_crc8(st->crc_tab, val >> 10);
if (crc != ((val >> 2) & 0xFF))
return -EIO;
return 0;
}
/*
* After initiating a conversion sequence we need to wait until the conversion
* is done. The delay is typically in the range of 15..30us however depending on
* the number of devices in the daisy chain, the number of averages taken,
* conversion delays and acquisition time options it may take up to 250us, in
* this case we better sleep instead of busy wait.
*/
static void ad7280_delay(struct ad7280_state *st)
{
if (st->readback_delay_us < 50)
udelay(st->readback_delay_us);
else
usleep_range(250, 500);
}
static int __ad7280_read32(struct ad7280_state *st, unsigned int *val)
{
int ret;
struct spi_transfer t = {
.tx_buf = &st->tx,
.rx_buf = &st->rx,
.len = sizeof(st->tx),
};
st->tx = cpu_to_be32(AD7280A_READ_TXVAL);
ret = spi_sync_transfer(st->spi, &t, 1);
if (ret)
return ret;
*val = be32_to_cpu(st->rx);
return 0;
}
static int ad7280_write(struct ad7280_state *st, unsigned int devaddr,
unsigned int addr, bool all, unsigned int val)
{
unsigned int reg = FIELD_PREP(AD7280A_TRANS_WRITE_DEVADDR_MSK, devaddr) |
FIELD_PREP(AD7280A_TRANS_WRITE_ADDR_MSK, addr) |
FIELD_PREP(AD7280A_TRANS_WRITE_VAL_MSK, val) |
FIELD_PREP(AD7280A_TRANS_WRITE_ALL_MSK, all);
reg |= FIELD_PREP(AD7280A_TRANS_WRITE_CRC_MSK,
ad7280_calc_crc8(st->crc_tab, reg >> 11));
/* Reserved b010 pattern not included crc calc */
reg |= AD7280A_TRANS_WRITE_RES_PATTERN;
st->tx = cpu_to_be32(reg);
return spi_write(st->spi, &st->tx, sizeof(st->tx));
}
static int ad7280_read_reg(struct ad7280_state *st, unsigned int devaddr,
unsigned int addr)
{
int ret;
unsigned int tmp;
/* turns off the read operation on all parts */
ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, AD7280A_CTRL_HB_REG, 1,
FIELD_PREP(AD7280A_CTRL_HB_CONV_INPUT_MSK,
AD7280A_CTRL_HB_CONV_INPUT_ALL) |
FIELD_PREP(AD7280A_CTRL_HB_CONV_RREAD_MSK,
AD7280A_CTRL_HB_CONV_RREAD_NO) |
FIELD_PREP(AD7280A_CTRL_HB_CONV_AVG_MSK,
st->oversampling_ratio));
if (ret)
return ret;
/* turns on the read operation on the addressed part */
ret = ad7280_write(st, devaddr, AD7280A_CTRL_HB_REG, 0,
FIELD_PREP(AD7280A_CTRL_HB_CONV_INPUT_MSK,
AD7280A_CTRL_HB_CONV_INPUT_ALL) |
FIELD_PREP(AD7280A_CTRL_HB_CONV_RREAD_MSK,
AD7280A_CTRL_HB_CONV_RREAD_ALL) |
FIELD_PREP(AD7280A_CTRL_HB_CONV_AVG_MSK,
st->oversampling_ratio));
if (ret)
return ret;
/* Set register address on the part to be read from */
ret = ad7280_write(st, devaddr, AD7280A_READ_REG, 0,
FIELD_PREP(AD7280A_READ_ADDR_MSK, addr));
if (ret)
return ret;
ret = __ad7280_read32(st, &tmp);
if (ret)
return ret;
if (ad7280_check_crc(st, tmp))
return -EIO;
if ((FIELD_GET(AD7280A_TRANS_READ_DEVADDR_MSK, tmp) != devaddr) ||
(FIELD_GET(AD7280A_TRANS_READ_REG_REGADDR_MSK, tmp) != addr))
return -EFAULT;
return FIELD_GET(AD7280A_TRANS_READ_REG_DATA_MSK, tmp);
}
static int ad7280_read_channel(struct ad7280_state *st, unsigned int devaddr,
unsigned int addr)
{
int ret;
unsigned int tmp;
ret = ad7280_write(st, devaddr, AD7280A_READ_REG, 0,
FIELD_PREP(AD7280A_READ_ADDR_MSK, addr));
if (ret)
return ret;
ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, AD7280A_CTRL_HB_REG, 1,
FIELD_PREP(AD7280A_CTRL_HB_CONV_INPUT_MSK,
AD7280A_CTRL_HB_CONV_INPUT_ALL) |
FIELD_PREP(AD7280A_CTRL_HB_CONV_RREAD_MSK,
AD7280A_CTRL_HB_CONV_RREAD_NO) |
FIELD_PREP(AD7280A_CTRL_HB_CONV_AVG_MSK,
st->oversampling_ratio));
if (ret)
return ret;
ret = ad7280_write(st, devaddr, AD7280A_CTRL_HB_REG, 0,
FIELD_PREP(AD7280A_CTRL_HB_CONV_INPUT_MSK,
AD7280A_CTRL_HB_CONV_INPUT_ALL) |
FIELD_PREP(AD7280A_CTRL_HB_CONV_RREAD_MSK,
AD7280A_CTRL_HB_CONV_RREAD_ALL) |
FIELD_PREP(AD7280A_CTRL_HB_CONV_START_MSK,
AD7280A_CTRL_HB_CONV_START_CS) |
FIELD_PREP(AD7280A_CTRL_HB_CONV_AVG_MSK,
st->oversampling_ratio));
if (ret)
return ret;
ad7280_delay(st);
ret = __ad7280_read32(st, &tmp);
if (ret)
return ret;
if (ad7280_check_crc(st, tmp))
return -EIO;
if ((FIELD_GET(AD7280A_TRANS_READ_DEVADDR_MSK, tmp) != devaddr) ||
(FIELD_GET(AD7280A_TRANS_READ_CONV_CHANADDR_MSK, tmp) != addr))
return -EFAULT;
return FIELD_GET(AD7280A_TRANS_READ_CONV_DATA_MSK, tmp);
}
static int ad7280_read_all_channels(struct ad7280_state *st, unsigned int cnt,
unsigned int *array)
{
int i, ret;
unsigned int tmp, sum = 0;
ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, AD7280A_READ_REG, 1,
AD7280A_CELL_VOLTAGE_1_REG << 2);
if (ret)
return ret;
ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, AD7280A_CTRL_HB_REG, 1,
FIELD_PREP(AD7280A_CTRL_HB_CONV_INPUT_MSK,
AD7280A_CTRL_HB_CONV_INPUT_ALL) |
FIELD_PREP(AD7280A_CTRL_HB_CONV_RREAD_MSK,
AD7280A_CTRL_HB_CONV_RREAD_ALL) |
FIELD_PREP(AD7280A_CTRL_HB_CONV_START_MSK,
AD7280A_CTRL_HB_CONV_START_CS) |
FIELD_PREP(AD7280A_CTRL_HB_CONV_AVG_MSK,
st->oversampling_ratio));
if (ret)
return ret;
ad7280_delay(st);
for (i = 0; i < cnt; i++) {
ret = __ad7280_read32(st, &tmp);
if (ret)
return ret;
if (ad7280_check_crc(st, tmp))
return -EIO;
if (array)
array[i] = tmp;
/* only sum cell voltages */
if (FIELD_GET(AD7280A_TRANS_READ_CONV_CHANADDR_MSK, tmp) <=
AD7280A_CELL_VOLTAGE_6_REG)
sum += FIELD_GET(AD7280A_TRANS_READ_CONV_DATA_MSK, tmp);
}
return sum;
}
static void ad7280_sw_power_down(void *data)
{
struct ad7280_state *st = data;
ad7280_write(st, AD7280A_DEVADDR_MASTER, AD7280A_CTRL_HB_REG, 1,
AD7280A_CTRL_HB_PWRDN_SW |
FIELD_PREP(AD7280A_CTRL_HB_CONV_AVG_MSK, st->oversampling_ratio));
}
static int ad7280_chain_setup(struct ad7280_state *st)
{
unsigned int val, n;
int ret;
ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, AD7280A_CTRL_LB_REG, 1,
FIELD_PREP(AD7280A_CTRL_LB_DAISY_CHAIN_RB_MSK, 1) |
FIELD_PREP(AD7280A_CTRL_LB_LOCK_DEV_ADDR_MSK, 1) |
AD7280A_CTRL_LB_MUST_SET |
FIELD_PREP(AD7280A_CTRL_LB_SWRST_MSK, 1) |
st->ctrl_lb);
if (ret)
return ret;
ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, AD7280A_CTRL_LB_REG, 1,
FIELD_PREP(AD7280A_CTRL_LB_DAISY_CHAIN_RB_MSK, 1) |
FIELD_PREP(AD7280A_CTRL_LB_LOCK_DEV_ADDR_MSK, 1) |
AD7280A_CTRL_LB_MUST_SET |
FIELD_PREP(AD7280A_CTRL_LB_SWRST_MSK, 0) |
st->ctrl_lb);
if (ret)
goto error_power_down;
ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, AD7280A_READ_REG, 1,
FIELD_PREP(AD7280A_READ_ADDR_MSK, AD7280A_CTRL_LB_REG));
if (ret)
goto error_power_down;
for (n = 0; n <= AD7280A_MAX_CHAIN; n++) {
ret = __ad7280_read32(st, &val);
if (ret)
goto error_power_down;
if (val == 0)
return n - 1;
if (ad7280_check_crc(st, val)) {
ret = -EIO;
goto error_power_down;
}
if (n != ad7280a_devaddr(FIELD_GET(AD7280A_TRANS_READ_DEVADDR_MSK, val))) {
ret = -EIO;
goto error_power_down;
}
}
ret = -EFAULT;
error_power_down:
ad7280_write(st, AD7280A_DEVADDR_MASTER, AD7280A_CTRL_HB_REG, 1,
AD7280A_CTRL_HB_PWRDN_SW |
FIELD_PREP(AD7280A_CTRL_HB_CONV_AVG_MSK, st->oversampling_ratio));
return ret;
}
static ssize_t ad7280_show_balance_sw(struct iio_dev *indio_dev,
uintptr_t private,
const struct iio_chan_spec *chan, char *buf)
{
struct ad7280_state *st = iio_priv(indio_dev);
return sysfs_emit(buf, "%d\n",
!!(st->cb_mask[chan->address >> 8] &
BIT(chan->address & 0xFF)));
}
static ssize_t ad7280_store_balance_sw(struct iio_dev *indio_dev,
uintptr_t private,
const struct iio_chan_spec *chan,
const char *buf, size_t len)
{
struct ad7280_state *st = iio_priv(indio_dev);
unsigned int devaddr, ch;
bool readin;
int ret;
ret = kstrtobool(buf, &readin);
if (ret)
return ret;
devaddr = chan->address >> 8;
ch = chan->address & 0xFF;
mutex_lock(&st->lock);
if (readin)
st->cb_mask[devaddr] |= BIT(ch);
else
st->cb_mask[devaddr] &= ~BIT(ch);
ret = ad7280_write(st, devaddr, AD7280A_CELL_BALANCE_REG, 0,
FIELD_PREP(AD7280A_CELL_BALANCE_CHAN_BITMAP_MSK,
st->cb_mask[devaddr]));
mutex_unlock(&st->lock);
return ret ? ret : len;
}
static ssize_t ad7280_show_balance_timer(struct iio_dev *indio_dev,
uintptr_t private,
const struct iio_chan_spec *chan,
char *buf)
{
struct ad7280_state *st = iio_priv(indio_dev);
unsigned int msecs;
int ret;
mutex_lock(&st->lock);
ret = ad7280_read_reg(st, chan->address >> 8,
(chan->address & 0xFF) + AD7280A_CB1_TIMER_REG);
mutex_unlock(&st->lock);
if (ret < 0)
return ret;
msecs = FIELD_GET(AD7280A_CB_TIMER_VAL_MSK, ret) * 71500;
return sysfs_emit(buf, "%u.%u\n", msecs / 1000, msecs % 1000);
}
static ssize_t ad7280_store_balance_timer(struct iio_dev *indio_dev,
uintptr_t private,
const struct iio_chan_spec *chan,
const char *buf, size_t len)
{
struct ad7280_state *st = iio_priv(indio_dev);
int val, val2;
int ret;
ret = iio_str_to_fixpoint(buf, 1000, &val, &val2);
if (ret)
return ret;
val = val * 1000 + val2;
val /= 71500;
if (val > 31)
return -EINVAL;
mutex_lock(&st->lock);
ret = ad7280_write(st, chan->address >> 8,
(chan->address & 0xFF) + AD7280A_CB1_TIMER_REG, 0,
FIELD_PREP(AD7280A_CB_TIMER_VAL_MSK, val));
mutex_unlock(&st->lock);
return ret ? ret : len;
}
static const struct iio_chan_spec_ext_info ad7280_cell_ext_info[] = {
{
.name = "balance_switch_en",
.read = ad7280_show_balance_sw,
.write = ad7280_store_balance_sw,
.shared = IIO_SEPARATE,
}, {
.name = "balance_switch_timer",
.read = ad7280_show_balance_timer,
.write = ad7280_store_balance_timer,
.shared = IIO_SEPARATE,
},
{}
};
static const struct iio_event_spec ad7280_events[] = {
{
.type = IIO_EV_TYPE_THRESH,
.dir = IIO_EV_DIR_RISING,
.mask_shared_by_type = BIT(IIO_EV_INFO_VALUE),
}, {
.type = IIO_EV_TYPE_THRESH,
.dir = IIO_EV_DIR_FALLING,
.mask_shared_by_type = BIT(IIO_EV_INFO_VALUE),
},
};
static void ad7280_voltage_channel_init(struct iio_chan_spec *chan, int i,
bool irq_present)
{
chan->type = IIO_VOLTAGE;
chan->differential = 1;
chan->channel = i;
chan->channel2 = chan->channel + 1;
if (irq_present) {
chan->event_spec = ad7280_events;
chan->num_event_specs = ARRAY_SIZE(ad7280_events);
}
chan->ext_info = ad7280_cell_ext_info;
}
static void ad7280_temp_channel_init(struct iio_chan_spec *chan, int i,
bool irq_present)
{
chan->type = IIO_TEMP;
chan->channel = i;
if (irq_present) {
chan->event_spec = ad7280_events;
chan->num_event_specs = ARRAY_SIZE(ad7280_events);
}
}
static void ad7280_common_fields_init(struct iio_chan_spec *chan, int addr,
int cnt)
{
chan->indexed = 1;
chan->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
chan->info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE);
chan->info_mask_shared_by_all = BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO);
chan->address = addr;
chan->scan_index = cnt;
chan->scan_type.sign = 'u';
chan->scan_type.realbits = 12;
chan->scan_type.storagebits = 32;
}
static void ad7280_total_voltage_channel_init(struct iio_chan_spec *chan,
int cnt, int dev)
{
chan->type = IIO_VOLTAGE;
chan->differential = 1;
chan->channel = 0;
chan->channel2 = dev * AD7280A_CELLS_PER_DEV;
chan->address = AD7280A_ALL_CELLS;
chan->indexed = 1;
chan->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
chan->info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE);
chan->scan_index = cnt;
chan->scan_type.sign = 'u';
chan->scan_type.realbits = 32;
chan->scan_type.storagebits = 32;
}
static void ad7280_init_dev_channels(struct ad7280_state *st, int dev, int *cnt,
bool irq_present)
{
int addr, ch, i;
struct iio_chan_spec *chan;
for (ch = AD7280A_CELL_VOLTAGE_1_REG; ch <= AD7280A_AUX_ADC_6_REG; ch++) {
chan = &st->channels[*cnt];
if (ch < AD7280A_AUX_ADC_1_REG) {
i = AD7280A_CALC_VOLTAGE_CHAN_NUM(dev, ch);
ad7280_voltage_channel_init(chan, i, irq_present);
} else {
i = AD7280A_CALC_TEMP_CHAN_NUM(dev, ch);
ad7280_temp_channel_init(chan, i, irq_present);
}
addr = ad7280a_devaddr(dev) << 8 | ch;
ad7280_common_fields_init(chan, addr, *cnt);
(*cnt)++;
}
}
static int ad7280_channel_init(struct ad7280_state *st, bool irq_present)
{
int dev, cnt = 0;
st->channels = devm_kcalloc(&st->spi->dev, (st->slave_num + 1) * 12 + 1,
sizeof(*st->channels), GFP_KERNEL);
if (!st->channels)
return -ENOMEM;
for (dev = 0; dev <= st->slave_num; dev++)
ad7280_init_dev_channels(st, dev, &cnt, irq_present);
ad7280_total_voltage_channel_init(&st->channels[cnt], cnt, dev);
return cnt + 1;
}
static int ad7280a_read_thresh(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
enum iio_event_type type,
enum iio_event_direction dir,
enum iio_event_info info, int *val, int *val2)
{
struct ad7280_state *st = iio_priv(indio_dev);
switch (chan->type) {
case IIO_VOLTAGE:
switch (dir) {
case IIO_EV_DIR_RISING:
*val = 1000 + (st->cell_threshhigh * 1568L) / 100;
return IIO_VAL_INT;
case IIO_EV_DIR_FALLING:
*val = 1000 + (st->cell_threshlow * 1568L) / 100;
return IIO_VAL_INT;
default:
return -EINVAL;
}
break;
case IIO_TEMP:
switch (dir) {
case IIO_EV_DIR_RISING:
*val = ((st->aux_threshhigh) * 196L) / 10;
return IIO_VAL_INT;
case IIO_EV_DIR_FALLING:
*val = (st->aux_threshlow * 196L) / 10;
return IIO_VAL_INT;
default:
return -EINVAL;
}
break;
default:
return -EINVAL;
}
}
static int ad7280a_write_thresh(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
enum iio_event_type type,
enum iio_event_direction dir,
enum iio_event_info info,
int val, int val2)
{
struct ad7280_state *st = iio_priv(indio_dev);
unsigned int addr;
long value;
int ret;
if (val2 != 0)
return -EINVAL;
mutex_lock(&st->lock);
switch (chan->type) {
case IIO_VOLTAGE:
value = ((val - 1000) * 100) / 1568; /* LSB 15.68mV */
value = clamp(value, 0L, 0xFFL);
switch (dir) {
case IIO_EV_DIR_RISING:
addr = AD7280A_CELL_OVERVOLTAGE_REG;
ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, addr,
1, value);
if (ret)
break;
st->cell_threshhigh = value;
break;
case IIO_EV_DIR_FALLING:
addr = AD7280A_CELL_UNDERVOLTAGE_REG;
ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, addr,
1, value);
if (ret)
break;
st->cell_threshlow = value;
break;
default:
ret = -EINVAL;
goto err_unlock;
}
break;
case IIO_TEMP:
value = (val * 10) / 196; /* LSB 19.6mV */
value = clamp(value, 0L, 0xFFL);
switch (dir) {
case IIO_EV_DIR_RISING:
addr = AD7280A_AUX_ADC_OVERVOLTAGE_REG;
ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, addr,
1, value);
if (ret)
break;
st->aux_threshhigh = value;
break;
case IIO_EV_DIR_FALLING:
addr = AD7280A_AUX_ADC_UNDERVOLTAGE_REG;
ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, addr,
1, value);
if (ret)
break;
st->aux_threshlow = value;
break;
default:
ret = -EINVAL;
goto err_unlock;
}
break;
default:
ret = -EINVAL;
goto err_unlock;
}
err_unlock:
mutex_unlock(&st->lock);
return ret;
}
static irqreturn_t ad7280_event_handler(int irq, void *private)
{
struct iio_dev *indio_dev = private;
struct ad7280_state *st = iio_priv(indio_dev);
unsigned int *channels;
int i, ret;
channels = kcalloc(st->scan_cnt, sizeof(*channels), GFP_KERNEL);
if (!channels)
return IRQ_HANDLED;
ret = ad7280_read_all_channels(st, st->scan_cnt, channels);
if (ret < 0)
goto out;
for (i = 0; i < st->scan_cnt; i++) {
unsigned int val;
val = FIELD_GET(AD7280A_TRANS_READ_CONV_DATA_MSK, channels[i]);
if (FIELD_GET(AD7280A_TRANS_READ_CONV_CHANADDR_MSK, channels[i]) <=
AD7280A_CELL_VOLTAGE_6_REG) {
if (val >= st->cell_threshhigh) {
u64 tmp = IIO_EVENT_CODE(IIO_VOLTAGE, 1, 0,
IIO_EV_DIR_RISING,
IIO_EV_TYPE_THRESH,
0, 0, 0);
iio_push_event(indio_dev, tmp,
iio_get_time_ns(indio_dev));
} else if (val <= st->cell_threshlow) {
u64 tmp = IIO_EVENT_CODE(IIO_VOLTAGE, 1, 0,
IIO_EV_DIR_FALLING,
IIO_EV_TYPE_THRESH,
0, 0, 0);
iio_push_event(indio_dev, tmp,
iio_get_time_ns(indio_dev));
}
} else {
if (val >= st->aux_threshhigh) {
u64 tmp = IIO_UNMOD_EVENT_CODE(IIO_TEMP, 0,
IIO_EV_TYPE_THRESH,
IIO_EV_DIR_RISING);
iio_push_event(indio_dev, tmp,
iio_get_time_ns(indio_dev));
} else if (val <= st->aux_threshlow) {
u64 tmp = IIO_UNMOD_EVENT_CODE(IIO_TEMP, 0,
IIO_EV_TYPE_THRESH,
IIO_EV_DIR_FALLING);
iio_push_event(indio_dev, tmp,
iio_get_time_ns(indio_dev));
}
}
}
out:
kfree(channels);
return IRQ_HANDLED;
}
static void ad7280_update_delay(struct ad7280_state *st)
{
/*
* Total Conversion Time = ((tACQ + tCONV) *
* (Number of Conversions per Part))
* tACQ + ((N - 1) * tDELAY)
*
* Readback Delay = Total Conversion Time + tWAIT
*/
st->readback_delay_us =
((ad7280a_t_acq_ns[st->acquisition_time & 0x3] + 720) *
(AD7280A_NUM_CH * ad7280a_n_avg[st->oversampling_ratio & 0x3])) -
ad7280a_t_acq_ns[st->acquisition_time & 0x3] + st->slave_num * 250;
/* Convert to usecs */
st->readback_delay_us = DIV_ROUND_UP(st->readback_delay_us, 1000);
st->readback_delay_us += 5; /* Add tWAIT */
}
static int ad7280_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val,
int *val2,
long m)
{
struct ad7280_state *st = iio_priv(indio_dev);
int ret;
switch (m) {
case IIO_CHAN_INFO_RAW:
mutex_lock(&st->lock);
if (chan->address == AD7280A_ALL_CELLS)
ret = ad7280_read_all_channels(st, st->scan_cnt, NULL);
else
ret = ad7280_read_channel(st, chan->address >> 8,
chan->address & 0xFF);
mutex_unlock(&st->lock);
if (ret < 0)
return ret;
*val = ret;
return IIO_VAL_INT;
case IIO_CHAN_INFO_SCALE:
if ((chan->address & 0xFF) <= AD7280A_CELL_VOLTAGE_6_REG)
*val = 4000;
else
*val = 5000;
*val2 = AD7280A_BITS;
return IIO_VAL_FRACTIONAL_LOG2;
case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
*val = ad7280a_n_avg[st->oversampling_ratio];
return IIO_VAL_INT;
}
return -EINVAL;
}
static int ad7280_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int val, int val2, long mask)
{
struct ad7280_state *st = iio_priv(indio_dev);
int i;
switch (mask) {
case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
if (val2 != 0)
return -EINVAL;
for (i = 0; i < ARRAY_SIZE(ad7280a_n_avg); i++) {
if (val == ad7280a_n_avg[i]) {
st->oversampling_ratio = i;
ad7280_update_delay(st);
return 0;
}
}
return -EINVAL;
default:
return -EINVAL;
}
}
static const struct iio_info ad7280_info = {
.read_raw = ad7280_read_raw,
.write_raw = ad7280_write_raw,
.read_event_value = &ad7280a_read_thresh,
.write_event_value = &ad7280a_write_thresh,
};
static const struct iio_info ad7280_info_no_irq = {
.read_raw = ad7280_read_raw,
.write_raw = ad7280_write_raw,
};
static int ad7280_probe(struct spi_device *spi)
{
struct device *dev = &spi->dev;
struct ad7280_state *st;
int ret;
struct iio_dev *indio_dev;
indio_dev = devm_iio_device_alloc(dev, sizeof(*st));
if (!indio_dev)
return -ENOMEM;
st = iio_priv(indio_dev);
spi_set_drvdata(spi, indio_dev);
st->spi = spi;
mutex_init(&st->lock);
st->thermistor_term_en =
device_property_read_bool(dev, "adi,thermistor-termination");
if (device_property_present(dev, "adi,acquisition-time-ns")) {
u32 val;
ret = device_property_read_u32(dev, "adi,acquisition-time-ns", &val);
if (ret)
return ret;
switch (val) {
case 400:
st->acquisition_time = AD7280A_CTRL_LB_ACQ_TIME_400ns;
break;
case 800:
st->acquisition_time = AD7280A_CTRL_LB_ACQ_TIME_800ns;
break;
case 1200:
st->acquisition_time = AD7280A_CTRL_LB_ACQ_TIME_1200ns;
break;
case 1600:
st->acquisition_time = AD7280A_CTRL_LB_ACQ_TIME_1600ns;
break;
default:
dev_err(dev, "Firmware provided acquisition time is invalid\n");
return -EINVAL;
}
} else {
st->acquisition_time = AD7280A_CTRL_LB_ACQ_TIME_400ns;
}
/* Alert masks are intended for when particular inputs are not wired up */
if (device_property_present(dev, "adi,voltage-alert-last-chan")) {
u32 val;
ret = device_property_read_u32(dev, "adi,voltage-alert-last-chan", &val);
if (ret)
return ret;
switch (val) {
case 3:
st->chain_last_alert_ignore |= AD7280A_ALERT_REMOVE_VIN4_VIN5;
break;
case 4:
st->chain_last_alert_ignore |= AD7280A_ALERT_REMOVE_VIN5;
break;
case 5:
break;
default:
dev_err(dev,
"Firmware provided last voltage alert channel invalid\n");
break;
}
}
crc8_populate_msb(st->crc_tab, POLYNOM);
st->spi->max_speed_hz = AD7280A_MAX_SPI_CLK_HZ;
st->spi->mode = SPI_MODE_1;
spi_setup(st->spi);
st->ctrl_lb = FIELD_PREP(AD7280A_CTRL_LB_ACQ_TIME_MSK, st->acquisition_time) |
FIELD_PREP(AD7280A_CTRL_LB_THERMISTOR_MSK, st->thermistor_term_en);
st->oversampling_ratio = 0; /* No oversampling */
ret = ad7280_chain_setup(st);
if (ret < 0)
return ret;
st->slave_num = ret;
st->scan_cnt = (st->slave_num + 1) * AD7280A_NUM_CH;
st->cell_threshhigh = 0xFF;
st->aux_threshhigh = 0xFF;
ret = devm_add_action_or_reset(dev, ad7280_sw_power_down, st);
if (ret)
return ret;
ad7280_update_delay(st);
indio_dev->name = spi_get_device_id(spi)->name;
indio_dev->modes = INDIO_DIRECT_MODE;
ret = ad7280_channel_init(st, spi->irq > 0);
if (ret < 0)
return ret;
indio_dev->num_channels = ret;
indio_dev->channels = st->channels;
if (spi->irq > 0) {
ret = ad7280_write(st, AD7280A_DEVADDR_MASTER,
AD7280A_ALERT_REG, 1,
AD7280A_ALERT_RELAY_SIG_CHAIN_DOWN);
if (ret)
return ret;
ret = ad7280_write(st, ad7280a_devaddr(st->slave_num),
AD7280A_ALERT_REG, 0,
AD7280A_ALERT_GEN_STATIC_HIGH |
FIELD_PREP(AD7280A_ALERT_REMOVE_MSK,
st->chain_last_alert_ignore));
if (ret)
return ret;
ret = devm_request_threaded_irq(dev, spi->irq,
NULL,
ad7280_event_handler,
IRQF_TRIGGER_FALLING |
IRQF_ONESHOT,
indio_dev->name,
indio_dev);
if (ret)
return ret;
indio_dev->info = &ad7280_info;
} else {
indio_dev->info = &ad7280_info_no_irq;
}
return devm_iio_device_register(dev, indio_dev);
}
static const struct spi_device_id ad7280_id[] = {
{"ad7280a", 0},
{}
};
MODULE_DEVICE_TABLE(spi, ad7280_id);
static struct spi_driver ad7280_driver = {
.driver = {
.name = "ad7280",
},
.probe = ad7280_probe,
.id_table = ad7280_id,
};
module_spi_driver(ad7280_driver);
MODULE_AUTHOR("Michael Hennerich <michael.hennerich@analog.com>");
MODULE_DESCRIPTION("Analog Devices AD7280A");
MODULE_LICENSE("GPL v2");