1321 lines
40 KiB
C
1321 lines
40 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Amlogic Meson Successive Approximation Register (SAR) A/D Converter
|
|
*
|
|
* Copyright (C) 2017 Martin Blumenstingl <martin.blumenstingl@googlemail.com>
|
|
*/
|
|
|
|
#include <linux/bitfield.h>
|
|
#include <linux/clk.h>
|
|
#include <linux/clk-provider.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/io.h>
|
|
#include <linux/iio/iio.h>
|
|
#include <linux/module.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/nvmem-consumer.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/of.h>
|
|
#include <linux/of_irq.h>
|
|
#include <linux/of_device.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/regmap.h>
|
|
#include <linux/regulator/consumer.h>
|
|
#include <linux/mfd/syscon.h>
|
|
|
|
#define MESON_SAR_ADC_REG0 0x00
|
|
#define MESON_SAR_ADC_REG0_PANEL_DETECT BIT(31)
|
|
#define MESON_SAR_ADC_REG0_BUSY_MASK GENMASK(30, 28)
|
|
#define MESON_SAR_ADC_REG0_DELTA_BUSY BIT(30)
|
|
#define MESON_SAR_ADC_REG0_AVG_BUSY BIT(29)
|
|
#define MESON_SAR_ADC_REG0_SAMPLE_BUSY BIT(28)
|
|
#define MESON_SAR_ADC_REG0_FIFO_FULL BIT(27)
|
|
#define MESON_SAR_ADC_REG0_FIFO_EMPTY BIT(26)
|
|
#define MESON_SAR_ADC_REG0_FIFO_COUNT_MASK GENMASK(25, 21)
|
|
#define MESON_SAR_ADC_REG0_ADC_BIAS_CTRL_MASK GENMASK(20, 19)
|
|
#define MESON_SAR_ADC_REG0_CURR_CHAN_ID_MASK GENMASK(18, 16)
|
|
#define MESON_SAR_ADC_REG0_ADC_TEMP_SEN_SEL BIT(15)
|
|
#define MESON_SAR_ADC_REG0_SAMPLING_STOP BIT(14)
|
|
#define MESON_SAR_ADC_REG0_CHAN_DELTA_EN_MASK GENMASK(13, 12)
|
|
#define MESON_SAR_ADC_REG0_DETECT_IRQ_POL BIT(10)
|
|
#define MESON_SAR_ADC_REG0_DETECT_IRQ_EN BIT(9)
|
|
#define MESON_SAR_ADC_REG0_FIFO_CNT_IRQ_MASK GENMASK(8, 4)
|
|
#define MESON_SAR_ADC_REG0_FIFO_IRQ_EN BIT(3)
|
|
#define MESON_SAR_ADC_REG0_SAMPLING_START BIT(2)
|
|
#define MESON_SAR_ADC_REG0_CONTINUOUS_EN BIT(1)
|
|
#define MESON_SAR_ADC_REG0_SAMPLE_ENGINE_ENABLE BIT(0)
|
|
|
|
#define MESON_SAR_ADC_CHAN_LIST 0x04
|
|
#define MESON_SAR_ADC_CHAN_LIST_MAX_INDEX_MASK GENMASK(26, 24)
|
|
#define MESON_SAR_ADC_CHAN_LIST_ENTRY_MASK(_chan) \
|
|
(GENMASK(2, 0) << ((_chan) * 3))
|
|
|
|
#define MESON_SAR_ADC_AVG_CNTL 0x08
|
|
#define MESON_SAR_ADC_AVG_CNTL_AVG_MODE_SHIFT(_chan) \
|
|
(16 + ((_chan) * 2))
|
|
#define MESON_SAR_ADC_AVG_CNTL_AVG_MODE_MASK(_chan) \
|
|
(GENMASK(17, 16) << ((_chan) * 2))
|
|
#define MESON_SAR_ADC_AVG_CNTL_NUM_SAMPLES_SHIFT(_chan) \
|
|
(0 + ((_chan) * 2))
|
|
#define MESON_SAR_ADC_AVG_CNTL_NUM_SAMPLES_MASK(_chan) \
|
|
(GENMASK(1, 0) << ((_chan) * 2))
|
|
|
|
#define MESON_SAR_ADC_REG3 0x0c
|
|
#define MESON_SAR_ADC_REG3_CNTL_USE_SC_DLY BIT(31)
|
|
#define MESON_SAR_ADC_REG3_CLK_EN BIT(30)
|
|
#define MESON_SAR_ADC_REG3_BL30_INITIALIZED BIT(28)
|
|
#define MESON_SAR_ADC_REG3_CTRL_CONT_RING_COUNTER_EN BIT(27)
|
|
#define MESON_SAR_ADC_REG3_CTRL_SAMPLING_CLOCK_PHASE BIT(26)
|
|
#define MESON_SAR_ADC_REG3_CTRL_CHAN7_MUX_SEL_MASK GENMASK(25, 23)
|
|
#define MESON_SAR_ADC_REG3_DETECT_EN BIT(22)
|
|
#define MESON_SAR_ADC_REG3_ADC_EN BIT(21)
|
|
#define MESON_SAR_ADC_REG3_PANEL_DETECT_COUNT_MASK GENMASK(20, 18)
|
|
#define MESON_SAR_ADC_REG3_PANEL_DETECT_FILTER_TB_MASK GENMASK(17, 16)
|
|
#define MESON_SAR_ADC_REG3_ADC_CLK_DIV_SHIFT 10
|
|
#define MESON_SAR_ADC_REG3_ADC_CLK_DIV_WIDTH 5
|
|
#define MESON_SAR_ADC_REG3_BLOCK_DLY_SEL_MASK GENMASK(9, 8)
|
|
#define MESON_SAR_ADC_REG3_BLOCK_DLY_MASK GENMASK(7, 0)
|
|
|
|
#define MESON_SAR_ADC_DELAY 0x10
|
|
#define MESON_SAR_ADC_DELAY_INPUT_DLY_SEL_MASK GENMASK(25, 24)
|
|
#define MESON_SAR_ADC_DELAY_BL30_BUSY BIT(15)
|
|
#define MESON_SAR_ADC_DELAY_KERNEL_BUSY BIT(14)
|
|
#define MESON_SAR_ADC_DELAY_INPUT_DLY_CNT_MASK GENMASK(23, 16)
|
|
#define MESON_SAR_ADC_DELAY_SAMPLE_DLY_SEL_MASK GENMASK(9, 8)
|
|
#define MESON_SAR_ADC_DELAY_SAMPLE_DLY_CNT_MASK GENMASK(7, 0)
|
|
|
|
#define MESON_SAR_ADC_LAST_RD 0x14
|
|
#define MESON_SAR_ADC_LAST_RD_LAST_CHANNEL1_MASK GENMASK(23, 16)
|
|
#define MESON_SAR_ADC_LAST_RD_LAST_CHANNEL0_MASK GENMASK(9, 0)
|
|
|
|
#define MESON_SAR_ADC_FIFO_RD 0x18
|
|
#define MESON_SAR_ADC_FIFO_RD_CHAN_ID_MASK GENMASK(14, 12)
|
|
#define MESON_SAR_ADC_FIFO_RD_SAMPLE_VALUE_MASK GENMASK(11, 0)
|
|
|
|
#define MESON_SAR_ADC_AUX_SW 0x1c
|
|
#define MESON_SAR_ADC_AUX_SW_MUX_SEL_CHAN_SHIFT(_chan) \
|
|
(8 + (((_chan) - 2) * 3))
|
|
#define MESON_SAR_ADC_AUX_SW_VREF_P_MUX BIT(6)
|
|
#define MESON_SAR_ADC_AUX_SW_VREF_N_MUX BIT(5)
|
|
#define MESON_SAR_ADC_AUX_SW_MODE_SEL BIT(4)
|
|
#define MESON_SAR_ADC_AUX_SW_YP_DRIVE_SW BIT(3)
|
|
#define MESON_SAR_ADC_AUX_SW_XP_DRIVE_SW BIT(2)
|
|
#define MESON_SAR_ADC_AUX_SW_YM_DRIVE_SW BIT(1)
|
|
#define MESON_SAR_ADC_AUX_SW_XM_DRIVE_SW BIT(0)
|
|
|
|
#define MESON_SAR_ADC_CHAN_10_SW 0x20
|
|
#define MESON_SAR_ADC_CHAN_10_SW_CHAN1_MUX_SEL_MASK GENMASK(25, 23)
|
|
#define MESON_SAR_ADC_CHAN_10_SW_CHAN1_VREF_P_MUX BIT(22)
|
|
#define MESON_SAR_ADC_CHAN_10_SW_CHAN1_VREF_N_MUX BIT(21)
|
|
#define MESON_SAR_ADC_CHAN_10_SW_CHAN1_MODE_SEL BIT(20)
|
|
#define MESON_SAR_ADC_CHAN_10_SW_CHAN1_YP_DRIVE_SW BIT(19)
|
|
#define MESON_SAR_ADC_CHAN_10_SW_CHAN1_XP_DRIVE_SW BIT(18)
|
|
#define MESON_SAR_ADC_CHAN_10_SW_CHAN1_YM_DRIVE_SW BIT(17)
|
|
#define MESON_SAR_ADC_CHAN_10_SW_CHAN1_XM_DRIVE_SW BIT(16)
|
|
#define MESON_SAR_ADC_CHAN_10_SW_CHAN0_MUX_SEL_MASK GENMASK(9, 7)
|
|
#define MESON_SAR_ADC_CHAN_10_SW_CHAN0_VREF_P_MUX BIT(6)
|
|
#define MESON_SAR_ADC_CHAN_10_SW_CHAN0_VREF_N_MUX BIT(5)
|
|
#define MESON_SAR_ADC_CHAN_10_SW_CHAN0_MODE_SEL BIT(4)
|
|
#define MESON_SAR_ADC_CHAN_10_SW_CHAN0_YP_DRIVE_SW BIT(3)
|
|
#define MESON_SAR_ADC_CHAN_10_SW_CHAN0_XP_DRIVE_SW BIT(2)
|
|
#define MESON_SAR_ADC_CHAN_10_SW_CHAN0_YM_DRIVE_SW BIT(1)
|
|
#define MESON_SAR_ADC_CHAN_10_SW_CHAN0_XM_DRIVE_SW BIT(0)
|
|
|
|
#define MESON_SAR_ADC_DETECT_IDLE_SW 0x24
|
|
#define MESON_SAR_ADC_DETECT_IDLE_SW_DETECT_SW_EN BIT(26)
|
|
#define MESON_SAR_ADC_DETECT_IDLE_SW_DETECT_MUX_MASK GENMASK(25, 23)
|
|
#define MESON_SAR_ADC_DETECT_IDLE_SW_DETECT_VREF_P_MUX BIT(22)
|
|
#define MESON_SAR_ADC_DETECT_IDLE_SW_DETECT_VREF_N_MUX BIT(21)
|
|
#define MESON_SAR_ADC_DETECT_IDLE_SW_DETECT_MODE_SEL BIT(20)
|
|
#define MESON_SAR_ADC_DETECT_IDLE_SW_DETECT_YP_DRIVE_SW BIT(19)
|
|
#define MESON_SAR_ADC_DETECT_IDLE_SW_DETECT_XP_DRIVE_SW BIT(18)
|
|
#define MESON_SAR_ADC_DETECT_IDLE_SW_DETECT_YM_DRIVE_SW BIT(17)
|
|
#define MESON_SAR_ADC_DETECT_IDLE_SW_DETECT_XM_DRIVE_SW BIT(16)
|
|
#define MESON_SAR_ADC_DETECT_IDLE_SW_IDLE_MUX_SEL_MASK GENMASK(9, 7)
|
|
#define MESON_SAR_ADC_DETECT_IDLE_SW_IDLE_VREF_P_MUX BIT(6)
|
|
#define MESON_SAR_ADC_DETECT_IDLE_SW_IDLE_VREF_N_MUX BIT(5)
|
|
#define MESON_SAR_ADC_DETECT_IDLE_SW_IDLE_MODE_SEL BIT(4)
|
|
#define MESON_SAR_ADC_DETECT_IDLE_SW_IDLE_YP_DRIVE_SW BIT(3)
|
|
#define MESON_SAR_ADC_DETECT_IDLE_SW_IDLE_XP_DRIVE_SW BIT(2)
|
|
#define MESON_SAR_ADC_DETECT_IDLE_SW_IDLE_YM_DRIVE_SW BIT(1)
|
|
#define MESON_SAR_ADC_DETECT_IDLE_SW_IDLE_XM_DRIVE_SW BIT(0)
|
|
|
|
#define MESON_SAR_ADC_DELTA_10 0x28
|
|
#define MESON_SAR_ADC_DELTA_10_TEMP_SEL BIT(27)
|
|
#define MESON_SAR_ADC_DELTA_10_TS_REVE1 BIT(26)
|
|
#define MESON_SAR_ADC_DELTA_10_CHAN1_DELTA_VALUE_MASK GENMASK(25, 16)
|
|
#define MESON_SAR_ADC_DELTA_10_TS_REVE0 BIT(15)
|
|
#define MESON_SAR_ADC_DELTA_10_TS_C_MASK GENMASK(14, 11)
|
|
#define MESON_SAR_ADC_DELTA_10_TS_VBG_EN BIT(10)
|
|
#define MESON_SAR_ADC_DELTA_10_CHAN0_DELTA_VALUE_MASK GENMASK(9, 0)
|
|
|
|
/*
|
|
* NOTE: registers from here are undocumented (the vendor Linux kernel driver
|
|
* and u-boot source served as reference). These only seem to be relevant on
|
|
* GXBB and newer.
|
|
*/
|
|
#define MESON_SAR_ADC_REG11 0x2c
|
|
#define MESON_SAR_ADC_REG11_BANDGAP_EN BIT(13)
|
|
|
|
#define MESON_SAR_ADC_REG13 0x34
|
|
#define MESON_SAR_ADC_REG13_12BIT_CALIBRATION_MASK GENMASK(13, 8)
|
|
|
|
#define MESON_SAR_ADC_MAX_FIFO_SIZE 32
|
|
#define MESON_SAR_ADC_TIMEOUT 100 /* ms */
|
|
#define MESON_SAR_ADC_VOLTAGE_AND_TEMP_CHANNEL 6
|
|
#define MESON_SAR_ADC_TEMP_OFFSET 27
|
|
|
|
/* temperature sensor calibration information in eFuse */
|
|
#define MESON_SAR_ADC_EFUSE_BYTES 4
|
|
#define MESON_SAR_ADC_EFUSE_BYTE3_UPPER_ADC_VAL GENMASK(6, 0)
|
|
#define MESON_SAR_ADC_EFUSE_BYTE3_IS_CALIBRATED BIT(7)
|
|
|
|
#define MESON_HHI_DPLL_TOP_0 0x318
|
|
#define MESON_HHI_DPLL_TOP_0_TSC_BIT4 BIT(9)
|
|
|
|
/* for use with IIO_VAL_INT_PLUS_MICRO */
|
|
#define MILLION 1000000
|
|
|
|
#define MESON_SAR_ADC_CHAN(_chan) { \
|
|
.type = IIO_VOLTAGE, \
|
|
.indexed = 1, \
|
|
.channel = _chan, \
|
|
.address = _chan, \
|
|
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
|
|
BIT(IIO_CHAN_INFO_AVERAGE_RAW), \
|
|
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \
|
|
.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_CALIBBIAS) | \
|
|
BIT(IIO_CHAN_INFO_CALIBSCALE), \
|
|
.datasheet_name = "SAR_ADC_CH"#_chan, \
|
|
}
|
|
|
|
#define MESON_SAR_ADC_TEMP_CHAN(_chan) { \
|
|
.type = IIO_TEMP, \
|
|
.channel = _chan, \
|
|
.address = MESON_SAR_ADC_VOLTAGE_AND_TEMP_CHANNEL, \
|
|
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
|
|
BIT(IIO_CHAN_INFO_AVERAGE_RAW), \
|
|
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_OFFSET) | \
|
|
BIT(IIO_CHAN_INFO_SCALE), \
|
|
.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_CALIBBIAS) | \
|
|
BIT(IIO_CHAN_INFO_CALIBSCALE), \
|
|
.datasheet_name = "TEMP_SENSOR", \
|
|
}
|
|
|
|
static const struct iio_chan_spec meson_sar_adc_iio_channels[] = {
|
|
MESON_SAR_ADC_CHAN(0),
|
|
MESON_SAR_ADC_CHAN(1),
|
|
MESON_SAR_ADC_CHAN(2),
|
|
MESON_SAR_ADC_CHAN(3),
|
|
MESON_SAR_ADC_CHAN(4),
|
|
MESON_SAR_ADC_CHAN(5),
|
|
MESON_SAR_ADC_CHAN(6),
|
|
MESON_SAR_ADC_CHAN(7),
|
|
IIO_CHAN_SOFT_TIMESTAMP(8),
|
|
};
|
|
|
|
static const struct iio_chan_spec meson_sar_adc_and_temp_iio_channels[] = {
|
|
MESON_SAR_ADC_CHAN(0),
|
|
MESON_SAR_ADC_CHAN(1),
|
|
MESON_SAR_ADC_CHAN(2),
|
|
MESON_SAR_ADC_CHAN(3),
|
|
MESON_SAR_ADC_CHAN(4),
|
|
MESON_SAR_ADC_CHAN(5),
|
|
MESON_SAR_ADC_CHAN(6),
|
|
MESON_SAR_ADC_CHAN(7),
|
|
MESON_SAR_ADC_TEMP_CHAN(8),
|
|
IIO_CHAN_SOFT_TIMESTAMP(9),
|
|
};
|
|
|
|
enum meson_sar_adc_avg_mode {
|
|
NO_AVERAGING = 0x0,
|
|
MEAN_AVERAGING = 0x1,
|
|
MEDIAN_AVERAGING = 0x2,
|
|
};
|
|
|
|
enum meson_sar_adc_num_samples {
|
|
ONE_SAMPLE = 0x0,
|
|
TWO_SAMPLES = 0x1,
|
|
FOUR_SAMPLES = 0x2,
|
|
EIGHT_SAMPLES = 0x3,
|
|
};
|
|
|
|
enum meson_sar_adc_chan7_mux_sel {
|
|
CHAN7_MUX_VSS = 0x0,
|
|
CHAN7_MUX_VDD_DIV4 = 0x1,
|
|
CHAN7_MUX_VDD_DIV2 = 0x2,
|
|
CHAN7_MUX_VDD_MUL3_DIV4 = 0x3,
|
|
CHAN7_MUX_VDD = 0x4,
|
|
CHAN7_MUX_CH7_INPUT = 0x7,
|
|
};
|
|
|
|
struct meson_sar_adc_param {
|
|
bool has_bl30_integration;
|
|
unsigned long clock_rate;
|
|
u32 bandgap_reg;
|
|
unsigned int resolution;
|
|
const struct regmap_config *regmap_config;
|
|
u8 temperature_trimming_bits;
|
|
unsigned int temperature_multiplier;
|
|
unsigned int temperature_divider;
|
|
};
|
|
|
|
struct meson_sar_adc_data {
|
|
const struct meson_sar_adc_param *param;
|
|
const char *name;
|
|
};
|
|
|
|
struct meson_sar_adc_priv {
|
|
struct regmap *regmap;
|
|
struct regulator *vref;
|
|
const struct meson_sar_adc_param *param;
|
|
struct clk *clkin;
|
|
struct clk *core_clk;
|
|
struct clk *adc_sel_clk;
|
|
struct clk *adc_clk;
|
|
struct clk_gate clk_gate;
|
|
struct clk *adc_div_clk;
|
|
struct clk_divider clk_div;
|
|
struct completion done;
|
|
/* lock to protect against multiple access to the device */
|
|
struct mutex lock;
|
|
int calibbias;
|
|
int calibscale;
|
|
struct regmap *tsc_regmap;
|
|
bool temperature_sensor_calibrated;
|
|
u8 temperature_sensor_coefficient;
|
|
u16 temperature_sensor_adc_val;
|
|
};
|
|
|
|
static const struct regmap_config meson_sar_adc_regmap_config_gxbb = {
|
|
.reg_bits = 8,
|
|
.val_bits = 32,
|
|
.reg_stride = 4,
|
|
.max_register = MESON_SAR_ADC_REG13,
|
|
};
|
|
|
|
static const struct regmap_config meson_sar_adc_regmap_config_meson8 = {
|
|
.reg_bits = 8,
|
|
.val_bits = 32,
|
|
.reg_stride = 4,
|
|
.max_register = MESON_SAR_ADC_DELTA_10,
|
|
};
|
|
|
|
static unsigned int meson_sar_adc_get_fifo_count(struct iio_dev *indio_dev)
|
|
{
|
|
struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
|
|
u32 regval;
|
|
|
|
regmap_read(priv->regmap, MESON_SAR_ADC_REG0, ®val);
|
|
|
|
return FIELD_GET(MESON_SAR_ADC_REG0_FIFO_COUNT_MASK, regval);
|
|
}
|
|
|
|
static int meson_sar_adc_calib_val(struct iio_dev *indio_dev, int val)
|
|
{
|
|
struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
|
|
int tmp;
|
|
|
|
/* use val_calib = scale * val_raw + offset calibration function */
|
|
tmp = div_s64((s64)val * priv->calibscale, MILLION) + priv->calibbias;
|
|
|
|
return clamp(tmp, 0, (1 << priv->param->resolution) - 1);
|
|
}
|
|
|
|
static int meson_sar_adc_wait_busy_clear(struct iio_dev *indio_dev)
|
|
{
|
|
struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
|
|
int val;
|
|
|
|
/*
|
|
* NOTE: we need a small delay before reading the status, otherwise
|
|
* the sample engine may not have started internally (which would
|
|
* seem to us that sampling is already finished).
|
|
*/
|
|
udelay(1);
|
|
return regmap_read_poll_timeout_atomic(priv->regmap, MESON_SAR_ADC_REG0, val,
|
|
!FIELD_GET(MESON_SAR_ADC_REG0_BUSY_MASK, val),
|
|
1, 10000);
|
|
}
|
|
|
|
static int meson_sar_adc_read_raw_sample(struct iio_dev *indio_dev,
|
|
const struct iio_chan_spec *chan,
|
|
int *val)
|
|
{
|
|
struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
|
|
struct device *dev = indio_dev->dev.parent;
|
|
int regval, fifo_chan, fifo_val, count;
|
|
|
|
if (!wait_for_completion_timeout(&priv->done,
|
|
msecs_to_jiffies(MESON_SAR_ADC_TIMEOUT)))
|
|
return -ETIMEDOUT;
|
|
|
|
count = meson_sar_adc_get_fifo_count(indio_dev);
|
|
if (count != 1) {
|
|
dev_err(dev, "ADC FIFO has %d element(s) instead of one\n", count);
|
|
return -EINVAL;
|
|
}
|
|
|
|
regmap_read(priv->regmap, MESON_SAR_ADC_FIFO_RD, ®val);
|
|
fifo_chan = FIELD_GET(MESON_SAR_ADC_FIFO_RD_CHAN_ID_MASK, regval);
|
|
if (fifo_chan != chan->address) {
|
|
dev_err(dev, "ADC FIFO entry belongs to channel %d instead of %lu\n",
|
|
fifo_chan, chan->address);
|
|
return -EINVAL;
|
|
}
|
|
|
|
fifo_val = FIELD_GET(MESON_SAR_ADC_FIFO_RD_SAMPLE_VALUE_MASK, regval);
|
|
fifo_val &= GENMASK(priv->param->resolution - 1, 0);
|
|
*val = meson_sar_adc_calib_val(indio_dev, fifo_val);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void meson_sar_adc_set_averaging(struct iio_dev *indio_dev,
|
|
const struct iio_chan_spec *chan,
|
|
enum meson_sar_adc_avg_mode mode,
|
|
enum meson_sar_adc_num_samples samples)
|
|
{
|
|
struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
|
|
int val, address = chan->address;
|
|
|
|
val = samples << MESON_SAR_ADC_AVG_CNTL_NUM_SAMPLES_SHIFT(address);
|
|
regmap_update_bits(priv->regmap, MESON_SAR_ADC_AVG_CNTL,
|
|
MESON_SAR_ADC_AVG_CNTL_NUM_SAMPLES_MASK(address),
|
|
val);
|
|
|
|
val = mode << MESON_SAR_ADC_AVG_CNTL_AVG_MODE_SHIFT(address);
|
|
regmap_update_bits(priv->regmap, MESON_SAR_ADC_AVG_CNTL,
|
|
MESON_SAR_ADC_AVG_CNTL_AVG_MODE_MASK(address), val);
|
|
}
|
|
|
|
static void meson_sar_adc_enable_channel(struct iio_dev *indio_dev,
|
|
const struct iio_chan_spec *chan)
|
|
{
|
|
struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
|
|
u32 regval;
|
|
|
|
/*
|
|
* the SAR ADC engine allows sampling multiple channels at the same
|
|
* time. to keep it simple we're only working with one *internal*
|
|
* channel, which starts counting at index 0 (which means: count = 1).
|
|
*/
|
|
regval = FIELD_PREP(MESON_SAR_ADC_CHAN_LIST_MAX_INDEX_MASK, 0);
|
|
regmap_update_bits(priv->regmap, MESON_SAR_ADC_CHAN_LIST,
|
|
MESON_SAR_ADC_CHAN_LIST_MAX_INDEX_MASK, regval);
|
|
|
|
/* map channel index 0 to the channel which we want to read */
|
|
regval = FIELD_PREP(MESON_SAR_ADC_CHAN_LIST_ENTRY_MASK(0),
|
|
chan->address);
|
|
regmap_update_bits(priv->regmap, MESON_SAR_ADC_CHAN_LIST,
|
|
MESON_SAR_ADC_CHAN_LIST_ENTRY_MASK(0), regval);
|
|
|
|
regval = FIELD_PREP(MESON_SAR_ADC_DETECT_IDLE_SW_DETECT_MUX_MASK,
|
|
chan->address);
|
|
regmap_update_bits(priv->regmap, MESON_SAR_ADC_DETECT_IDLE_SW,
|
|
MESON_SAR_ADC_DETECT_IDLE_SW_DETECT_MUX_MASK,
|
|
regval);
|
|
|
|
regval = FIELD_PREP(MESON_SAR_ADC_DETECT_IDLE_SW_IDLE_MUX_SEL_MASK,
|
|
chan->address);
|
|
regmap_update_bits(priv->regmap, MESON_SAR_ADC_DETECT_IDLE_SW,
|
|
MESON_SAR_ADC_DETECT_IDLE_SW_IDLE_MUX_SEL_MASK,
|
|
regval);
|
|
|
|
if (chan->address == MESON_SAR_ADC_VOLTAGE_AND_TEMP_CHANNEL) {
|
|
if (chan->type == IIO_TEMP)
|
|
regval = MESON_SAR_ADC_DELTA_10_TEMP_SEL;
|
|
else
|
|
regval = 0;
|
|
|
|
regmap_update_bits(priv->regmap,
|
|
MESON_SAR_ADC_DELTA_10,
|
|
MESON_SAR_ADC_DELTA_10_TEMP_SEL, regval);
|
|
}
|
|
}
|
|
|
|
static void meson_sar_adc_set_chan7_mux(struct iio_dev *indio_dev,
|
|
enum meson_sar_adc_chan7_mux_sel sel)
|
|
{
|
|
struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
|
|
u32 regval;
|
|
|
|
regval = FIELD_PREP(MESON_SAR_ADC_REG3_CTRL_CHAN7_MUX_SEL_MASK, sel);
|
|
regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG3,
|
|
MESON_SAR_ADC_REG3_CTRL_CHAN7_MUX_SEL_MASK, regval);
|
|
|
|
usleep_range(10, 20);
|
|
}
|
|
|
|
static void meson_sar_adc_start_sample_engine(struct iio_dev *indio_dev)
|
|
{
|
|
struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
|
|
|
|
reinit_completion(&priv->done);
|
|
|
|
regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG0,
|
|
MESON_SAR_ADC_REG0_FIFO_IRQ_EN,
|
|
MESON_SAR_ADC_REG0_FIFO_IRQ_EN);
|
|
|
|
regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG0,
|
|
MESON_SAR_ADC_REG0_SAMPLE_ENGINE_ENABLE,
|
|
MESON_SAR_ADC_REG0_SAMPLE_ENGINE_ENABLE);
|
|
|
|
regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG0,
|
|
MESON_SAR_ADC_REG0_SAMPLING_START,
|
|
MESON_SAR_ADC_REG0_SAMPLING_START);
|
|
}
|
|
|
|
static void meson_sar_adc_stop_sample_engine(struct iio_dev *indio_dev)
|
|
{
|
|
struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
|
|
|
|
regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG0,
|
|
MESON_SAR_ADC_REG0_FIFO_IRQ_EN, 0);
|
|
|
|
regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG0,
|
|
MESON_SAR_ADC_REG0_SAMPLING_STOP,
|
|
MESON_SAR_ADC_REG0_SAMPLING_STOP);
|
|
|
|
/* wait until all modules are stopped */
|
|
meson_sar_adc_wait_busy_clear(indio_dev);
|
|
|
|
regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG0,
|
|
MESON_SAR_ADC_REG0_SAMPLE_ENGINE_ENABLE, 0);
|
|
}
|
|
|
|
static int meson_sar_adc_lock(struct iio_dev *indio_dev)
|
|
{
|
|
struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
|
|
int val, ret;
|
|
|
|
mutex_lock(&priv->lock);
|
|
|
|
if (priv->param->has_bl30_integration) {
|
|
/* prevent BL30 from using the SAR ADC while we are using it */
|
|
regmap_update_bits(priv->regmap, MESON_SAR_ADC_DELAY,
|
|
MESON_SAR_ADC_DELAY_KERNEL_BUSY,
|
|
MESON_SAR_ADC_DELAY_KERNEL_BUSY);
|
|
|
|
udelay(1);
|
|
|
|
/*
|
|
* wait until BL30 releases it's lock (so we can use the SAR
|
|
* ADC)
|
|
*/
|
|
ret = regmap_read_poll_timeout_atomic(priv->regmap, MESON_SAR_ADC_DELAY, val,
|
|
!(val & MESON_SAR_ADC_DELAY_BL30_BUSY),
|
|
1, 10000);
|
|
if (ret) {
|
|
mutex_unlock(&priv->lock);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void meson_sar_adc_unlock(struct iio_dev *indio_dev)
|
|
{
|
|
struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
|
|
|
|
if (priv->param->has_bl30_integration)
|
|
/* allow BL30 to use the SAR ADC again */
|
|
regmap_update_bits(priv->regmap, MESON_SAR_ADC_DELAY,
|
|
MESON_SAR_ADC_DELAY_KERNEL_BUSY, 0);
|
|
|
|
mutex_unlock(&priv->lock);
|
|
}
|
|
|
|
static void meson_sar_adc_clear_fifo(struct iio_dev *indio_dev)
|
|
{
|
|
struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
|
|
unsigned int count, tmp;
|
|
|
|
for (count = 0; count < MESON_SAR_ADC_MAX_FIFO_SIZE; count++) {
|
|
if (!meson_sar_adc_get_fifo_count(indio_dev))
|
|
break;
|
|
|
|
regmap_read(priv->regmap, MESON_SAR_ADC_FIFO_RD, &tmp);
|
|
}
|
|
}
|
|
|
|
static int meson_sar_adc_get_sample(struct iio_dev *indio_dev,
|
|
const struct iio_chan_spec *chan,
|
|
enum meson_sar_adc_avg_mode avg_mode,
|
|
enum meson_sar_adc_num_samples avg_samples,
|
|
int *val)
|
|
{
|
|
struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
|
|
struct device *dev = indio_dev->dev.parent;
|
|
int ret;
|
|
|
|
if (chan->type == IIO_TEMP && !priv->temperature_sensor_calibrated)
|
|
return -ENOTSUPP;
|
|
|
|
ret = meson_sar_adc_lock(indio_dev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* clear the FIFO to make sure we're not reading old values */
|
|
meson_sar_adc_clear_fifo(indio_dev);
|
|
|
|
meson_sar_adc_set_averaging(indio_dev, chan, avg_mode, avg_samples);
|
|
|
|
meson_sar_adc_enable_channel(indio_dev, chan);
|
|
|
|
meson_sar_adc_start_sample_engine(indio_dev);
|
|
ret = meson_sar_adc_read_raw_sample(indio_dev, chan, val);
|
|
meson_sar_adc_stop_sample_engine(indio_dev);
|
|
|
|
meson_sar_adc_unlock(indio_dev);
|
|
|
|
if (ret) {
|
|
dev_warn(dev, "failed to read sample for channel %lu: %d\n",
|
|
chan->address, ret);
|
|
return ret;
|
|
}
|
|
|
|
return IIO_VAL_INT;
|
|
}
|
|
|
|
static int meson_sar_adc_iio_info_read_raw(struct iio_dev *indio_dev,
|
|
const struct iio_chan_spec *chan,
|
|
int *val, int *val2, long mask)
|
|
{
|
|
struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
|
|
struct device *dev = indio_dev->dev.parent;
|
|
int ret;
|
|
|
|
switch (mask) {
|
|
case IIO_CHAN_INFO_RAW:
|
|
return meson_sar_adc_get_sample(indio_dev, chan, NO_AVERAGING,
|
|
ONE_SAMPLE, val);
|
|
|
|
case IIO_CHAN_INFO_AVERAGE_RAW:
|
|
return meson_sar_adc_get_sample(indio_dev, chan,
|
|
MEAN_AVERAGING, EIGHT_SAMPLES,
|
|
val);
|
|
|
|
case IIO_CHAN_INFO_SCALE:
|
|
if (chan->type == IIO_VOLTAGE) {
|
|
ret = regulator_get_voltage(priv->vref);
|
|
if (ret < 0) {
|
|
dev_err(dev, "failed to get vref voltage: %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
*val = ret / 1000;
|
|
*val2 = priv->param->resolution;
|
|
return IIO_VAL_FRACTIONAL_LOG2;
|
|
} else if (chan->type == IIO_TEMP) {
|
|
/* SoC specific multiplier and divider */
|
|
*val = priv->param->temperature_multiplier;
|
|
*val2 = priv->param->temperature_divider;
|
|
|
|
/* celsius to millicelsius */
|
|
*val *= 1000;
|
|
|
|
return IIO_VAL_FRACTIONAL;
|
|
} else {
|
|
return -EINVAL;
|
|
}
|
|
|
|
case IIO_CHAN_INFO_CALIBBIAS:
|
|
*val = priv->calibbias;
|
|
return IIO_VAL_INT;
|
|
|
|
case IIO_CHAN_INFO_CALIBSCALE:
|
|
*val = priv->calibscale / MILLION;
|
|
*val2 = priv->calibscale % MILLION;
|
|
return IIO_VAL_INT_PLUS_MICRO;
|
|
|
|
case IIO_CHAN_INFO_OFFSET:
|
|
*val = DIV_ROUND_CLOSEST(MESON_SAR_ADC_TEMP_OFFSET *
|
|
priv->param->temperature_divider,
|
|
priv->param->temperature_multiplier);
|
|
*val -= priv->temperature_sensor_adc_val;
|
|
return IIO_VAL_INT;
|
|
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
static int meson_sar_adc_clk_init(struct iio_dev *indio_dev,
|
|
void __iomem *base)
|
|
{
|
|
struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
|
|
struct device *dev = indio_dev->dev.parent;
|
|
struct clk_init_data init;
|
|
const char *clk_parents[1];
|
|
|
|
init.name = devm_kasprintf(dev, GFP_KERNEL, "%s#adc_div", dev_name(dev));
|
|
if (!init.name)
|
|
return -ENOMEM;
|
|
|
|
init.flags = 0;
|
|
init.ops = &clk_divider_ops;
|
|
clk_parents[0] = __clk_get_name(priv->clkin);
|
|
init.parent_names = clk_parents;
|
|
init.num_parents = 1;
|
|
|
|
priv->clk_div.reg = base + MESON_SAR_ADC_REG3;
|
|
priv->clk_div.shift = MESON_SAR_ADC_REG3_ADC_CLK_DIV_SHIFT;
|
|
priv->clk_div.width = MESON_SAR_ADC_REG3_ADC_CLK_DIV_WIDTH;
|
|
priv->clk_div.hw.init = &init;
|
|
priv->clk_div.flags = 0;
|
|
|
|
priv->adc_div_clk = devm_clk_register(dev, &priv->clk_div.hw);
|
|
if (WARN_ON(IS_ERR(priv->adc_div_clk)))
|
|
return PTR_ERR(priv->adc_div_clk);
|
|
|
|
init.name = devm_kasprintf(dev, GFP_KERNEL, "%s#adc_en", dev_name(dev));
|
|
if (!init.name)
|
|
return -ENOMEM;
|
|
|
|
init.flags = CLK_SET_RATE_PARENT;
|
|
init.ops = &clk_gate_ops;
|
|
clk_parents[0] = __clk_get_name(priv->adc_div_clk);
|
|
init.parent_names = clk_parents;
|
|
init.num_parents = 1;
|
|
|
|
priv->clk_gate.reg = base + MESON_SAR_ADC_REG3;
|
|
priv->clk_gate.bit_idx = __ffs(MESON_SAR_ADC_REG3_CLK_EN);
|
|
priv->clk_gate.hw.init = &init;
|
|
|
|
priv->adc_clk = devm_clk_register(dev, &priv->clk_gate.hw);
|
|
if (WARN_ON(IS_ERR(priv->adc_clk)))
|
|
return PTR_ERR(priv->adc_clk);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int meson_sar_adc_temp_sensor_init(struct iio_dev *indio_dev)
|
|
{
|
|
struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
|
|
u8 *buf, trimming_bits, trimming_mask, upper_adc_val;
|
|
struct device *dev = indio_dev->dev.parent;
|
|
struct nvmem_cell *temperature_calib;
|
|
size_t read_len;
|
|
int ret;
|
|
|
|
temperature_calib = devm_nvmem_cell_get(dev, "temperature_calib");
|
|
if (IS_ERR(temperature_calib)) {
|
|
ret = PTR_ERR(temperature_calib);
|
|
|
|
/*
|
|
* leave the temperature sensor disabled if no calibration data
|
|
* was passed via nvmem-cells.
|
|
*/
|
|
if (ret == -ENODEV)
|
|
return 0;
|
|
|
|
return dev_err_probe(dev, ret, "failed to get temperature_calib cell\n");
|
|
}
|
|
|
|
priv->tsc_regmap = syscon_regmap_lookup_by_phandle(dev->of_node, "amlogic,hhi-sysctrl");
|
|
if (IS_ERR(priv->tsc_regmap))
|
|
return dev_err_probe(dev, PTR_ERR(priv->tsc_regmap),
|
|
"failed to get amlogic,hhi-sysctrl regmap\n");
|
|
|
|
read_len = MESON_SAR_ADC_EFUSE_BYTES;
|
|
buf = nvmem_cell_read(temperature_calib, &read_len);
|
|
if (IS_ERR(buf))
|
|
return dev_err_probe(dev, PTR_ERR(buf), "failed to read temperature_calib cell\n");
|
|
if (read_len != MESON_SAR_ADC_EFUSE_BYTES) {
|
|
kfree(buf);
|
|
return dev_err_probe(dev, -EINVAL, "invalid read size of temperature_calib cell\n");
|
|
}
|
|
|
|
trimming_bits = priv->param->temperature_trimming_bits;
|
|
trimming_mask = BIT(trimming_bits) - 1;
|
|
|
|
priv->temperature_sensor_calibrated =
|
|
buf[3] & MESON_SAR_ADC_EFUSE_BYTE3_IS_CALIBRATED;
|
|
priv->temperature_sensor_coefficient = buf[2] & trimming_mask;
|
|
|
|
upper_adc_val = FIELD_GET(MESON_SAR_ADC_EFUSE_BYTE3_UPPER_ADC_VAL,
|
|
buf[3]);
|
|
|
|
priv->temperature_sensor_adc_val = buf[2];
|
|
priv->temperature_sensor_adc_val |= upper_adc_val << BITS_PER_BYTE;
|
|
priv->temperature_sensor_adc_val >>= trimming_bits;
|
|
|
|
kfree(buf);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int meson_sar_adc_init(struct iio_dev *indio_dev)
|
|
{
|
|
struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
|
|
struct device *dev = indio_dev->dev.parent;
|
|
int regval, i, ret;
|
|
|
|
/*
|
|
* make sure we start at CH7 input since the other muxes are only used
|
|
* for internal calibration.
|
|
*/
|
|
meson_sar_adc_set_chan7_mux(indio_dev, CHAN7_MUX_CH7_INPUT);
|
|
|
|
if (priv->param->has_bl30_integration) {
|
|
/*
|
|
* leave sampling delay and the input clocks as configured by
|
|
* BL30 to make sure BL30 gets the values it expects when
|
|
* reading the temperature sensor.
|
|
*/
|
|
regmap_read(priv->regmap, MESON_SAR_ADC_REG3, ®val);
|
|
if (regval & MESON_SAR_ADC_REG3_BL30_INITIALIZED)
|
|
return 0;
|
|
}
|
|
|
|
meson_sar_adc_stop_sample_engine(indio_dev);
|
|
|
|
/*
|
|
* disable this bit as seems to be only relevant for Meson6 (based
|
|
* on the vendor driver), which we don't support at the moment.
|
|
*/
|
|
regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG0,
|
|
MESON_SAR_ADC_REG0_ADC_TEMP_SEN_SEL, 0);
|
|
|
|
/* disable all channels by default */
|
|
regmap_write(priv->regmap, MESON_SAR_ADC_CHAN_LIST, 0x0);
|
|
|
|
regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG3,
|
|
MESON_SAR_ADC_REG3_CTRL_SAMPLING_CLOCK_PHASE, 0);
|
|
regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG3,
|
|
MESON_SAR_ADC_REG3_CNTL_USE_SC_DLY,
|
|
MESON_SAR_ADC_REG3_CNTL_USE_SC_DLY);
|
|
|
|
/* delay between two samples = (10+1) * 1uS */
|
|
regmap_update_bits(priv->regmap, MESON_SAR_ADC_DELAY,
|
|
MESON_SAR_ADC_DELAY_INPUT_DLY_CNT_MASK,
|
|
FIELD_PREP(MESON_SAR_ADC_DELAY_SAMPLE_DLY_CNT_MASK,
|
|
10));
|
|
regmap_update_bits(priv->regmap, MESON_SAR_ADC_DELAY,
|
|
MESON_SAR_ADC_DELAY_SAMPLE_DLY_SEL_MASK,
|
|
FIELD_PREP(MESON_SAR_ADC_DELAY_SAMPLE_DLY_SEL_MASK,
|
|
0));
|
|
|
|
/* delay between two samples = (10+1) * 1uS */
|
|
regmap_update_bits(priv->regmap, MESON_SAR_ADC_DELAY,
|
|
MESON_SAR_ADC_DELAY_INPUT_DLY_CNT_MASK,
|
|
FIELD_PREP(MESON_SAR_ADC_DELAY_INPUT_DLY_CNT_MASK,
|
|
10));
|
|
regmap_update_bits(priv->regmap, MESON_SAR_ADC_DELAY,
|
|
MESON_SAR_ADC_DELAY_INPUT_DLY_SEL_MASK,
|
|
FIELD_PREP(MESON_SAR_ADC_DELAY_INPUT_DLY_SEL_MASK,
|
|
1));
|
|
|
|
/*
|
|
* set up the input channel muxes in MESON_SAR_ADC_CHAN_10_SW
|
|
* (0 = SAR_ADC_CH0, 1 = SAR_ADC_CH1)
|
|
*/
|
|
regval = FIELD_PREP(MESON_SAR_ADC_CHAN_10_SW_CHAN0_MUX_SEL_MASK, 0);
|
|
regmap_update_bits(priv->regmap, MESON_SAR_ADC_CHAN_10_SW,
|
|
MESON_SAR_ADC_CHAN_10_SW_CHAN0_MUX_SEL_MASK,
|
|
regval);
|
|
regval = FIELD_PREP(MESON_SAR_ADC_CHAN_10_SW_CHAN1_MUX_SEL_MASK, 1);
|
|
regmap_update_bits(priv->regmap, MESON_SAR_ADC_CHAN_10_SW,
|
|
MESON_SAR_ADC_CHAN_10_SW_CHAN1_MUX_SEL_MASK,
|
|
regval);
|
|
|
|
/*
|
|
* set up the input channel muxes in MESON_SAR_ADC_AUX_SW
|
|
* (2 = SAR_ADC_CH2, 3 = SAR_ADC_CH3, ...) and enable
|
|
* MESON_SAR_ADC_AUX_SW_YP_DRIVE_SW and
|
|
* MESON_SAR_ADC_AUX_SW_XP_DRIVE_SW like the vendor driver.
|
|
*/
|
|
regval = 0;
|
|
for (i = 2; i <= 7; i++)
|
|
regval |= i << MESON_SAR_ADC_AUX_SW_MUX_SEL_CHAN_SHIFT(i);
|
|
regval |= MESON_SAR_ADC_AUX_SW_YP_DRIVE_SW;
|
|
regval |= MESON_SAR_ADC_AUX_SW_XP_DRIVE_SW;
|
|
regmap_write(priv->regmap, MESON_SAR_ADC_AUX_SW, regval);
|
|
|
|
if (priv->temperature_sensor_calibrated) {
|
|
regmap_update_bits(priv->regmap, MESON_SAR_ADC_DELTA_10,
|
|
MESON_SAR_ADC_DELTA_10_TS_REVE1,
|
|
MESON_SAR_ADC_DELTA_10_TS_REVE1);
|
|
regmap_update_bits(priv->regmap, MESON_SAR_ADC_DELTA_10,
|
|
MESON_SAR_ADC_DELTA_10_TS_REVE0,
|
|
MESON_SAR_ADC_DELTA_10_TS_REVE0);
|
|
|
|
/*
|
|
* set bits [3:0] of the TSC (temperature sensor coefficient)
|
|
* to get the correct values when reading the temperature.
|
|
*/
|
|
regval = FIELD_PREP(MESON_SAR_ADC_DELTA_10_TS_C_MASK,
|
|
priv->temperature_sensor_coefficient);
|
|
regmap_update_bits(priv->regmap, MESON_SAR_ADC_DELTA_10,
|
|
MESON_SAR_ADC_DELTA_10_TS_C_MASK, regval);
|
|
|
|
if (priv->param->temperature_trimming_bits == 5) {
|
|
if (priv->temperature_sensor_coefficient & BIT(4))
|
|
regval = MESON_HHI_DPLL_TOP_0_TSC_BIT4;
|
|
else
|
|
regval = 0;
|
|
|
|
/*
|
|
* bit [4] (the 5th bit when starting to count at 1)
|
|
* of the TSC is located in the HHI register area.
|
|
*/
|
|
regmap_update_bits(priv->tsc_regmap,
|
|
MESON_HHI_DPLL_TOP_0,
|
|
MESON_HHI_DPLL_TOP_0_TSC_BIT4,
|
|
regval);
|
|
}
|
|
} else {
|
|
regmap_update_bits(priv->regmap, MESON_SAR_ADC_DELTA_10,
|
|
MESON_SAR_ADC_DELTA_10_TS_REVE1, 0);
|
|
regmap_update_bits(priv->regmap, MESON_SAR_ADC_DELTA_10,
|
|
MESON_SAR_ADC_DELTA_10_TS_REVE0, 0);
|
|
}
|
|
|
|
ret = clk_set_parent(priv->adc_sel_clk, priv->clkin);
|
|
if (ret)
|
|
return dev_err_probe(dev, ret, "failed to set adc parent to clkin\n");
|
|
|
|
ret = clk_set_rate(priv->adc_clk, priv->param->clock_rate);
|
|
if (ret)
|
|
return dev_err_probe(dev, ret, "failed to set adc clock rate\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void meson_sar_adc_set_bandgap(struct iio_dev *indio_dev, bool on_off)
|
|
{
|
|
struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
|
|
const struct meson_sar_adc_param *param = priv->param;
|
|
u32 enable_mask;
|
|
|
|
if (param->bandgap_reg == MESON_SAR_ADC_REG11)
|
|
enable_mask = MESON_SAR_ADC_REG11_BANDGAP_EN;
|
|
else
|
|
enable_mask = MESON_SAR_ADC_DELTA_10_TS_VBG_EN;
|
|
|
|
regmap_update_bits(priv->regmap, param->bandgap_reg, enable_mask,
|
|
on_off ? enable_mask : 0);
|
|
}
|
|
|
|
static int meson_sar_adc_hw_enable(struct iio_dev *indio_dev)
|
|
{
|
|
struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
|
|
struct device *dev = indio_dev->dev.parent;
|
|
int ret;
|
|
u32 regval;
|
|
|
|
ret = meson_sar_adc_lock(indio_dev);
|
|
if (ret)
|
|
goto err_lock;
|
|
|
|
ret = regulator_enable(priv->vref);
|
|
if (ret < 0) {
|
|
dev_err(dev, "failed to enable vref regulator\n");
|
|
goto err_vref;
|
|
}
|
|
|
|
ret = clk_prepare_enable(priv->core_clk);
|
|
if (ret) {
|
|
dev_err(dev, "failed to enable core clk\n");
|
|
goto err_core_clk;
|
|
}
|
|
|
|
regval = FIELD_PREP(MESON_SAR_ADC_REG0_FIFO_CNT_IRQ_MASK, 1);
|
|
regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG0,
|
|
MESON_SAR_ADC_REG0_FIFO_CNT_IRQ_MASK, regval);
|
|
|
|
meson_sar_adc_set_bandgap(indio_dev, true);
|
|
|
|
regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG3,
|
|
MESON_SAR_ADC_REG3_ADC_EN,
|
|
MESON_SAR_ADC_REG3_ADC_EN);
|
|
|
|
udelay(5);
|
|
|
|
ret = clk_prepare_enable(priv->adc_clk);
|
|
if (ret) {
|
|
dev_err(dev, "failed to enable adc clk\n");
|
|
goto err_adc_clk;
|
|
}
|
|
|
|
meson_sar_adc_unlock(indio_dev);
|
|
|
|
return 0;
|
|
|
|
err_adc_clk:
|
|
regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG3,
|
|
MESON_SAR_ADC_REG3_ADC_EN, 0);
|
|
meson_sar_adc_set_bandgap(indio_dev, false);
|
|
clk_disable_unprepare(priv->core_clk);
|
|
err_core_clk:
|
|
regulator_disable(priv->vref);
|
|
err_vref:
|
|
meson_sar_adc_unlock(indio_dev);
|
|
err_lock:
|
|
return ret;
|
|
}
|
|
|
|
static int meson_sar_adc_hw_disable(struct iio_dev *indio_dev)
|
|
{
|
|
struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
|
|
int ret;
|
|
|
|
ret = meson_sar_adc_lock(indio_dev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
clk_disable_unprepare(priv->adc_clk);
|
|
|
|
regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG3,
|
|
MESON_SAR_ADC_REG3_ADC_EN, 0);
|
|
|
|
meson_sar_adc_set_bandgap(indio_dev, false);
|
|
|
|
clk_disable_unprepare(priv->core_clk);
|
|
|
|
regulator_disable(priv->vref);
|
|
|
|
meson_sar_adc_unlock(indio_dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static irqreturn_t meson_sar_adc_irq(int irq, void *data)
|
|
{
|
|
struct iio_dev *indio_dev = data;
|
|
struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
|
|
unsigned int cnt, threshold;
|
|
u32 regval;
|
|
|
|
regmap_read(priv->regmap, MESON_SAR_ADC_REG0, ®val);
|
|
cnt = FIELD_GET(MESON_SAR_ADC_REG0_FIFO_COUNT_MASK, regval);
|
|
threshold = FIELD_GET(MESON_SAR_ADC_REG0_FIFO_CNT_IRQ_MASK, regval);
|
|
|
|
if (cnt < threshold)
|
|
return IRQ_NONE;
|
|
|
|
complete(&priv->done);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static int meson_sar_adc_calib(struct iio_dev *indio_dev)
|
|
{
|
|
struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
|
|
int ret, nominal0, nominal1, value0, value1;
|
|
|
|
/* use points 25% and 75% for calibration */
|
|
nominal0 = (1 << priv->param->resolution) / 4;
|
|
nominal1 = (1 << priv->param->resolution) * 3 / 4;
|
|
|
|
meson_sar_adc_set_chan7_mux(indio_dev, CHAN7_MUX_VDD_DIV4);
|
|
usleep_range(10, 20);
|
|
ret = meson_sar_adc_get_sample(indio_dev,
|
|
&indio_dev->channels[7],
|
|
MEAN_AVERAGING, EIGHT_SAMPLES, &value0);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
meson_sar_adc_set_chan7_mux(indio_dev, CHAN7_MUX_VDD_MUL3_DIV4);
|
|
usleep_range(10, 20);
|
|
ret = meson_sar_adc_get_sample(indio_dev,
|
|
&indio_dev->channels[7],
|
|
MEAN_AVERAGING, EIGHT_SAMPLES, &value1);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
if (value1 <= value0) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
priv->calibscale = div_s64((nominal1 - nominal0) * (s64)MILLION,
|
|
value1 - value0);
|
|
priv->calibbias = nominal0 - div_s64((s64)value0 * priv->calibscale,
|
|
MILLION);
|
|
ret = 0;
|
|
out:
|
|
meson_sar_adc_set_chan7_mux(indio_dev, CHAN7_MUX_CH7_INPUT);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static const struct iio_info meson_sar_adc_iio_info = {
|
|
.read_raw = meson_sar_adc_iio_info_read_raw,
|
|
};
|
|
|
|
static const struct meson_sar_adc_param meson_sar_adc_meson8_param = {
|
|
.has_bl30_integration = false,
|
|
.clock_rate = 1150000,
|
|
.bandgap_reg = MESON_SAR_ADC_DELTA_10,
|
|
.regmap_config = &meson_sar_adc_regmap_config_meson8,
|
|
.resolution = 10,
|
|
.temperature_trimming_bits = 4,
|
|
.temperature_multiplier = 18 * 10000,
|
|
.temperature_divider = 1024 * 10 * 85,
|
|
};
|
|
|
|
static const struct meson_sar_adc_param meson_sar_adc_meson8b_param = {
|
|
.has_bl30_integration = false,
|
|
.clock_rate = 1150000,
|
|
.bandgap_reg = MESON_SAR_ADC_DELTA_10,
|
|
.regmap_config = &meson_sar_adc_regmap_config_meson8,
|
|
.resolution = 10,
|
|
.temperature_trimming_bits = 5,
|
|
.temperature_multiplier = 10,
|
|
.temperature_divider = 32,
|
|
};
|
|
|
|
static const struct meson_sar_adc_param meson_sar_adc_gxbb_param = {
|
|
.has_bl30_integration = true,
|
|
.clock_rate = 1200000,
|
|
.bandgap_reg = MESON_SAR_ADC_REG11,
|
|
.regmap_config = &meson_sar_adc_regmap_config_gxbb,
|
|
.resolution = 10,
|
|
};
|
|
|
|
static const struct meson_sar_adc_param meson_sar_adc_gxl_param = {
|
|
.has_bl30_integration = true,
|
|
.clock_rate = 1200000,
|
|
.bandgap_reg = MESON_SAR_ADC_REG11,
|
|
.regmap_config = &meson_sar_adc_regmap_config_gxbb,
|
|
.resolution = 12,
|
|
};
|
|
|
|
static const struct meson_sar_adc_param meson_sar_adc_g12a_param = {
|
|
.has_bl30_integration = false,
|
|
.clock_rate = 1200000,
|
|
.bandgap_reg = MESON_SAR_ADC_REG11,
|
|
.regmap_config = &meson_sar_adc_regmap_config_gxbb,
|
|
.resolution = 12,
|
|
};
|
|
|
|
static const struct meson_sar_adc_data meson_sar_adc_meson8_data = {
|
|
.param = &meson_sar_adc_meson8_param,
|
|
.name = "meson-meson8-saradc",
|
|
};
|
|
|
|
static const struct meson_sar_adc_data meson_sar_adc_meson8b_data = {
|
|
.param = &meson_sar_adc_meson8b_param,
|
|
.name = "meson-meson8b-saradc",
|
|
};
|
|
|
|
static const struct meson_sar_adc_data meson_sar_adc_meson8m2_data = {
|
|
.param = &meson_sar_adc_meson8b_param,
|
|
.name = "meson-meson8m2-saradc",
|
|
};
|
|
|
|
static const struct meson_sar_adc_data meson_sar_adc_gxbb_data = {
|
|
.param = &meson_sar_adc_gxbb_param,
|
|
.name = "meson-gxbb-saradc",
|
|
};
|
|
|
|
static const struct meson_sar_adc_data meson_sar_adc_gxl_data = {
|
|
.param = &meson_sar_adc_gxl_param,
|
|
.name = "meson-gxl-saradc",
|
|
};
|
|
|
|
static const struct meson_sar_adc_data meson_sar_adc_gxm_data = {
|
|
.param = &meson_sar_adc_gxl_param,
|
|
.name = "meson-gxm-saradc",
|
|
};
|
|
|
|
static const struct meson_sar_adc_data meson_sar_adc_axg_data = {
|
|
.param = &meson_sar_adc_gxl_param,
|
|
.name = "meson-axg-saradc",
|
|
};
|
|
|
|
static const struct meson_sar_adc_data meson_sar_adc_g12a_data = {
|
|
.param = &meson_sar_adc_g12a_param,
|
|
.name = "meson-g12a-saradc",
|
|
};
|
|
|
|
static const struct of_device_id meson_sar_adc_of_match[] = {
|
|
{
|
|
.compatible = "amlogic,meson8-saradc",
|
|
.data = &meson_sar_adc_meson8_data,
|
|
}, {
|
|
.compatible = "amlogic,meson8b-saradc",
|
|
.data = &meson_sar_adc_meson8b_data,
|
|
}, {
|
|
.compatible = "amlogic,meson8m2-saradc",
|
|
.data = &meson_sar_adc_meson8m2_data,
|
|
}, {
|
|
.compatible = "amlogic,meson-gxbb-saradc",
|
|
.data = &meson_sar_adc_gxbb_data,
|
|
}, {
|
|
.compatible = "amlogic,meson-gxl-saradc",
|
|
.data = &meson_sar_adc_gxl_data,
|
|
}, {
|
|
.compatible = "amlogic,meson-gxm-saradc",
|
|
.data = &meson_sar_adc_gxm_data,
|
|
}, {
|
|
.compatible = "amlogic,meson-axg-saradc",
|
|
.data = &meson_sar_adc_axg_data,
|
|
}, {
|
|
.compatible = "amlogic,meson-g12a-saradc",
|
|
.data = &meson_sar_adc_g12a_data,
|
|
},
|
|
{ /* sentinel */ }
|
|
};
|
|
MODULE_DEVICE_TABLE(of, meson_sar_adc_of_match);
|
|
|
|
static int meson_sar_adc_probe(struct platform_device *pdev)
|
|
{
|
|
const struct meson_sar_adc_data *match_data;
|
|
struct meson_sar_adc_priv *priv;
|
|
struct device *dev = &pdev->dev;
|
|
struct iio_dev *indio_dev;
|
|
void __iomem *base;
|
|
int irq, ret;
|
|
|
|
indio_dev = devm_iio_device_alloc(dev, sizeof(*priv));
|
|
if (!indio_dev)
|
|
return dev_err_probe(dev, -ENOMEM, "failed allocating iio device\n");
|
|
|
|
priv = iio_priv(indio_dev);
|
|
init_completion(&priv->done);
|
|
|
|
match_data = of_device_get_match_data(dev);
|
|
if (!match_data)
|
|
return dev_err_probe(dev, -ENODEV, "failed to get match data\n");
|
|
|
|
priv->param = match_data->param;
|
|
|
|
indio_dev->name = match_data->name;
|
|
indio_dev->modes = INDIO_DIRECT_MODE;
|
|
indio_dev->info = &meson_sar_adc_iio_info;
|
|
|
|
base = devm_platform_ioremap_resource(pdev, 0);
|
|
if (IS_ERR(base))
|
|
return PTR_ERR(base);
|
|
|
|
priv->regmap = devm_regmap_init_mmio(dev, base, priv->param->regmap_config);
|
|
if (IS_ERR(priv->regmap))
|
|
return PTR_ERR(priv->regmap);
|
|
|
|
irq = irq_of_parse_and_map(dev->of_node, 0);
|
|
if (!irq)
|
|
return -EINVAL;
|
|
|
|
ret = devm_request_irq(dev, irq, meson_sar_adc_irq, IRQF_SHARED, dev_name(dev), indio_dev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
priv->clkin = devm_clk_get(dev, "clkin");
|
|
if (IS_ERR(priv->clkin))
|
|
return dev_err_probe(dev, PTR_ERR(priv->clkin), "failed to get clkin\n");
|
|
|
|
priv->core_clk = devm_clk_get(dev, "core");
|
|
if (IS_ERR(priv->core_clk))
|
|
return dev_err_probe(dev, PTR_ERR(priv->core_clk), "failed to get core clk\n");
|
|
|
|
priv->adc_clk = devm_clk_get_optional(dev, "adc_clk");
|
|
if (IS_ERR(priv->adc_clk))
|
|
return dev_err_probe(dev, PTR_ERR(priv->adc_clk), "failed to get adc clk\n");
|
|
|
|
priv->adc_sel_clk = devm_clk_get_optional(dev, "adc_sel");
|
|
if (IS_ERR(priv->adc_sel_clk))
|
|
return dev_err_probe(dev, PTR_ERR(priv->adc_sel_clk), "failed to get adc_sel clk\n");
|
|
|
|
/* on pre-GXBB SoCs the SAR ADC itself provides the ADC clock: */
|
|
if (!priv->adc_clk) {
|
|
ret = meson_sar_adc_clk_init(indio_dev, base);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
priv->vref = devm_regulator_get(dev, "vref");
|
|
if (IS_ERR(priv->vref))
|
|
return dev_err_probe(dev, PTR_ERR(priv->vref), "failed to get vref regulator\n");
|
|
|
|
priv->calibscale = MILLION;
|
|
|
|
if (priv->param->temperature_trimming_bits) {
|
|
ret = meson_sar_adc_temp_sensor_init(indio_dev);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
if (priv->temperature_sensor_calibrated) {
|
|
indio_dev->channels = meson_sar_adc_and_temp_iio_channels;
|
|
indio_dev->num_channels =
|
|
ARRAY_SIZE(meson_sar_adc_and_temp_iio_channels);
|
|
} else {
|
|
indio_dev->channels = meson_sar_adc_iio_channels;
|
|
indio_dev->num_channels =
|
|
ARRAY_SIZE(meson_sar_adc_iio_channels);
|
|
}
|
|
|
|
ret = meson_sar_adc_init(indio_dev);
|
|
if (ret)
|
|
goto err;
|
|
|
|
mutex_init(&priv->lock);
|
|
|
|
ret = meson_sar_adc_hw_enable(indio_dev);
|
|
if (ret)
|
|
goto err;
|
|
|
|
ret = meson_sar_adc_calib(indio_dev);
|
|
if (ret)
|
|
dev_warn(dev, "calibration failed\n");
|
|
|
|
platform_set_drvdata(pdev, indio_dev);
|
|
|
|
ret = iio_device_register(indio_dev);
|
|
if (ret)
|
|
goto err_hw;
|
|
|
|
return 0;
|
|
|
|
err_hw:
|
|
meson_sar_adc_hw_disable(indio_dev);
|
|
err:
|
|
return ret;
|
|
}
|
|
|
|
static int meson_sar_adc_remove(struct platform_device *pdev)
|
|
{
|
|
struct iio_dev *indio_dev = platform_get_drvdata(pdev);
|
|
|
|
iio_device_unregister(indio_dev);
|
|
|
|
return meson_sar_adc_hw_disable(indio_dev);
|
|
}
|
|
|
|
static int meson_sar_adc_suspend(struct device *dev)
|
|
{
|
|
struct iio_dev *indio_dev = dev_get_drvdata(dev);
|
|
|
|
return meson_sar_adc_hw_disable(indio_dev);
|
|
}
|
|
|
|
static int meson_sar_adc_resume(struct device *dev)
|
|
{
|
|
struct iio_dev *indio_dev = dev_get_drvdata(dev);
|
|
|
|
return meson_sar_adc_hw_enable(indio_dev);
|
|
}
|
|
|
|
static DEFINE_SIMPLE_DEV_PM_OPS(meson_sar_adc_pm_ops,
|
|
meson_sar_adc_suspend, meson_sar_adc_resume);
|
|
|
|
static struct platform_driver meson_sar_adc_driver = {
|
|
.probe = meson_sar_adc_probe,
|
|
.remove = meson_sar_adc_remove,
|
|
.driver = {
|
|
.name = "meson-saradc",
|
|
.of_match_table = meson_sar_adc_of_match,
|
|
.pm = pm_sleep_ptr(&meson_sar_adc_pm_ops),
|
|
},
|
|
};
|
|
|
|
module_platform_driver(meson_sar_adc_driver);
|
|
|
|
MODULE_AUTHOR("Martin Blumenstingl <martin.blumenstingl@googlemail.com>");
|
|
MODULE_DESCRIPTION("Amlogic Meson SAR ADC driver");
|
|
MODULE_LICENSE("GPL v2");
|