linux-zen-server/drivers/iio/proximity/vcnl3020.c

672 lines
15 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Support for Vishay VCNL3020 proximity sensor on i2c bus.
* Based on Vishay VCNL4000 driver code.
*/
#include <linux/module.h>
#include <linux/i2c.h>
#include <linux/err.h>
#include <linux/delay.h>
#include <linux/regmap.h>
#include <linux/interrupt.h>
#include <linux/iio/iio.h>
#include <linux/iio/events.h>
#define VCNL3020_PROD_ID 0x21
#define VCNL_COMMAND 0x80 /* Command register */
#define VCNL_PROD_REV 0x81 /* Product ID and Revision ID */
#define VCNL_PROXIMITY_RATE 0x82 /* Rate of Proximity Measurement */
#define VCNL_LED_CURRENT 0x83 /* IR LED current for proximity mode */
#define VCNL_PS_RESULT_HI 0x87 /* Proximity result register, MSB */
#define VCNL_PS_RESULT_LO 0x88 /* Proximity result register, LSB */
#define VCNL_PS_ICR 0x89 /* Interrupt Control Register */
#define VCNL_PS_LO_THR_HI 0x8a /* High byte of low threshold value */
#define VCNL_PS_LO_THR_LO 0x8b /* Low byte of low threshold value */
#define VCNL_PS_HI_THR_HI 0x8c /* High byte of high threshold value */
#define VCNL_PS_HI_THR_LO 0x8d /* Low byte of high threshold value */
#define VCNL_ISR 0x8e /* Interrupt Status Register */
#define VCNL_PS_MOD_ADJ 0x8f /* Proximity Modulator Timing Adjustment */
/* Bit masks for COMMAND register */
#define VCNL_PS_RDY BIT(5) /* proximity data ready? */
#define VCNL_PS_OD BIT(3) /* start on-demand proximity
* measurement
*/
/* Enables periodic proximity measurement */
#define VCNL_PS_EN BIT(1)
/* Enables state machine and LP oscillator for self timed measurements */
#define VCNL_PS_SELFTIMED_EN BIT(0)
/* Bit masks for ICR */
/* Enable interrupts on low or high thresholds */
#define VCNL_ICR_THRES_EN BIT(1)
/* Bit masks for ISR */
#define VCNL_INT_TH_HI BIT(0) /* High threshold hit */
#define VCNL_INT_TH_LOW BIT(1) /* Low threshold hit */
#define VCNL_ON_DEMAND_TIMEOUT_US 100000
#define VCNL_POLL_US 20000
static const int vcnl3020_prox_sampling_frequency[][2] = {
{1, 950000},
{3, 906250},
{7, 812500},
{16, 625000},
{31, 250000},
{62, 500000},
{125, 0},
{250, 0},
};
/**
* struct vcnl3020_data - vcnl3020 specific data.
* @regmap: device register map.
* @dev: vcnl3020 device.
* @rev: revision id.
* @lock: lock for protecting access to device hardware registers.
* @buf: __be16 buffer.
*/
struct vcnl3020_data {
struct regmap *regmap;
struct device *dev;
u8 rev;
struct mutex lock;
__be16 buf;
};
/**
* struct vcnl3020_property - vcnl3020 property.
* @name: property name.
* @reg: i2c register offset.
* @conversion_func: conversion function.
*/
struct vcnl3020_property {
const char *name;
u32 reg;
u32 (*conversion_func)(u32 *val);
};
static u32 microamp_to_reg(u32 *val)
{
/*
* An example of conversion from uA to reg val:
* 200000 uA == 200 mA == 20
*/
return *val /= 10000;
};
static struct vcnl3020_property vcnl3020_led_current_property = {
.name = "vishay,led-current-microamp",
.reg = VCNL_LED_CURRENT,
.conversion_func = microamp_to_reg,
};
static int vcnl3020_get_and_apply_property(struct vcnl3020_data *data,
struct vcnl3020_property prop)
{
int rc;
u32 val;
rc = device_property_read_u32(data->dev, prop.name, &val);
if (rc)
return 0;
if (prop.conversion_func)
prop.conversion_func(&val);
rc = regmap_write(data->regmap, prop.reg, val);
if (rc) {
dev_err(data->dev, "Error (%d) setting property (%s)\n",
rc, prop.name);
}
return rc;
}
static int vcnl3020_init(struct vcnl3020_data *data)
{
int rc;
unsigned int reg;
rc = regmap_read(data->regmap, VCNL_PROD_REV, &reg);
if (rc) {
dev_err(data->dev,
"Error (%d) reading product revision\n", rc);
return rc;
}
if (reg != VCNL3020_PROD_ID) {
dev_err(data->dev,
"Product id (%x) did not match vcnl3020 (%x)\n", reg,
VCNL3020_PROD_ID);
return -ENODEV;
}
data->rev = reg;
mutex_init(&data->lock);
return vcnl3020_get_and_apply_property(data,
vcnl3020_led_current_property);
};
static bool vcnl3020_is_in_periodic_mode(struct vcnl3020_data *data)
{
int rc;
unsigned int cmd;
rc = regmap_read(data->regmap, VCNL_COMMAND, &cmd);
if (rc) {
dev_err(data->dev,
"Error (%d) reading command register\n", rc);
return false;
}
return !!(cmd & VCNL_PS_SELFTIMED_EN);
}
static int vcnl3020_measure_proximity(struct vcnl3020_data *data, int *val)
{
int rc;
unsigned int reg;
mutex_lock(&data->lock);
/* Protect against event capture. */
if (vcnl3020_is_in_periodic_mode(data)) {
rc = -EBUSY;
goto err_unlock;
}
rc = regmap_write(data->regmap, VCNL_COMMAND, VCNL_PS_OD);
if (rc)
goto err_unlock;
/* wait for data to become ready */
rc = regmap_read_poll_timeout(data->regmap, VCNL_COMMAND, reg,
reg & VCNL_PS_RDY, VCNL_POLL_US,
VCNL_ON_DEMAND_TIMEOUT_US);
if (rc) {
dev_err(data->dev,
"Error (%d) reading vcnl3020 command register\n", rc);
goto err_unlock;
}
/* high & low result bytes read */
rc = regmap_bulk_read(data->regmap, VCNL_PS_RESULT_HI, &data->buf,
sizeof(data->buf));
if (rc)
goto err_unlock;
*val = be16_to_cpu(data->buf);
err_unlock:
mutex_unlock(&data->lock);
return rc;
}
static int vcnl3020_read_proxy_samp_freq(struct vcnl3020_data *data, int *val,
int *val2)
{
int rc;
unsigned int prox_rate;
rc = regmap_read(data->regmap, VCNL_PROXIMITY_RATE, &prox_rate);
if (rc)
return rc;
if (prox_rate >= ARRAY_SIZE(vcnl3020_prox_sampling_frequency))
return -EINVAL;
*val = vcnl3020_prox_sampling_frequency[prox_rate][0];
*val2 = vcnl3020_prox_sampling_frequency[prox_rate][1];
return 0;
}
static int vcnl3020_write_proxy_samp_freq(struct vcnl3020_data *data, int val,
int val2)
{
unsigned int i;
int index = -1;
int rc;
mutex_lock(&data->lock);
/* Protect against event capture. */
if (vcnl3020_is_in_periodic_mode(data)) {
rc = -EBUSY;
goto err_unlock;
}
for (i = 0; i < ARRAY_SIZE(vcnl3020_prox_sampling_frequency); i++) {
if (val == vcnl3020_prox_sampling_frequency[i][0] &&
val2 == vcnl3020_prox_sampling_frequency[i][1]) {
index = i;
break;
}
}
if (index < 0) {
rc = -EINVAL;
goto err_unlock;
}
rc = regmap_write(data->regmap, VCNL_PROXIMITY_RATE, index);
if (rc)
dev_err(data->dev,
"Error (%d) writing proximity rate register\n", rc);
err_unlock:
mutex_unlock(&data->lock);
return rc;
}
static bool vcnl3020_is_thr_enabled(struct vcnl3020_data *data)
{
int rc;
unsigned int icr;
rc = regmap_read(data->regmap, VCNL_PS_ICR, &icr);
if (rc) {
dev_err(data->dev,
"Error (%d) reading ICR register\n", rc);
return false;
}
return !!(icr & VCNL_ICR_THRES_EN);
}
static int vcnl3020_read_event(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
enum iio_event_type type,
enum iio_event_direction dir,
enum iio_event_info info,
int *val, int *val2)
{
int rc;
struct vcnl3020_data *data = iio_priv(indio_dev);
switch (info) {
case IIO_EV_INFO_VALUE:
switch (dir) {
case IIO_EV_DIR_RISING:
rc = regmap_bulk_read(data->regmap, VCNL_PS_HI_THR_HI,
&data->buf, sizeof(data->buf));
if (rc < 0)
return rc;
*val = be16_to_cpu(data->buf);
return IIO_VAL_INT;
case IIO_EV_DIR_FALLING:
rc = regmap_bulk_read(data->regmap, VCNL_PS_LO_THR_HI,
&data->buf, sizeof(data->buf));
if (rc < 0)
return rc;
*val = be16_to_cpu(data->buf);
return IIO_VAL_INT;
default:
return -EINVAL;
}
default:
return -EINVAL;
}
}
static int vcnl3020_write_event(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
enum iio_event_type type,
enum iio_event_direction dir,
enum iio_event_info info,
int val, int val2)
{
int rc;
struct vcnl3020_data *data = iio_priv(indio_dev);
mutex_lock(&data->lock);
switch (info) {
case IIO_EV_INFO_VALUE:
switch (dir) {
case IIO_EV_DIR_RISING:
/* 16 bit word/ low * high */
data->buf = cpu_to_be16(val);
rc = regmap_bulk_write(data->regmap, VCNL_PS_HI_THR_HI,
&data->buf, sizeof(data->buf));
if (rc < 0)
goto err_unlock;
rc = IIO_VAL_INT;
goto err_unlock;
case IIO_EV_DIR_FALLING:
data->buf = cpu_to_be16(val);
rc = regmap_bulk_write(data->regmap, VCNL_PS_LO_THR_HI,
&data->buf, sizeof(data->buf));
if (rc < 0)
goto err_unlock;
rc = IIO_VAL_INT;
goto err_unlock;
default:
rc = -EINVAL;
goto err_unlock;
}
default:
rc = -EINVAL;
goto err_unlock;
}
err_unlock:
mutex_unlock(&data->lock);
return rc;
}
static int vcnl3020_enable_periodic(struct iio_dev *indio_dev,
struct vcnl3020_data *data)
{
int rc;
int cmd;
mutex_lock(&data->lock);
/* Enable periodic measurement of proximity data. */
cmd = VCNL_PS_EN | VCNL_PS_SELFTIMED_EN;
rc = regmap_write(data->regmap, VCNL_COMMAND, cmd);
if (rc) {
dev_err(data->dev,
"Error (%d) writing command register\n", rc);
goto err_unlock;
}
/*
* Enable interrupts on threshold, for proximity data by
* default.
*/
rc = regmap_write(data->regmap, VCNL_PS_ICR, VCNL_ICR_THRES_EN);
if (rc)
dev_err(data->dev,
"Error (%d) reading ICR register\n", rc);
err_unlock:
mutex_unlock(&data->lock);
return rc;
}
static int vcnl3020_disable_periodic(struct iio_dev *indio_dev,
struct vcnl3020_data *data)
{
int rc;
mutex_lock(&data->lock);
rc = regmap_write(data->regmap, VCNL_COMMAND, 0);
if (rc) {
dev_err(data->dev,
"Error (%d) writing command register\n", rc);
goto err_unlock;
}
rc = regmap_write(data->regmap, VCNL_PS_ICR, 0);
if (rc) {
dev_err(data->dev,
"Error (%d) writing ICR register\n", rc);
goto err_unlock;
}
/* Clear interrupt flag bit */
rc = regmap_write(data->regmap, VCNL_ISR, 0);
if (rc)
dev_err(data->dev,
"Error (%d) writing ISR register\n", rc);
err_unlock:
mutex_unlock(&data->lock);
return rc;
}
static int vcnl3020_config_threshold(struct iio_dev *indio_dev, bool state)
{
struct vcnl3020_data *data = iio_priv(indio_dev);
if (state) {
return vcnl3020_enable_periodic(indio_dev, data);
} else {
if (!vcnl3020_is_thr_enabled(data))
return 0;
return vcnl3020_disable_periodic(indio_dev, data);
}
}
static int vcnl3020_write_event_config(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
enum iio_event_type type,
enum iio_event_direction dir,
int state)
{
switch (chan->type) {
case IIO_PROXIMITY:
return vcnl3020_config_threshold(indio_dev, state);
default:
return -EINVAL;
}
}
static int vcnl3020_read_event_config(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
enum iio_event_type type,
enum iio_event_direction dir)
{
struct vcnl3020_data *data = iio_priv(indio_dev);
switch (chan->type) {
case IIO_PROXIMITY:
return vcnl3020_is_thr_enabled(data);
default:
return -EINVAL;
}
}
static const struct iio_event_spec vcnl3020_event_spec[] = {
{
.type = IIO_EV_TYPE_THRESH,
.dir = IIO_EV_DIR_RISING,
.mask_separate = BIT(IIO_EV_INFO_VALUE),
}, {
.type = IIO_EV_TYPE_THRESH,
.dir = IIO_EV_DIR_FALLING,
.mask_separate = BIT(IIO_EV_INFO_VALUE),
}, {
.type = IIO_EV_TYPE_THRESH,
.dir = IIO_EV_DIR_EITHER,
.mask_separate = BIT(IIO_EV_INFO_ENABLE),
},
};
static const struct iio_chan_spec vcnl3020_channels[] = {
{
.type = IIO_PROXIMITY,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_SAMP_FREQ),
.info_mask_separate_available = BIT(IIO_CHAN_INFO_SAMP_FREQ),
.event_spec = vcnl3020_event_spec,
.num_event_specs = ARRAY_SIZE(vcnl3020_event_spec),
},
};
static int vcnl3020_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan, int *val,
int *val2, long mask)
{
int rc;
struct vcnl3020_data *data = iio_priv(indio_dev);
switch (mask) {
case IIO_CHAN_INFO_RAW:
rc = vcnl3020_measure_proximity(data, val);
if (rc)
return rc;
return IIO_VAL_INT;
case IIO_CHAN_INFO_SAMP_FREQ:
rc = vcnl3020_read_proxy_samp_freq(data, val, val2);
if (rc < 0)
return rc;
return IIO_VAL_INT_PLUS_MICRO;
default:
return -EINVAL;
}
}
static int vcnl3020_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int val, int val2, long mask)
{
struct vcnl3020_data *data = iio_priv(indio_dev);
switch (mask) {
case IIO_CHAN_INFO_SAMP_FREQ:
return vcnl3020_write_proxy_samp_freq(data, val, val2);
default:
return -EINVAL;
}
}
static int vcnl3020_read_avail(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
const int **vals, int *type, int *length,
long mask)
{
switch (mask) {
case IIO_CHAN_INFO_SAMP_FREQ:
*vals = (int *)vcnl3020_prox_sampling_frequency;
*type = IIO_VAL_INT_PLUS_MICRO;
*length = 2 * ARRAY_SIZE(vcnl3020_prox_sampling_frequency);
return IIO_AVAIL_LIST;
default:
return -EINVAL;
}
}
static const struct iio_info vcnl3020_info = {
.read_raw = vcnl3020_read_raw,
.write_raw = vcnl3020_write_raw,
.read_avail = vcnl3020_read_avail,
.read_event_value = vcnl3020_read_event,
.write_event_value = vcnl3020_write_event,
.read_event_config = vcnl3020_read_event_config,
.write_event_config = vcnl3020_write_event_config,
};
static const struct regmap_config vcnl3020_regmap_config = {
.reg_bits = 8,
.val_bits = 8,
.max_register = VCNL_PS_MOD_ADJ,
};
static irqreturn_t vcnl3020_handle_irq_thread(int irq, void *p)
{
struct iio_dev *indio_dev = p;
struct vcnl3020_data *data = iio_priv(indio_dev);
unsigned int isr;
int rc;
rc = regmap_read(data->regmap, VCNL_ISR, &isr);
if (rc) {
dev_err(data->dev, "Error (%d) reading reg (0x%x)\n",
rc, VCNL_ISR);
return IRQ_HANDLED;
}
if (!(isr & VCNL_ICR_THRES_EN))
return IRQ_NONE;
iio_push_event(indio_dev,
IIO_UNMOD_EVENT_CODE(IIO_PROXIMITY, 1,
IIO_EV_TYPE_THRESH,
IIO_EV_DIR_RISING),
iio_get_time_ns(indio_dev));
rc = regmap_write(data->regmap, VCNL_ISR, isr & VCNL_ICR_THRES_EN);
if (rc)
dev_err(data->dev, "Error (%d) writing in reg (0x%x)\n",
rc, VCNL_ISR);
return IRQ_HANDLED;
}
static int vcnl3020_probe(struct i2c_client *client)
{
struct vcnl3020_data *data;
struct iio_dev *indio_dev;
struct regmap *regmap;
int rc;
regmap = devm_regmap_init_i2c(client, &vcnl3020_regmap_config);
if (IS_ERR(regmap)) {
dev_err(&client->dev, "regmap_init failed\n");
return PTR_ERR(regmap);
}
indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data));
if (!indio_dev)
return -ENOMEM;
data = iio_priv(indio_dev);
i2c_set_clientdata(client, indio_dev);
data->regmap = regmap;
data->dev = &client->dev;
rc = vcnl3020_init(data);
if (rc)
return rc;
indio_dev->info = &vcnl3020_info;
indio_dev->channels = vcnl3020_channels;
indio_dev->num_channels = ARRAY_SIZE(vcnl3020_channels);
indio_dev->name = "vcnl3020";
indio_dev->modes = INDIO_DIRECT_MODE;
if (client->irq) {
rc = devm_request_threaded_irq(&client->dev, client->irq,
NULL, vcnl3020_handle_irq_thread,
IRQF_ONESHOT, indio_dev->name,
indio_dev);
if (rc) {
dev_err(&client->dev,
"Error (%d) irq request failed (%u)\n", rc,
client->irq);
return rc;
}
}
return devm_iio_device_register(&client->dev, indio_dev);
}
static const struct of_device_id vcnl3020_of_match[] = {
{
.compatible = "vishay,vcnl3020",
},
{}
};
MODULE_DEVICE_TABLE(of, vcnl3020_of_match);
static struct i2c_driver vcnl3020_driver = {
.driver = {
.name = "vcnl3020",
.of_match_table = vcnl3020_of_match,
},
.probe_new = vcnl3020_probe,
};
module_i2c_driver(vcnl3020_driver);
MODULE_AUTHOR("Ivan Mikhaylov <i.mikhaylov@yadro.com>");
MODULE_DESCRIPTION("Vishay VCNL3020 proximity sensor driver");
MODULE_LICENSE("GPL");