linux-zen-server/drivers/infiniband/hw/irdma/hmc.c

698 lines
20 KiB
C

// SPDX-License-Identifier: GPL-2.0 or Linux-OpenIB
/* Copyright (c) 2015 - 2021 Intel Corporation */
#include "osdep.h"
#include "hmc.h"
#include "defs.h"
#include "type.h"
#include "protos.h"
/**
* irdma_find_sd_index_limit - finds segment descriptor index limit
* @hmc_info: pointer to the HMC configuration information structure
* @type: type of HMC resources we're searching
* @idx: starting index for the object
* @cnt: number of objects we're trying to create
* @sd_idx: pointer to return index of the segment descriptor in question
* @sd_limit: pointer to return the maximum number of segment descriptors
*
* This function calculates the segment descriptor index and index limit
* for the resource defined by irdma_hmc_rsrc_type.
*/
static void irdma_find_sd_index_limit(struct irdma_hmc_info *hmc_info, u32 type,
u32 idx, u32 cnt, u32 *sd_idx,
u32 *sd_limit)
{
u64 fpm_addr, fpm_limit;
fpm_addr = hmc_info->hmc_obj[(type)].base +
hmc_info->hmc_obj[type].size * idx;
fpm_limit = fpm_addr + hmc_info->hmc_obj[type].size * cnt;
*sd_idx = (u32)(fpm_addr / IRDMA_HMC_DIRECT_BP_SIZE);
*sd_limit = (u32)((fpm_limit - 1) / IRDMA_HMC_DIRECT_BP_SIZE);
*sd_limit += 1;
}
/**
* irdma_find_pd_index_limit - finds page descriptor index limit
* @hmc_info: pointer to the HMC configuration information struct
* @type: HMC resource type we're examining
* @idx: starting index for the object
* @cnt: number of objects we're trying to create
* @pd_idx: pointer to return page descriptor index
* @pd_limit: pointer to return page descriptor index limit
*
* Calculates the page descriptor index and index limit for the resource
* defined by irdma_hmc_rsrc_type.
*/
static void irdma_find_pd_index_limit(struct irdma_hmc_info *hmc_info, u32 type,
u32 idx, u32 cnt, u32 *pd_idx,
u32 *pd_limit)
{
u64 fpm_adr, fpm_limit;
fpm_adr = hmc_info->hmc_obj[type].base +
hmc_info->hmc_obj[type].size * idx;
fpm_limit = fpm_adr + (hmc_info)->hmc_obj[(type)].size * (cnt);
*pd_idx = (u32)(fpm_adr / IRDMA_HMC_PAGED_BP_SIZE);
*pd_limit = (u32)((fpm_limit - 1) / IRDMA_HMC_PAGED_BP_SIZE);
*pd_limit += 1;
}
/**
* irdma_set_sd_entry - setup entry for sd programming
* @pa: physical addr
* @idx: sd index
* @type: paged or direct sd
* @entry: sd entry ptr
*/
static void irdma_set_sd_entry(u64 pa, u32 idx, enum irdma_sd_entry_type type,
struct irdma_update_sd_entry *entry)
{
entry->data = pa |
FIELD_PREP(IRDMA_PFHMC_SDDATALOW_PMSDBPCOUNT, IRDMA_HMC_MAX_BP_COUNT) |
FIELD_PREP(IRDMA_PFHMC_SDDATALOW_PMSDTYPE,
type == IRDMA_SD_TYPE_PAGED ? 0 : 1) |
FIELD_PREP(IRDMA_PFHMC_SDDATALOW_PMSDVALID, 1);
entry->cmd = idx | FIELD_PREP(IRDMA_PFHMC_SDCMD_PMSDWR, 1) | BIT(15);
}
/**
* irdma_clr_sd_entry - setup entry for sd clear
* @idx: sd index
* @type: paged or direct sd
* @entry: sd entry ptr
*/
static void irdma_clr_sd_entry(u32 idx, enum irdma_sd_entry_type type,
struct irdma_update_sd_entry *entry)
{
entry->data = FIELD_PREP(IRDMA_PFHMC_SDDATALOW_PMSDBPCOUNT, IRDMA_HMC_MAX_BP_COUNT) |
FIELD_PREP(IRDMA_PFHMC_SDDATALOW_PMSDTYPE,
type == IRDMA_SD_TYPE_PAGED ? 0 : 1);
entry->cmd = idx | FIELD_PREP(IRDMA_PFHMC_SDCMD_PMSDWR, 1) | BIT(15);
}
/**
* irdma_invalidate_pf_hmc_pd - Invalidates the pd cache in the hardware for PF
* @dev: pointer to our device struct
* @sd_idx: segment descriptor index
* @pd_idx: page descriptor index
*/
static inline void irdma_invalidate_pf_hmc_pd(struct irdma_sc_dev *dev, u32 sd_idx,
u32 pd_idx)
{
u32 val = FIELD_PREP(IRDMA_PFHMC_PDINV_PMSDIDX, sd_idx) |
FIELD_PREP(IRDMA_PFHMC_PDINV_PMSDPARTSEL, 1) |
FIELD_PREP(IRDMA_PFHMC_PDINV_PMPDIDX, pd_idx);
writel(val, dev->hw_regs[IRDMA_PFHMC_PDINV]);
}
/**
* irdma_hmc_sd_one - setup 1 sd entry for cqp
* @dev: pointer to the device structure
* @hmc_fn_id: hmc's function id
* @pa: physical addr
* @sd_idx: sd index
* @type: paged or direct sd
* @setsd: flag to set or clear sd
*/
int irdma_hmc_sd_one(struct irdma_sc_dev *dev, u8 hmc_fn_id, u64 pa, u32 sd_idx,
enum irdma_sd_entry_type type, bool setsd)
{
struct irdma_update_sds_info sdinfo;
sdinfo.cnt = 1;
sdinfo.hmc_fn_id = hmc_fn_id;
if (setsd)
irdma_set_sd_entry(pa, sd_idx, type, sdinfo.entry);
else
irdma_clr_sd_entry(sd_idx, type, sdinfo.entry);
return dev->cqp->process_cqp_sds(dev, &sdinfo);
}
/**
* irdma_hmc_sd_grp - setup group of sd entries for cqp
* @dev: pointer to the device structure
* @hmc_info: pointer to the HMC configuration information struct
* @sd_index: sd index
* @sd_cnt: number of sd entries
* @setsd: flag to set or clear sd
*/
static int irdma_hmc_sd_grp(struct irdma_sc_dev *dev,
struct irdma_hmc_info *hmc_info, u32 sd_index,
u32 sd_cnt, bool setsd)
{
struct irdma_hmc_sd_entry *sd_entry;
struct irdma_update_sds_info sdinfo = {};
u64 pa;
u32 i;
int ret_code = 0;
sdinfo.hmc_fn_id = hmc_info->hmc_fn_id;
for (i = sd_index; i < sd_index + sd_cnt; i++) {
sd_entry = &hmc_info->sd_table.sd_entry[i];
if (!sd_entry || (!sd_entry->valid && setsd) ||
(sd_entry->valid && !setsd))
continue;
if (setsd) {
pa = (sd_entry->entry_type == IRDMA_SD_TYPE_PAGED) ?
sd_entry->u.pd_table.pd_page_addr.pa :
sd_entry->u.bp.addr.pa;
irdma_set_sd_entry(pa, i, sd_entry->entry_type,
&sdinfo.entry[sdinfo.cnt]);
} else {
irdma_clr_sd_entry(i, sd_entry->entry_type,
&sdinfo.entry[sdinfo.cnt]);
}
sdinfo.cnt++;
if (sdinfo.cnt == IRDMA_MAX_SD_ENTRIES) {
ret_code = dev->cqp->process_cqp_sds(dev, &sdinfo);
if (ret_code) {
ibdev_dbg(to_ibdev(dev),
"HMC: sd_programming failed err=%d\n",
ret_code);
return ret_code;
}
sdinfo.cnt = 0;
}
}
if (sdinfo.cnt)
ret_code = dev->cqp->process_cqp_sds(dev, &sdinfo);
return ret_code;
}
/**
* irdma_hmc_finish_add_sd_reg - program sd entries for objects
* @dev: pointer to the device structure
* @info: create obj info
*/
static int irdma_hmc_finish_add_sd_reg(struct irdma_sc_dev *dev,
struct irdma_hmc_create_obj_info *info)
{
if (info->start_idx >= info->hmc_info->hmc_obj[info->rsrc_type].cnt)
return -EINVAL;
if ((info->start_idx + info->count) >
info->hmc_info->hmc_obj[info->rsrc_type].cnt)
return -EINVAL;
if (!info->add_sd_cnt)
return 0;
return irdma_hmc_sd_grp(dev, info->hmc_info,
info->hmc_info->sd_indexes[0], info->add_sd_cnt,
true);
}
/**
* irdma_sc_create_hmc_obj - allocate backing store for hmc objects
* @dev: pointer to the device structure
* @info: pointer to irdma_hmc_create_obj_info struct
*
* This will allocate memory for PDs and backing pages and populate
* the sd and pd entries.
*/
int irdma_sc_create_hmc_obj(struct irdma_sc_dev *dev,
struct irdma_hmc_create_obj_info *info)
{
struct irdma_hmc_sd_entry *sd_entry;
u32 sd_idx, sd_lmt;
u32 pd_idx = 0, pd_lmt = 0;
u32 pd_idx1 = 0, pd_lmt1 = 0;
u32 i, j;
bool pd_error = false;
int ret_code = 0;
if (info->start_idx >= info->hmc_info->hmc_obj[info->rsrc_type].cnt)
return -EINVAL;
if ((info->start_idx + info->count) >
info->hmc_info->hmc_obj[info->rsrc_type].cnt) {
ibdev_dbg(to_ibdev(dev),
"HMC: error type %u, start = %u, req cnt %u, cnt = %u\n",
info->rsrc_type, info->start_idx, info->count,
info->hmc_info->hmc_obj[info->rsrc_type].cnt);
return -EINVAL;
}
irdma_find_sd_index_limit(info->hmc_info, info->rsrc_type,
info->start_idx, info->count, &sd_idx,
&sd_lmt);
if (sd_idx >= info->hmc_info->sd_table.sd_cnt ||
sd_lmt > info->hmc_info->sd_table.sd_cnt) {
return -EINVAL;
}
irdma_find_pd_index_limit(info->hmc_info, info->rsrc_type,
info->start_idx, info->count, &pd_idx,
&pd_lmt);
for (j = sd_idx; j < sd_lmt; j++) {
ret_code = irdma_add_sd_table_entry(dev->hw, info->hmc_info, j,
info->entry_type,
IRDMA_HMC_DIRECT_BP_SIZE);
if (ret_code)
goto exit_sd_error;
sd_entry = &info->hmc_info->sd_table.sd_entry[j];
if (sd_entry->entry_type == IRDMA_SD_TYPE_PAGED &&
(dev->hmc_info == info->hmc_info &&
info->rsrc_type != IRDMA_HMC_IW_PBLE)) {
pd_idx1 = max(pd_idx, (j * IRDMA_HMC_MAX_BP_COUNT));
pd_lmt1 = min(pd_lmt, (j + 1) * IRDMA_HMC_MAX_BP_COUNT);
for (i = pd_idx1; i < pd_lmt1; i++) {
/* update the pd table entry */
ret_code = irdma_add_pd_table_entry(dev,
info->hmc_info,
i, NULL);
if (ret_code) {
pd_error = true;
break;
}
}
if (pd_error) {
while (i && (i > pd_idx1)) {
irdma_remove_pd_bp(dev, info->hmc_info,
i - 1);
i--;
}
}
}
if (sd_entry->valid)
continue;
info->hmc_info->sd_indexes[info->add_sd_cnt] = (u16)j;
info->add_sd_cnt++;
sd_entry->valid = true;
}
return irdma_hmc_finish_add_sd_reg(dev, info);
exit_sd_error:
while (j && (j > sd_idx)) {
sd_entry = &info->hmc_info->sd_table.sd_entry[j - 1];
switch (sd_entry->entry_type) {
case IRDMA_SD_TYPE_PAGED:
pd_idx1 = max(pd_idx, (j - 1) * IRDMA_HMC_MAX_BP_COUNT);
pd_lmt1 = min(pd_lmt, (j * IRDMA_HMC_MAX_BP_COUNT));
for (i = pd_idx1; i < pd_lmt1; i++)
irdma_prep_remove_pd_page(info->hmc_info, i);
break;
case IRDMA_SD_TYPE_DIRECT:
irdma_prep_remove_pd_page(info->hmc_info, (j - 1));
break;
default:
ret_code = -EINVAL;
break;
}
j--;
}
return ret_code;
}
/**
* irdma_finish_del_sd_reg - delete sd entries for objects
* @dev: pointer to the device structure
* @info: dele obj info
* @reset: true if called before reset
*/
static int irdma_finish_del_sd_reg(struct irdma_sc_dev *dev,
struct irdma_hmc_del_obj_info *info,
bool reset)
{
struct irdma_hmc_sd_entry *sd_entry;
int ret_code = 0;
u32 i, sd_idx;
struct irdma_dma_mem *mem;
if (!reset)
ret_code = irdma_hmc_sd_grp(dev, info->hmc_info,
info->hmc_info->sd_indexes[0],
info->del_sd_cnt, false);
if (ret_code)
ibdev_dbg(to_ibdev(dev), "HMC: error cqp sd sd_grp\n");
for (i = 0; i < info->del_sd_cnt; i++) {
sd_idx = info->hmc_info->sd_indexes[i];
sd_entry = &info->hmc_info->sd_table.sd_entry[sd_idx];
mem = (sd_entry->entry_type == IRDMA_SD_TYPE_PAGED) ?
&sd_entry->u.pd_table.pd_page_addr :
&sd_entry->u.bp.addr;
if (!mem || !mem->va) {
ibdev_dbg(to_ibdev(dev), "HMC: error cqp sd mem\n");
} else {
dma_free_coherent(dev->hw->device, mem->size, mem->va,
mem->pa);
mem->va = NULL;
}
}
return ret_code;
}
/**
* irdma_sc_del_hmc_obj - remove pe hmc objects
* @dev: pointer to the device structure
* @info: pointer to irdma_hmc_del_obj_info struct
* @reset: true if called before reset
*
* This will de-populate the SDs and PDs. It frees
* the memory for PDS and backing storage. After this function is returned,
* caller should deallocate memory allocated previously for
* book-keeping information about PDs and backing storage.
*/
int irdma_sc_del_hmc_obj(struct irdma_sc_dev *dev,
struct irdma_hmc_del_obj_info *info, bool reset)
{
struct irdma_hmc_pd_table *pd_table;
u32 sd_idx, sd_lmt;
u32 pd_idx, pd_lmt, rel_pd_idx;
u32 i, j;
int ret_code = 0;
if (info->start_idx >= info->hmc_info->hmc_obj[info->rsrc_type].cnt) {
ibdev_dbg(to_ibdev(dev),
"HMC: error start_idx[%04d] >= [type %04d].cnt[%04d]\n",
info->start_idx, info->rsrc_type,
info->hmc_info->hmc_obj[info->rsrc_type].cnt);
return -EINVAL;
}
if ((info->start_idx + info->count) >
info->hmc_info->hmc_obj[info->rsrc_type].cnt) {
ibdev_dbg(to_ibdev(dev),
"HMC: error start_idx[%04d] + count %04d >= [type %04d].cnt[%04d]\n",
info->start_idx, info->count, info->rsrc_type,
info->hmc_info->hmc_obj[info->rsrc_type].cnt);
return -EINVAL;
}
irdma_find_pd_index_limit(info->hmc_info, info->rsrc_type,
info->start_idx, info->count, &pd_idx,
&pd_lmt);
for (j = pd_idx; j < pd_lmt; j++) {
sd_idx = j / IRDMA_HMC_PD_CNT_IN_SD;
if (!info->hmc_info->sd_table.sd_entry[sd_idx].valid)
continue;
if (info->hmc_info->sd_table.sd_entry[sd_idx].entry_type !=
IRDMA_SD_TYPE_PAGED)
continue;
rel_pd_idx = j % IRDMA_HMC_PD_CNT_IN_SD;
pd_table = &info->hmc_info->sd_table.sd_entry[sd_idx].u.pd_table;
if (pd_table->pd_entry &&
pd_table->pd_entry[rel_pd_idx].valid) {
ret_code = irdma_remove_pd_bp(dev, info->hmc_info, j);
if (ret_code) {
ibdev_dbg(to_ibdev(dev),
"HMC: remove_pd_bp error\n");
return ret_code;
}
}
}
irdma_find_sd_index_limit(info->hmc_info, info->rsrc_type,
info->start_idx, info->count, &sd_idx,
&sd_lmt);
if (sd_idx >= info->hmc_info->sd_table.sd_cnt ||
sd_lmt > info->hmc_info->sd_table.sd_cnt) {
ibdev_dbg(to_ibdev(dev), "HMC: invalid sd_idx\n");
return -EINVAL;
}
for (i = sd_idx; i < sd_lmt; i++) {
pd_table = &info->hmc_info->sd_table.sd_entry[i].u.pd_table;
if (!info->hmc_info->sd_table.sd_entry[i].valid)
continue;
switch (info->hmc_info->sd_table.sd_entry[i].entry_type) {
case IRDMA_SD_TYPE_DIRECT:
ret_code = irdma_prep_remove_sd_bp(info->hmc_info, i);
if (!ret_code) {
info->hmc_info->sd_indexes[info->del_sd_cnt] =
(u16)i;
info->del_sd_cnt++;
}
break;
case IRDMA_SD_TYPE_PAGED:
ret_code = irdma_prep_remove_pd_page(info->hmc_info, i);
if (ret_code)
break;
if (dev->hmc_info != info->hmc_info &&
info->rsrc_type == IRDMA_HMC_IW_PBLE &&
pd_table->pd_entry) {
kfree(pd_table->pd_entry_virt_mem.va);
pd_table->pd_entry = NULL;
}
info->hmc_info->sd_indexes[info->del_sd_cnt] = (u16)i;
info->del_sd_cnt++;
break;
default:
break;
}
}
return irdma_finish_del_sd_reg(dev, info, reset);
}
/**
* irdma_add_sd_table_entry - Adds a segment descriptor to the table
* @hw: pointer to our hw struct
* @hmc_info: pointer to the HMC configuration information struct
* @sd_index: segment descriptor index to manipulate
* @type: what type of segment descriptor we're manipulating
* @direct_mode_sz: size to alloc in direct mode
*/
int irdma_add_sd_table_entry(struct irdma_hw *hw,
struct irdma_hmc_info *hmc_info, u32 sd_index,
enum irdma_sd_entry_type type, u64 direct_mode_sz)
{
struct irdma_hmc_sd_entry *sd_entry;
struct irdma_dma_mem dma_mem;
u64 alloc_len;
sd_entry = &hmc_info->sd_table.sd_entry[sd_index];
if (!sd_entry->valid) {
if (type == IRDMA_SD_TYPE_PAGED)
alloc_len = IRDMA_HMC_PAGED_BP_SIZE;
else
alloc_len = direct_mode_sz;
/* allocate a 4K pd page or 2M backing page */
dma_mem.size = ALIGN(alloc_len, IRDMA_HMC_PD_BP_BUF_ALIGNMENT);
dma_mem.va = dma_alloc_coherent(hw->device, dma_mem.size,
&dma_mem.pa, GFP_KERNEL);
if (!dma_mem.va)
return -ENOMEM;
if (type == IRDMA_SD_TYPE_PAGED) {
struct irdma_virt_mem *vmem =
&sd_entry->u.pd_table.pd_entry_virt_mem;
vmem->size = sizeof(struct irdma_hmc_pd_entry) * 512;
vmem->va = kzalloc(vmem->size, GFP_KERNEL);
if (!vmem->va) {
dma_free_coherent(hw->device, dma_mem.size,
dma_mem.va, dma_mem.pa);
dma_mem.va = NULL;
return -ENOMEM;
}
sd_entry->u.pd_table.pd_entry = vmem->va;
memcpy(&sd_entry->u.pd_table.pd_page_addr, &dma_mem,
sizeof(sd_entry->u.pd_table.pd_page_addr));
} else {
memcpy(&sd_entry->u.bp.addr, &dma_mem,
sizeof(sd_entry->u.bp.addr));
sd_entry->u.bp.sd_pd_index = sd_index;
}
hmc_info->sd_table.sd_entry[sd_index].entry_type = type;
hmc_info->sd_table.use_cnt++;
}
if (sd_entry->entry_type == IRDMA_SD_TYPE_DIRECT)
sd_entry->u.bp.use_cnt++;
return 0;
}
/**
* irdma_add_pd_table_entry - Adds page descriptor to the specified table
* @dev: pointer to our device structure
* @hmc_info: pointer to the HMC configuration information structure
* @pd_index: which page descriptor index to manipulate
* @rsrc_pg: if not NULL, use preallocated page instead of allocating new one.
*
* This function:
* 1. Initializes the pd entry
* 2. Adds pd_entry in the pd_table
* 3. Mark the entry valid in irdma_hmc_pd_entry structure
* 4. Initializes the pd_entry's ref count to 1
* assumptions:
* 1. The memory for pd should be pinned down, physically contiguous and
* aligned on 4K boundary and zeroed memory.
* 2. It should be 4K in size.
*/
int irdma_add_pd_table_entry(struct irdma_sc_dev *dev,
struct irdma_hmc_info *hmc_info, u32 pd_index,
struct irdma_dma_mem *rsrc_pg)
{
struct irdma_hmc_pd_table *pd_table;
struct irdma_hmc_pd_entry *pd_entry;
struct irdma_dma_mem mem;
struct irdma_dma_mem *page = &mem;
u32 sd_idx, rel_pd_idx;
u64 *pd_addr;
u64 page_desc;
if (pd_index / IRDMA_HMC_PD_CNT_IN_SD >= hmc_info->sd_table.sd_cnt)
return -EINVAL;
sd_idx = (pd_index / IRDMA_HMC_PD_CNT_IN_SD);
if (hmc_info->sd_table.sd_entry[sd_idx].entry_type !=
IRDMA_SD_TYPE_PAGED)
return 0;
rel_pd_idx = (pd_index % IRDMA_HMC_PD_CNT_IN_SD);
pd_table = &hmc_info->sd_table.sd_entry[sd_idx].u.pd_table;
pd_entry = &pd_table->pd_entry[rel_pd_idx];
if (!pd_entry->valid) {
if (rsrc_pg) {
pd_entry->rsrc_pg = true;
page = rsrc_pg;
} else {
page->size = ALIGN(IRDMA_HMC_PAGED_BP_SIZE,
IRDMA_HMC_PD_BP_BUF_ALIGNMENT);
page->va = dma_alloc_coherent(dev->hw->device,
page->size, &page->pa,
GFP_KERNEL);
if (!page->va)
return -ENOMEM;
pd_entry->rsrc_pg = false;
}
memcpy(&pd_entry->bp.addr, page, sizeof(pd_entry->bp.addr));
pd_entry->bp.sd_pd_index = pd_index;
pd_entry->bp.entry_type = IRDMA_SD_TYPE_PAGED;
page_desc = page->pa | 0x1;
pd_addr = pd_table->pd_page_addr.va;
pd_addr += rel_pd_idx;
memcpy(pd_addr, &page_desc, sizeof(*pd_addr));
pd_entry->sd_index = sd_idx;
pd_entry->valid = true;
pd_table->use_cnt++;
irdma_invalidate_pf_hmc_pd(dev, sd_idx, rel_pd_idx);
}
pd_entry->bp.use_cnt++;
return 0;
}
/**
* irdma_remove_pd_bp - remove a backing page from a page descriptor
* @dev: pointer to our HW structure
* @hmc_info: pointer to the HMC configuration information structure
* @idx: the page index
*
* This function:
* 1. Marks the entry in pd table (for paged address mode) or in sd table
* (for direct address mode) invalid.
* 2. Write to register PMPDINV to invalidate the backing page in FV cache
* 3. Decrement the ref count for the pd _entry
* assumptions:
* 1. Caller can deallocate the memory used by backing storage after this
* function returns.
*/
int irdma_remove_pd_bp(struct irdma_sc_dev *dev,
struct irdma_hmc_info *hmc_info, u32 idx)
{
struct irdma_hmc_pd_entry *pd_entry;
struct irdma_hmc_pd_table *pd_table;
struct irdma_hmc_sd_entry *sd_entry;
u32 sd_idx, rel_pd_idx;
struct irdma_dma_mem *mem;
u64 *pd_addr;
sd_idx = idx / IRDMA_HMC_PD_CNT_IN_SD;
rel_pd_idx = idx % IRDMA_HMC_PD_CNT_IN_SD;
if (sd_idx >= hmc_info->sd_table.sd_cnt)
return -EINVAL;
sd_entry = &hmc_info->sd_table.sd_entry[sd_idx];
if (sd_entry->entry_type != IRDMA_SD_TYPE_PAGED)
return -EINVAL;
pd_table = &hmc_info->sd_table.sd_entry[sd_idx].u.pd_table;
pd_entry = &pd_table->pd_entry[rel_pd_idx];
if (--pd_entry->bp.use_cnt)
return 0;
pd_entry->valid = false;
pd_table->use_cnt--;
pd_addr = pd_table->pd_page_addr.va;
pd_addr += rel_pd_idx;
memset(pd_addr, 0, sizeof(u64));
irdma_invalidate_pf_hmc_pd(dev, sd_idx, idx);
if (!pd_entry->rsrc_pg) {
mem = &pd_entry->bp.addr;
if (!mem || !mem->va)
return -EINVAL;
dma_free_coherent(dev->hw->device, mem->size, mem->va,
mem->pa);
mem->va = NULL;
}
if (!pd_table->use_cnt)
kfree(pd_table->pd_entry_virt_mem.va);
return 0;
}
/**
* irdma_prep_remove_sd_bp - Prepares to remove a backing page from a sd entry
* @hmc_info: pointer to the HMC configuration information structure
* @idx: the page index
*/
int irdma_prep_remove_sd_bp(struct irdma_hmc_info *hmc_info, u32 idx)
{
struct irdma_hmc_sd_entry *sd_entry;
sd_entry = &hmc_info->sd_table.sd_entry[idx];
if (--sd_entry->u.bp.use_cnt)
return -EBUSY;
hmc_info->sd_table.use_cnt--;
sd_entry->valid = false;
return 0;
}
/**
* irdma_prep_remove_pd_page - Prepares to remove a PD page from sd entry.
* @hmc_info: pointer to the HMC configuration information structure
* @idx: segment descriptor index to find the relevant page descriptor
*/
int irdma_prep_remove_pd_page(struct irdma_hmc_info *hmc_info, u32 idx)
{
struct irdma_hmc_sd_entry *sd_entry;
sd_entry = &hmc_info->sd_table.sd_entry[idx];
if (sd_entry->u.pd_table.use_cnt)
return -EBUSY;
sd_entry->valid = false;
hmc_info->sd_table.use_cnt--;
return 0;
}