linux-zen-server/drivers/net/ethernet/intel/e100.c

3197 lines
91 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* Copyright(c) 1999 - 2006 Intel Corporation. */
/*
* e100.c: Intel(R) PRO/100 ethernet driver
*
* (Re)written 2003 by scott.feldman@intel.com. Based loosely on
* original e100 driver, but better described as a munging of
* e100, e1000, eepro100, tg3, 8139cp, and other drivers.
*
* References:
* Intel 8255x 10/100 Mbps Ethernet Controller Family,
* Open Source Software Developers Manual,
* http://sourceforge.net/projects/e1000
*
*
* Theory of Operation
*
* I. General
*
* The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet
* controller family, which includes the 82557, 82558, 82559, 82550,
* 82551, and 82562 devices. 82558 and greater controllers
* integrate the Intel 82555 PHY. The controllers are used in
* server and client network interface cards, as well as in
* LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx
* configurations. 8255x supports a 32-bit linear addressing
* mode and operates at 33Mhz PCI clock rate.
*
* II. Driver Operation
*
* Memory-mapped mode is used exclusively to access the device's
* shared-memory structure, the Control/Status Registers (CSR). All
* setup, configuration, and control of the device, including queuing
* of Tx, Rx, and configuration commands is through the CSR.
* cmd_lock serializes accesses to the CSR command register. cb_lock
* protects the shared Command Block List (CBL).
*
* 8255x is highly MII-compliant and all access to the PHY go
* through the Management Data Interface (MDI). Consequently, the
* driver leverages the mii.c library shared with other MII-compliant
* devices.
*
* Big- and Little-Endian byte order as well as 32- and 64-bit
* archs are supported. Weak-ordered memory and non-cache-coherent
* archs are supported.
*
* III. Transmit
*
* A Tx skb is mapped and hangs off of a TCB. TCBs are linked
* together in a fixed-size ring (CBL) thus forming the flexible mode
* memory structure. A TCB marked with the suspend-bit indicates
* the end of the ring. The last TCB processed suspends the
* controller, and the controller can be restarted by issue a CU
* resume command to continue from the suspend point, or a CU start
* command to start at a given position in the ring.
*
* Non-Tx commands (config, multicast setup, etc) are linked
* into the CBL ring along with Tx commands. The common structure
* used for both Tx and non-Tx commands is the Command Block (CB).
*
* cb_to_use is the next CB to use for queuing a command; cb_to_clean
* is the next CB to check for completion; cb_to_send is the first
* CB to start on in case of a previous failure to resume. CB clean
* up happens in interrupt context in response to a CU interrupt.
* cbs_avail keeps track of number of free CB resources available.
*
* Hardware padding of short packets to minimum packet size is
* enabled. 82557 pads with 7Eh, while the later controllers pad
* with 00h.
*
* IV. Receive
*
* The Receive Frame Area (RFA) comprises a ring of Receive Frame
* Descriptors (RFD) + data buffer, thus forming the simplified mode
* memory structure. Rx skbs are allocated to contain both the RFD
* and the data buffer, but the RFD is pulled off before the skb is
* indicated. The data buffer is aligned such that encapsulated
* protocol headers are u32-aligned. Since the RFD is part of the
* mapped shared memory, and completion status is contained within
* the RFD, the RFD must be dma_sync'ed to maintain a consistent
* view from software and hardware.
*
* In order to keep updates to the RFD link field from colliding with
* hardware writes to mark packets complete, we use the feature that
* hardware will not write to a size 0 descriptor and mark the previous
* packet as end-of-list (EL). After updating the link, we remove EL
* and only then restore the size such that hardware may use the
* previous-to-end RFD.
*
* Under typical operation, the receive unit (RU) is start once,
* and the controller happily fills RFDs as frames arrive. If
* replacement RFDs cannot be allocated, or the RU goes non-active,
* the RU must be restarted. Frame arrival generates an interrupt,
* and Rx indication and re-allocation happen in the same context,
* therefore no locking is required. A software-generated interrupt
* is generated from the watchdog to recover from a failed allocation
* scenario where all Rx resources have been indicated and none re-
* placed.
*
* V. Miscellaneous
*
* VLAN offloading of tagging, stripping and filtering is not
* supported, but driver will accommodate the extra 4-byte VLAN tag
* for processing by upper layers. Tx/Rx Checksum offloading is not
* supported. Tx Scatter/Gather is not supported. Jumbo Frames is
* not supported (hardware limitation).
*
* MagicPacket(tm) WoL support is enabled/disabled via ethtool.
*
* Thanks to JC (jchapman@katalix.com) for helping with
* testing/troubleshooting the development driver.
*
* TODO:
* o several entry points race with dev->close
* o check for tx-no-resources/stop Q races with tx clean/wake Q
*
* FIXES:
* 2005/12/02 - Michael O'Donnell <Michael.ODonnell at stratus dot com>
* - Stratus87247: protect MDI control register manipulations
* 2009/06/01 - Andreas Mohr <andi at lisas dot de>
* - add clean lowlevel I/O emulation for cards with MII-lacking PHYs
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/hardirq.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/dma-mapping.h>
#include <linux/dmapool.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/mii.h>
#include <linux/if_vlan.h>
#include <linux/skbuff.h>
#include <linux/ethtool.h>
#include <linux/string.h>
#include <linux/firmware.h>
#include <linux/rtnetlink.h>
#include <asm/unaligned.h>
#define DRV_NAME "e100"
#define DRV_DESCRIPTION "Intel(R) PRO/100 Network Driver"
#define DRV_COPYRIGHT "Copyright(c) 1999-2006 Intel Corporation"
#define E100_WATCHDOG_PERIOD (2 * HZ)
#define E100_NAPI_WEIGHT 16
#define FIRMWARE_D101M "e100/d101m_ucode.bin"
#define FIRMWARE_D101S "e100/d101s_ucode.bin"
#define FIRMWARE_D102E "e100/d102e_ucode.bin"
MODULE_DESCRIPTION(DRV_DESCRIPTION);
MODULE_AUTHOR(DRV_COPYRIGHT);
MODULE_LICENSE("GPL v2");
MODULE_FIRMWARE(FIRMWARE_D101M);
MODULE_FIRMWARE(FIRMWARE_D101S);
MODULE_FIRMWARE(FIRMWARE_D102E);
static int debug = 3;
static int eeprom_bad_csum_allow = 0;
static int use_io = 0;
module_param(debug, int, 0);
module_param(eeprom_bad_csum_allow, int, 0);
module_param(use_io, int, 0);
MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
MODULE_PARM_DESC(eeprom_bad_csum_allow, "Allow bad eeprom checksums");
MODULE_PARM_DESC(use_io, "Force use of i/o access mode");
#define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\
PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \
PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich }
static const struct pci_device_id e100_id_table[] = {
INTEL_8255X_ETHERNET_DEVICE(0x1029, 0),
INTEL_8255X_ETHERNET_DEVICE(0x1030, 0),
INTEL_8255X_ETHERNET_DEVICE(0x1031, 3),
INTEL_8255X_ETHERNET_DEVICE(0x1032, 3),
INTEL_8255X_ETHERNET_DEVICE(0x1033, 3),
INTEL_8255X_ETHERNET_DEVICE(0x1034, 3),
INTEL_8255X_ETHERNET_DEVICE(0x1038, 3),
INTEL_8255X_ETHERNET_DEVICE(0x1039, 4),
INTEL_8255X_ETHERNET_DEVICE(0x103A, 4),
INTEL_8255X_ETHERNET_DEVICE(0x103B, 4),
INTEL_8255X_ETHERNET_DEVICE(0x103C, 4),
INTEL_8255X_ETHERNET_DEVICE(0x103D, 4),
INTEL_8255X_ETHERNET_DEVICE(0x103E, 4),
INTEL_8255X_ETHERNET_DEVICE(0x1050, 5),
INTEL_8255X_ETHERNET_DEVICE(0x1051, 5),
INTEL_8255X_ETHERNET_DEVICE(0x1052, 5),
INTEL_8255X_ETHERNET_DEVICE(0x1053, 5),
INTEL_8255X_ETHERNET_DEVICE(0x1054, 5),
INTEL_8255X_ETHERNET_DEVICE(0x1055, 5),
INTEL_8255X_ETHERNET_DEVICE(0x1056, 5),
INTEL_8255X_ETHERNET_DEVICE(0x1057, 5),
INTEL_8255X_ETHERNET_DEVICE(0x1059, 0),
INTEL_8255X_ETHERNET_DEVICE(0x1064, 6),
INTEL_8255X_ETHERNET_DEVICE(0x1065, 6),
INTEL_8255X_ETHERNET_DEVICE(0x1066, 6),
INTEL_8255X_ETHERNET_DEVICE(0x1067, 6),
INTEL_8255X_ETHERNET_DEVICE(0x1068, 6),
INTEL_8255X_ETHERNET_DEVICE(0x1069, 6),
INTEL_8255X_ETHERNET_DEVICE(0x106A, 6),
INTEL_8255X_ETHERNET_DEVICE(0x106B, 6),
INTEL_8255X_ETHERNET_DEVICE(0x1091, 7),
INTEL_8255X_ETHERNET_DEVICE(0x1092, 7),
INTEL_8255X_ETHERNET_DEVICE(0x1093, 7),
INTEL_8255X_ETHERNET_DEVICE(0x1094, 7),
INTEL_8255X_ETHERNET_DEVICE(0x1095, 7),
INTEL_8255X_ETHERNET_DEVICE(0x10fe, 7),
INTEL_8255X_ETHERNET_DEVICE(0x1209, 0),
INTEL_8255X_ETHERNET_DEVICE(0x1229, 0),
INTEL_8255X_ETHERNET_DEVICE(0x2449, 2),
INTEL_8255X_ETHERNET_DEVICE(0x2459, 2),
INTEL_8255X_ETHERNET_DEVICE(0x245D, 2),
INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7),
{ 0, }
};
MODULE_DEVICE_TABLE(pci, e100_id_table);
enum mac {
mac_82557_D100_A = 0,
mac_82557_D100_B = 1,
mac_82557_D100_C = 2,
mac_82558_D101_A4 = 4,
mac_82558_D101_B0 = 5,
mac_82559_D101M = 8,
mac_82559_D101S = 9,
mac_82550_D102 = 12,
mac_82550_D102_C = 13,
mac_82551_E = 14,
mac_82551_F = 15,
mac_82551_10 = 16,
mac_unknown = 0xFF,
};
enum phy {
phy_100a = 0x000003E0,
phy_100c = 0x035002A8,
phy_82555_tx = 0x015002A8,
phy_nsc_tx = 0x5C002000,
phy_82562_et = 0x033002A8,
phy_82562_em = 0x032002A8,
phy_82562_ek = 0x031002A8,
phy_82562_eh = 0x017002A8,
phy_82552_v = 0xd061004d,
phy_unknown = 0xFFFFFFFF,
};
/* CSR (Control/Status Registers) */
struct csr {
struct {
u8 status;
u8 stat_ack;
u8 cmd_lo;
u8 cmd_hi;
u32 gen_ptr;
} scb;
u32 port;
u16 flash_ctrl;
u8 eeprom_ctrl_lo;
u8 eeprom_ctrl_hi;
u32 mdi_ctrl;
u32 rx_dma_count;
};
enum scb_status {
rus_no_res = 0x08,
rus_ready = 0x10,
rus_mask = 0x3C,
};
enum ru_state {
RU_SUSPENDED = 0,
RU_RUNNING = 1,
RU_UNINITIALIZED = -1,
};
enum scb_stat_ack {
stat_ack_not_ours = 0x00,
stat_ack_sw_gen = 0x04,
stat_ack_rnr = 0x10,
stat_ack_cu_idle = 0x20,
stat_ack_frame_rx = 0x40,
stat_ack_cu_cmd_done = 0x80,
stat_ack_not_present = 0xFF,
stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx),
stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done),
};
enum scb_cmd_hi {
irq_mask_none = 0x00,
irq_mask_all = 0x01,
irq_sw_gen = 0x02,
};
enum scb_cmd_lo {
cuc_nop = 0x00,
ruc_start = 0x01,
ruc_load_base = 0x06,
cuc_start = 0x10,
cuc_resume = 0x20,
cuc_dump_addr = 0x40,
cuc_dump_stats = 0x50,
cuc_load_base = 0x60,
cuc_dump_reset = 0x70,
};
enum cuc_dump {
cuc_dump_complete = 0x0000A005,
cuc_dump_reset_complete = 0x0000A007,
};
enum port {
software_reset = 0x0000,
selftest = 0x0001,
selective_reset = 0x0002,
};
enum eeprom_ctrl_lo {
eesk = 0x01,
eecs = 0x02,
eedi = 0x04,
eedo = 0x08,
};
enum mdi_ctrl {
mdi_write = 0x04000000,
mdi_read = 0x08000000,
mdi_ready = 0x10000000,
};
enum eeprom_op {
op_write = 0x05,
op_read = 0x06,
op_ewds = 0x10,
op_ewen = 0x13,
};
enum eeprom_offsets {
eeprom_cnfg_mdix = 0x03,
eeprom_phy_iface = 0x06,
eeprom_id = 0x0A,
eeprom_config_asf = 0x0D,
eeprom_smbus_addr = 0x90,
};
enum eeprom_cnfg_mdix {
eeprom_mdix_enabled = 0x0080,
};
enum eeprom_phy_iface {
NoSuchPhy = 0,
I82553AB,
I82553C,
I82503,
DP83840,
S80C240,
S80C24,
I82555,
DP83840A = 10,
};
enum eeprom_id {
eeprom_id_wol = 0x0020,
};
enum eeprom_config_asf {
eeprom_asf = 0x8000,
eeprom_gcl = 0x4000,
};
enum cb_status {
cb_complete = 0x8000,
cb_ok = 0x2000,
};
/*
* cb_command - Command Block flags
* @cb_tx_nc: 0: controller does CRC (normal), 1: CRC from skb memory
*/
enum cb_command {
cb_nop = 0x0000,
cb_iaaddr = 0x0001,
cb_config = 0x0002,
cb_multi = 0x0003,
cb_tx = 0x0004,
cb_ucode = 0x0005,
cb_dump = 0x0006,
cb_tx_sf = 0x0008,
cb_tx_nc = 0x0010,
cb_cid = 0x1f00,
cb_i = 0x2000,
cb_s = 0x4000,
cb_el = 0x8000,
};
struct rfd {
__le16 status;
__le16 command;
__le32 link;
__le32 rbd;
__le16 actual_size;
__le16 size;
};
struct rx {
struct rx *next, *prev;
struct sk_buff *skb;
dma_addr_t dma_addr;
};
#if defined(__BIG_ENDIAN_BITFIELD)
#define X(a,b) b,a
#else
#define X(a,b) a,b
#endif
struct config {
/*0*/ u8 X(byte_count:6, pad0:2);
/*1*/ u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1);
/*2*/ u8 adaptive_ifs;
/*3*/ u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1),
term_write_cache_line:1), pad3:4);
/*4*/ u8 X(rx_dma_max_count:7, pad4:1);
/*5*/ u8 X(tx_dma_max_count:7, dma_max_count_enable:1);
/*6*/ u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1),
tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1),
rx_save_overruns : 1), rx_save_bad_frames : 1);
/*7*/ u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2),
pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1),
tx_dynamic_tbd:1);
/*8*/ u8 X(X(mii_mode:1, pad8:6), csma_disabled:1);
/*9*/ u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1),
link_status_wake:1), arp_wake:1), mcmatch_wake:1);
/*10*/ u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2),
loopback:2);
/*11*/ u8 X(linear_priority:3, pad11:5);
/*12*/ u8 X(X(linear_priority_mode:1, pad12:3), ifs:4);
/*13*/ u8 ip_addr_lo;
/*14*/ u8 ip_addr_hi;
/*15*/ u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1),
wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1),
pad15_2:1), crs_or_cdt:1);
/*16*/ u8 fc_delay_lo;
/*17*/ u8 fc_delay_hi;
/*18*/ u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1),
rx_long_ok:1), fc_priority_threshold:3), pad18:1);
/*19*/ u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1),
fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1),
full_duplex_force:1), full_duplex_pin:1);
/*20*/ u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1);
/*21*/ u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4);
/*22*/ u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6);
u8 pad_d102[9];
};
#define E100_MAX_MULTICAST_ADDRS 64
struct multi {
__le16 count;
u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/];
};
/* Important: keep total struct u32-aligned */
#define UCODE_SIZE 134
struct cb {
__le16 status;
__le16 command;
__le32 link;
union {
u8 iaaddr[ETH_ALEN];
__le32 ucode[UCODE_SIZE];
struct config config;
struct multi multi;
struct {
u32 tbd_array;
u16 tcb_byte_count;
u8 threshold;
u8 tbd_count;
struct {
__le32 buf_addr;
__le16 size;
u16 eol;
} tbd;
} tcb;
__le32 dump_buffer_addr;
} u;
struct cb *next, *prev;
dma_addr_t dma_addr;
struct sk_buff *skb;
};
enum loopback {
lb_none = 0, lb_mac = 1, lb_phy = 3,
};
struct stats {
__le32 tx_good_frames, tx_max_collisions, tx_late_collisions,
tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions,
tx_multiple_collisions, tx_total_collisions;
__le32 rx_good_frames, rx_crc_errors, rx_alignment_errors,
rx_resource_errors, rx_overrun_errors, rx_cdt_errors,
rx_short_frame_errors;
__le32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported;
__le16 xmt_tco_frames, rcv_tco_frames;
__le32 complete;
};
struct mem {
struct {
u32 signature;
u32 result;
} selftest;
struct stats stats;
u8 dump_buf[596];
};
struct param_range {
u32 min;
u32 max;
u32 count;
};
struct params {
struct param_range rfds;
struct param_range cbs;
};
struct nic {
/* Begin: frequently used values: keep adjacent for cache effect */
u32 msg_enable ____cacheline_aligned;
struct net_device *netdev;
struct pci_dev *pdev;
u16 (*mdio_ctrl)(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data);
struct rx *rxs ____cacheline_aligned;
struct rx *rx_to_use;
struct rx *rx_to_clean;
struct rfd blank_rfd;
enum ru_state ru_running;
spinlock_t cb_lock ____cacheline_aligned;
spinlock_t cmd_lock;
struct csr __iomem *csr;
enum scb_cmd_lo cuc_cmd;
unsigned int cbs_avail;
struct napi_struct napi;
struct cb *cbs;
struct cb *cb_to_use;
struct cb *cb_to_send;
struct cb *cb_to_clean;
__le16 tx_command;
/* End: frequently used values: keep adjacent for cache effect */
enum {
ich = (1 << 0),
promiscuous = (1 << 1),
multicast_all = (1 << 2),
wol_magic = (1 << 3),
ich_10h_workaround = (1 << 4),
} flags ____cacheline_aligned;
enum mac mac;
enum phy phy;
struct params params;
struct timer_list watchdog;
struct mii_if_info mii;
struct work_struct tx_timeout_task;
enum loopback loopback;
struct mem *mem;
dma_addr_t dma_addr;
struct dma_pool *cbs_pool;
dma_addr_t cbs_dma_addr;
u8 adaptive_ifs;
u8 tx_threshold;
u32 tx_frames;
u32 tx_collisions;
u32 tx_deferred;
u32 tx_single_collisions;
u32 tx_multiple_collisions;
u32 tx_fc_pause;
u32 tx_tco_frames;
u32 rx_fc_pause;
u32 rx_fc_unsupported;
u32 rx_tco_frames;
u32 rx_short_frame_errors;
u32 rx_over_length_errors;
u16 eeprom_wc;
__le16 eeprom[256];
spinlock_t mdio_lock;
const struct firmware *fw;
};
static inline void e100_write_flush(struct nic *nic)
{
/* Flush previous PCI writes through intermediate bridges
* by doing a benign read */
(void)ioread8(&nic->csr->scb.status);
}
static void e100_enable_irq(struct nic *nic)
{
unsigned long flags;
spin_lock_irqsave(&nic->cmd_lock, flags);
iowrite8(irq_mask_none, &nic->csr->scb.cmd_hi);
e100_write_flush(nic);
spin_unlock_irqrestore(&nic->cmd_lock, flags);
}
static void e100_disable_irq(struct nic *nic)
{
unsigned long flags;
spin_lock_irqsave(&nic->cmd_lock, flags);
iowrite8(irq_mask_all, &nic->csr->scb.cmd_hi);
e100_write_flush(nic);
spin_unlock_irqrestore(&nic->cmd_lock, flags);
}
static void e100_hw_reset(struct nic *nic)
{
/* Put CU and RU into idle with a selective reset to get
* device off of PCI bus */
iowrite32(selective_reset, &nic->csr->port);
e100_write_flush(nic); udelay(20);
/* Now fully reset device */
iowrite32(software_reset, &nic->csr->port);
e100_write_flush(nic); udelay(20);
/* Mask off our interrupt line - it's unmasked after reset */
e100_disable_irq(nic);
}
static int e100_self_test(struct nic *nic)
{
u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest);
/* Passing the self-test is a pretty good indication
* that the device can DMA to/from host memory */
nic->mem->selftest.signature = 0;
nic->mem->selftest.result = 0xFFFFFFFF;
iowrite32(selftest | dma_addr, &nic->csr->port);
e100_write_flush(nic);
/* Wait 10 msec for self-test to complete */
msleep(10);
/* Interrupts are enabled after self-test */
e100_disable_irq(nic);
/* Check results of self-test */
if (nic->mem->selftest.result != 0) {
netif_err(nic, hw, nic->netdev,
"Self-test failed: result=0x%08X\n",
nic->mem->selftest.result);
return -ETIMEDOUT;
}
if (nic->mem->selftest.signature == 0) {
netif_err(nic, hw, nic->netdev, "Self-test failed: timed out\n");
return -ETIMEDOUT;
}
return 0;
}
static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, __le16 data)
{
u32 cmd_addr_data[3];
u8 ctrl;
int i, j;
/* Three cmds: write/erase enable, write data, write/erase disable */
cmd_addr_data[0] = op_ewen << (addr_len - 2);
cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) |
le16_to_cpu(data);
cmd_addr_data[2] = op_ewds << (addr_len - 2);
/* Bit-bang cmds to write word to eeprom */
for (j = 0; j < 3; j++) {
/* Chip select */
iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
e100_write_flush(nic); udelay(4);
for (i = 31; i >= 0; i--) {
ctrl = (cmd_addr_data[j] & (1 << i)) ?
eecs | eedi : eecs;
iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
e100_write_flush(nic); udelay(4);
iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
e100_write_flush(nic); udelay(4);
}
/* Wait 10 msec for cmd to complete */
msleep(10);
/* Chip deselect */
iowrite8(0, &nic->csr->eeprom_ctrl_lo);
e100_write_flush(nic); udelay(4);
}
};
/* General technique stolen from the eepro100 driver - very clever */
static __le16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr)
{
u32 cmd_addr_data;
u16 data = 0;
u8 ctrl;
int i;
cmd_addr_data = ((op_read << *addr_len) | addr) << 16;
/* Chip select */
iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
e100_write_flush(nic); udelay(4);
/* Bit-bang to read word from eeprom */
for (i = 31; i >= 0; i--) {
ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs;
iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
e100_write_flush(nic); udelay(4);
iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
e100_write_flush(nic); udelay(4);
/* Eeprom drives a dummy zero to EEDO after receiving
* complete address. Use this to adjust addr_len. */
ctrl = ioread8(&nic->csr->eeprom_ctrl_lo);
if (!(ctrl & eedo) && i > 16) {
*addr_len -= (i - 16);
i = 17;
}
data = (data << 1) | (ctrl & eedo ? 1 : 0);
}
/* Chip deselect */
iowrite8(0, &nic->csr->eeprom_ctrl_lo);
e100_write_flush(nic); udelay(4);
return cpu_to_le16(data);
};
/* Load entire EEPROM image into driver cache and validate checksum */
static int e100_eeprom_load(struct nic *nic)
{
u16 addr, addr_len = 8, checksum = 0;
/* Try reading with an 8-bit addr len to discover actual addr len */
e100_eeprom_read(nic, &addr_len, 0);
nic->eeprom_wc = 1 << addr_len;
for (addr = 0; addr < nic->eeprom_wc; addr++) {
nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr);
if (addr < nic->eeprom_wc - 1)
checksum += le16_to_cpu(nic->eeprom[addr]);
}
/* The checksum, stored in the last word, is calculated such that
* the sum of words should be 0xBABA */
if (cpu_to_le16(0xBABA - checksum) != nic->eeprom[nic->eeprom_wc - 1]) {
netif_err(nic, probe, nic->netdev, "EEPROM corrupted\n");
if (!eeprom_bad_csum_allow)
return -EAGAIN;
}
return 0;
}
/* Save (portion of) driver EEPROM cache to device and update checksum */
static int e100_eeprom_save(struct nic *nic, u16 start, u16 count)
{
u16 addr, addr_len = 8, checksum = 0;
/* Try reading with an 8-bit addr len to discover actual addr len */
e100_eeprom_read(nic, &addr_len, 0);
nic->eeprom_wc = 1 << addr_len;
if (start + count >= nic->eeprom_wc)
return -EINVAL;
for (addr = start; addr < start + count; addr++)
e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]);
/* The checksum, stored in the last word, is calculated such that
* the sum of words should be 0xBABA */
for (addr = 0; addr < nic->eeprom_wc - 1; addr++)
checksum += le16_to_cpu(nic->eeprom[addr]);
nic->eeprom[nic->eeprom_wc - 1] = cpu_to_le16(0xBABA - checksum);
e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1,
nic->eeprom[nic->eeprom_wc - 1]);
return 0;
}
#define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */
#define E100_WAIT_SCB_FAST 20 /* delay like the old code */
static int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr)
{
unsigned long flags;
unsigned int i;
int err = 0;
spin_lock_irqsave(&nic->cmd_lock, flags);
/* Previous command is accepted when SCB clears */
for (i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) {
if (likely(!ioread8(&nic->csr->scb.cmd_lo)))
break;
cpu_relax();
if (unlikely(i > E100_WAIT_SCB_FAST))
udelay(5);
}
if (unlikely(i == E100_WAIT_SCB_TIMEOUT)) {
err = -EAGAIN;
goto err_unlock;
}
if (unlikely(cmd != cuc_resume))
iowrite32(dma_addr, &nic->csr->scb.gen_ptr);
iowrite8(cmd, &nic->csr->scb.cmd_lo);
err_unlock:
spin_unlock_irqrestore(&nic->cmd_lock, flags);
return err;
}
static int e100_exec_cb(struct nic *nic, struct sk_buff *skb,
int (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *))
{
struct cb *cb;
unsigned long flags;
int err;
spin_lock_irqsave(&nic->cb_lock, flags);
if (unlikely(!nic->cbs_avail)) {
err = -ENOMEM;
goto err_unlock;
}
cb = nic->cb_to_use;
nic->cb_to_use = cb->next;
nic->cbs_avail--;
cb->skb = skb;
err = cb_prepare(nic, cb, skb);
if (err)
goto err_unlock;
if (unlikely(!nic->cbs_avail))
err = -ENOSPC;
/* Order is important otherwise we'll be in a race with h/w:
* set S-bit in current first, then clear S-bit in previous. */
cb->command |= cpu_to_le16(cb_s);
dma_wmb();
cb->prev->command &= cpu_to_le16(~cb_s);
while (nic->cb_to_send != nic->cb_to_use) {
if (unlikely(e100_exec_cmd(nic, nic->cuc_cmd,
nic->cb_to_send->dma_addr))) {
/* Ok, here's where things get sticky. It's
* possible that we can't schedule the command
* because the controller is too busy, so
* let's just queue the command and try again
* when another command is scheduled. */
if (err == -ENOSPC) {
//request a reset
schedule_work(&nic->tx_timeout_task);
}
break;
} else {
nic->cuc_cmd = cuc_resume;
nic->cb_to_send = nic->cb_to_send->next;
}
}
err_unlock:
spin_unlock_irqrestore(&nic->cb_lock, flags);
return err;
}
static int mdio_read(struct net_device *netdev, int addr, int reg)
{
struct nic *nic = netdev_priv(netdev);
return nic->mdio_ctrl(nic, addr, mdi_read, reg, 0);
}
static void mdio_write(struct net_device *netdev, int addr, int reg, int data)
{
struct nic *nic = netdev_priv(netdev);
nic->mdio_ctrl(nic, addr, mdi_write, reg, data);
}
/* the standard mdio_ctrl() function for usual MII-compliant hardware */
static u16 mdio_ctrl_hw(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data)
{
u32 data_out = 0;
unsigned int i;
unsigned long flags;
/*
* Stratus87247: we shouldn't be writing the MDI control
* register until the Ready bit shows True. Also, since
* manipulation of the MDI control registers is a multi-step
* procedure it should be done under lock.
*/
spin_lock_irqsave(&nic->mdio_lock, flags);
for (i = 100; i; --i) {
if (ioread32(&nic->csr->mdi_ctrl) & mdi_ready)
break;
udelay(20);
}
if (unlikely(!i)) {
netdev_err(nic->netdev, "e100.mdio_ctrl won't go Ready\n");
spin_unlock_irqrestore(&nic->mdio_lock, flags);
return 0; /* No way to indicate timeout error */
}
iowrite32((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl);
for (i = 0; i < 100; i++) {
udelay(20);
if ((data_out = ioread32(&nic->csr->mdi_ctrl)) & mdi_ready)
break;
}
spin_unlock_irqrestore(&nic->mdio_lock, flags);
netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
"%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n",
dir == mdi_read ? "READ" : "WRITE",
addr, reg, data, data_out);
return (u16)data_out;
}
/* slightly tweaked mdio_ctrl() function for phy_82552_v specifics */
static u16 mdio_ctrl_phy_82552_v(struct nic *nic,
u32 addr,
u32 dir,
u32 reg,
u16 data)
{
if ((reg == MII_BMCR) && (dir == mdi_write)) {
if (data & (BMCR_ANRESTART | BMCR_ANENABLE)) {
u16 advert = mdio_read(nic->netdev, nic->mii.phy_id,
MII_ADVERTISE);
/*
* Workaround Si issue where sometimes the part will not
* autoneg to 100Mbps even when advertised.
*/
if (advert & ADVERTISE_100FULL)
data |= BMCR_SPEED100 | BMCR_FULLDPLX;
else if (advert & ADVERTISE_100HALF)
data |= BMCR_SPEED100;
}
}
return mdio_ctrl_hw(nic, addr, dir, reg, data);
}
/* Fully software-emulated mdio_ctrl() function for cards without
* MII-compliant PHYs.
* For now, this is mainly geared towards 80c24 support; in case of further
* requirements for other types (i82503, ...?) either extend this mechanism
* or split it, whichever is cleaner.
*/
static u16 mdio_ctrl_phy_mii_emulated(struct nic *nic,
u32 addr,
u32 dir,
u32 reg,
u16 data)
{
/* might need to allocate a netdev_priv'ed register array eventually
* to be able to record state changes, but for now
* some fully hardcoded register handling ought to be ok I guess. */
if (dir == mdi_read) {
switch (reg) {
case MII_BMCR:
/* Auto-negotiation, right? */
return BMCR_ANENABLE |
BMCR_FULLDPLX;
case MII_BMSR:
return BMSR_LSTATUS /* for mii_link_ok() */ |
BMSR_ANEGCAPABLE |
BMSR_10FULL;
case MII_ADVERTISE:
/* 80c24 is a "combo card" PHY, right? */
return ADVERTISE_10HALF |
ADVERTISE_10FULL;
default:
netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
"%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
dir == mdi_read ? "READ" : "WRITE",
addr, reg, data);
return 0xFFFF;
}
} else {
switch (reg) {
default:
netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
"%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
dir == mdi_read ? "READ" : "WRITE",
addr, reg, data);
return 0xFFFF;
}
}
}
static inline int e100_phy_supports_mii(struct nic *nic)
{
/* for now, just check it by comparing whether we
are using MII software emulation.
*/
return (nic->mdio_ctrl != mdio_ctrl_phy_mii_emulated);
}
static void e100_get_defaults(struct nic *nic)
{
struct param_range rfds = { .min = 16, .max = 256, .count = 256 };
struct param_range cbs = { .min = 64, .max = 256, .count = 128 };
/* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */
nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->pdev->revision;
if (nic->mac == mac_unknown)
nic->mac = mac_82557_D100_A;
nic->params.rfds = rfds;
nic->params.cbs = cbs;
/* Quadwords to DMA into FIFO before starting frame transmit */
nic->tx_threshold = 0xE0;
/* no interrupt for every tx completion, delay = 256us if not 557 */
nic->tx_command = cpu_to_le16(cb_tx | cb_tx_sf |
((nic->mac >= mac_82558_D101_A4) ? cb_cid : cb_i));
/* Template for a freshly allocated RFD */
nic->blank_rfd.command = 0;
nic->blank_rfd.rbd = cpu_to_le32(0xFFFFFFFF);
nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN + ETH_FCS_LEN);
/* MII setup */
nic->mii.phy_id_mask = 0x1F;
nic->mii.reg_num_mask = 0x1F;
nic->mii.dev = nic->netdev;
nic->mii.mdio_read = mdio_read;
nic->mii.mdio_write = mdio_write;
}
static int e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb)
{
struct config *config = &cb->u.config;
u8 *c = (u8 *)config;
struct net_device *netdev = nic->netdev;
cb->command = cpu_to_le16(cb_config);
memset(config, 0, sizeof(struct config));
config->byte_count = 0x16; /* bytes in this struct */
config->rx_fifo_limit = 0x8; /* bytes in FIFO before DMA */
config->direct_rx_dma = 0x1; /* reserved */
config->standard_tcb = 0x1; /* 1=standard, 0=extended */
config->standard_stat_counter = 0x1; /* 1=standard, 0=extended */
config->rx_discard_short_frames = 0x1; /* 1=discard, 0=pass */
config->tx_underrun_retry = 0x3; /* # of underrun retries */
if (e100_phy_supports_mii(nic))
config->mii_mode = 1; /* 1=MII mode, 0=i82503 mode */
config->pad10 = 0x6;
config->no_source_addr_insertion = 0x1; /* 1=no, 0=yes */
config->preamble_length = 0x2; /* 0=1, 1=3, 2=7, 3=15 bytes */
config->ifs = 0x6; /* x16 = inter frame spacing */
config->ip_addr_hi = 0xF2; /* ARP IP filter - not used */
config->pad15_1 = 0x1;
config->pad15_2 = 0x1;
config->crs_or_cdt = 0x0; /* 0=CRS only, 1=CRS or CDT */
config->fc_delay_hi = 0x40; /* time delay for fc frame */
config->tx_padding = 0x1; /* 1=pad short frames */
config->fc_priority_threshold = 0x7; /* 7=priority fc disabled */
config->pad18 = 0x1;
config->full_duplex_pin = 0x1; /* 1=examine FDX# pin */
config->pad20_1 = 0x1F;
config->fc_priority_location = 0x1; /* 1=byte#31, 0=byte#19 */
config->pad21_1 = 0x5;
config->adaptive_ifs = nic->adaptive_ifs;
config->loopback = nic->loopback;
if (nic->mii.force_media && nic->mii.full_duplex)
config->full_duplex_force = 0x1; /* 1=force, 0=auto */
if (nic->flags & promiscuous || nic->loopback) {
config->rx_save_bad_frames = 0x1; /* 1=save, 0=discard */
config->rx_discard_short_frames = 0x0; /* 1=discard, 0=save */
config->promiscuous_mode = 0x1; /* 1=on, 0=off */
}
if (unlikely(netdev->features & NETIF_F_RXFCS))
config->rx_crc_transfer = 0x1; /* 1=save, 0=discard */
if (nic->flags & multicast_all)
config->multicast_all = 0x1; /* 1=accept, 0=no */
/* disable WoL when up */
if (netif_running(nic->netdev) || !(nic->flags & wol_magic))
config->magic_packet_disable = 0x1; /* 1=off, 0=on */
if (nic->mac >= mac_82558_D101_A4) {
config->fc_disable = 0x1; /* 1=Tx fc off, 0=Tx fc on */
config->mwi_enable = 0x1; /* 1=enable, 0=disable */
config->standard_tcb = 0x0; /* 1=standard, 0=extended */
config->rx_long_ok = 0x1; /* 1=VLANs ok, 0=standard */
if (nic->mac >= mac_82559_D101M) {
config->tno_intr = 0x1; /* TCO stats enable */
/* Enable TCO in extended config */
if (nic->mac >= mac_82551_10) {
config->byte_count = 0x20; /* extended bytes */
config->rx_d102_mode = 0x1; /* GMRC for TCO */
}
} else {
config->standard_stat_counter = 0x0;
}
}
if (netdev->features & NETIF_F_RXALL) {
config->rx_save_overruns = 0x1; /* 1=save, 0=discard */
config->rx_save_bad_frames = 0x1; /* 1=save, 0=discard */
config->rx_discard_short_frames = 0x0; /* 1=discard, 0=save */
}
netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[00-07]=%8ph\n",
c + 0);
netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[08-15]=%8ph\n",
c + 8);
netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[16-23]=%8ph\n",
c + 16);
return 0;
}
/*************************************************************************
* CPUSaver parameters
*
* All CPUSaver parameters are 16-bit literals that are part of a
* "move immediate value" instruction. By changing the value of
* the literal in the instruction before the code is loaded, the
* driver can change the algorithm.
*
* INTDELAY - This loads the dead-man timer with its initial value.
* When this timer expires the interrupt is asserted, and the
* timer is reset each time a new packet is received. (see
* BUNDLEMAX below to set the limit on number of chained packets)
* The current default is 0x600 or 1536. Experiments show that
* the value should probably stay within the 0x200 - 0x1000.
*
* BUNDLEMAX -
* This sets the maximum number of frames that will be bundled. In
* some situations, such as the TCP windowing algorithm, it may be
* better to limit the growth of the bundle size than let it go as
* high as it can, because that could cause too much added latency.
* The default is six, because this is the number of packets in the
* default TCP window size. A value of 1 would make CPUSaver indicate
* an interrupt for every frame received. If you do not want to put
* a limit on the bundle size, set this value to xFFFF.
*
* BUNDLESMALL -
* This contains a bit-mask describing the minimum size frame that
* will be bundled. The default masks the lower 7 bits, which means
* that any frame less than 128 bytes in length will not be bundled,
* but will instead immediately generate an interrupt. This does
* not affect the current bundle in any way. Any frame that is 128
* bytes or large will be bundled normally. This feature is meant
* to provide immediate indication of ACK frames in a TCP environment.
* Customers were seeing poor performance when a machine with CPUSaver
* enabled was sending but not receiving. The delay introduced when
* the ACKs were received was enough to reduce total throughput, because
* the sender would sit idle until the ACK was finally seen.
*
* The current default is 0xFF80, which masks out the lower 7 bits.
* This means that any frame which is x7F (127) bytes or smaller
* will cause an immediate interrupt. Because this value must be a
* bit mask, there are only a few valid values that can be used. To
* turn this feature off, the driver can write the value xFFFF to the
* lower word of this instruction (in the same way that the other
* parameters are used). Likewise, a value of 0xF800 (2047) would
* cause an interrupt to be generated for every frame, because all
* standard Ethernet frames are <= 2047 bytes in length.
*************************************************************************/
/* if you wish to disable the ucode functionality, while maintaining the
* workarounds it provides, set the following defines to:
* BUNDLESMALL 0
* BUNDLEMAX 1
* INTDELAY 1
*/
#define BUNDLESMALL 1
#define BUNDLEMAX (u16)6
#define INTDELAY (u16)1536 /* 0x600 */
/* Initialize firmware */
static const struct firmware *e100_request_firmware(struct nic *nic)
{
const char *fw_name;
const struct firmware *fw = nic->fw;
u8 timer, bundle, min_size;
int err = 0;
bool required = false;
/* do not load u-code for ICH devices */
if (nic->flags & ich)
return NULL;
/* Search for ucode match against h/w revision
*
* Based on comments in the source code for the FreeBSD fxp
* driver, the FIRMWARE_D102E ucode includes both CPUSaver and
*
* "fixes for bugs in the B-step hardware (specifically, bugs
* with Inline Receive)."
*
* So we must fail if it cannot be loaded.
*
* The other microcode files are only required for the optional
* CPUSaver feature. Nice to have, but no reason to fail.
*/
if (nic->mac == mac_82559_D101M) {
fw_name = FIRMWARE_D101M;
} else if (nic->mac == mac_82559_D101S) {
fw_name = FIRMWARE_D101S;
} else if (nic->mac == mac_82551_F || nic->mac == mac_82551_10) {
fw_name = FIRMWARE_D102E;
required = true;
} else { /* No ucode on other devices */
return NULL;
}
/* If the firmware has not previously been loaded, request a pointer
* to it. If it was previously loaded, we are reinitializing the
* adapter, possibly in a resume from hibernate, in which case
* request_firmware() cannot be used.
*/
if (!fw)
err = request_firmware(&fw, fw_name, &nic->pdev->dev);
if (err) {
if (required) {
netif_err(nic, probe, nic->netdev,
"Failed to load firmware \"%s\": %d\n",
fw_name, err);
return ERR_PTR(err);
} else {
netif_info(nic, probe, nic->netdev,
"CPUSaver disabled. Needs \"%s\": %d\n",
fw_name, err);
return NULL;
}
}
/* Firmware should be precisely UCODE_SIZE (words) plus three bytes
indicating the offsets for BUNDLESMALL, BUNDLEMAX, INTDELAY */
if (fw->size != UCODE_SIZE * 4 + 3) {
netif_err(nic, probe, nic->netdev,
"Firmware \"%s\" has wrong size %zu\n",
fw_name, fw->size);
release_firmware(fw);
return ERR_PTR(-EINVAL);
}
/* Read timer, bundle and min_size from end of firmware blob */
timer = fw->data[UCODE_SIZE * 4];
bundle = fw->data[UCODE_SIZE * 4 + 1];
min_size = fw->data[UCODE_SIZE * 4 + 2];
if (timer >= UCODE_SIZE || bundle >= UCODE_SIZE ||
min_size >= UCODE_SIZE) {
netif_err(nic, probe, nic->netdev,
"\"%s\" has bogus offset values (0x%x,0x%x,0x%x)\n",
fw_name, timer, bundle, min_size);
release_firmware(fw);
return ERR_PTR(-EINVAL);
}
/* OK, firmware is validated and ready to use. Save a pointer
* to it in the nic */
nic->fw = fw;
return fw;
}
static int e100_setup_ucode(struct nic *nic, struct cb *cb,
struct sk_buff *skb)
{
const struct firmware *fw = (void *)skb;
u8 timer, bundle, min_size;
/* It's not a real skb; we just abused the fact that e100_exec_cb
will pass it through to here... */
cb->skb = NULL;
/* firmware is stored as little endian already */
memcpy(cb->u.ucode, fw->data, UCODE_SIZE * 4);
/* Read timer, bundle and min_size from end of firmware blob */
timer = fw->data[UCODE_SIZE * 4];
bundle = fw->data[UCODE_SIZE * 4 + 1];
min_size = fw->data[UCODE_SIZE * 4 + 2];
/* Insert user-tunable settings in cb->u.ucode */
cb->u.ucode[timer] &= cpu_to_le32(0xFFFF0000);
cb->u.ucode[timer] |= cpu_to_le32(INTDELAY);
cb->u.ucode[bundle] &= cpu_to_le32(0xFFFF0000);
cb->u.ucode[bundle] |= cpu_to_le32(BUNDLEMAX);
cb->u.ucode[min_size] &= cpu_to_le32(0xFFFF0000);
cb->u.ucode[min_size] |= cpu_to_le32((BUNDLESMALL) ? 0xFFFF : 0xFF80);
cb->command = cpu_to_le16(cb_ucode | cb_el);
return 0;
}
static inline int e100_load_ucode_wait(struct nic *nic)
{
const struct firmware *fw;
int err = 0, counter = 50;
struct cb *cb = nic->cb_to_clean;
fw = e100_request_firmware(nic);
/* If it's NULL, then no ucode is required */
if (IS_ERR_OR_NULL(fw))
return PTR_ERR_OR_ZERO(fw);
if ((err = e100_exec_cb(nic, (void *)fw, e100_setup_ucode)))
netif_err(nic, probe, nic->netdev,
"ucode cmd failed with error %d\n", err);
/* must restart cuc */
nic->cuc_cmd = cuc_start;
/* wait for completion */
e100_write_flush(nic);
udelay(10);
/* wait for possibly (ouch) 500ms */
while (!(cb->status & cpu_to_le16(cb_complete))) {
msleep(10);
if (!--counter) break;
}
/* ack any interrupts, something could have been set */
iowrite8(~0, &nic->csr->scb.stat_ack);
/* if the command failed, or is not OK, notify and return */
if (!counter || !(cb->status & cpu_to_le16(cb_ok))) {
netif_err(nic, probe, nic->netdev, "ucode load failed\n");
err = -EPERM;
}
return err;
}
static int e100_setup_iaaddr(struct nic *nic, struct cb *cb,
struct sk_buff *skb)
{
cb->command = cpu_to_le16(cb_iaaddr);
memcpy(cb->u.iaaddr, nic->netdev->dev_addr, ETH_ALEN);
return 0;
}
static int e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb)
{
cb->command = cpu_to_le16(cb_dump);
cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr +
offsetof(struct mem, dump_buf));
return 0;
}
static int e100_phy_check_without_mii(struct nic *nic)
{
u8 phy_type;
int without_mii;
phy_type = (le16_to_cpu(nic->eeprom[eeprom_phy_iface]) >> 8) & 0x0f;
switch (phy_type) {
case NoSuchPhy: /* Non-MII PHY; UNTESTED! */
case I82503: /* Non-MII PHY; UNTESTED! */
case S80C24: /* Non-MII PHY; tested and working */
/* paragraph from the FreeBSD driver, "FXP_PHY_80C24":
* The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
* doesn't have a programming interface of any sort. The
* media is sensed automatically based on how the link partner
* is configured. This is, in essence, manual configuration.
*/
netif_info(nic, probe, nic->netdev,
"found MII-less i82503 or 80c24 or other PHY\n");
nic->mdio_ctrl = mdio_ctrl_phy_mii_emulated;
nic->mii.phy_id = 0; /* is this ok for an MII-less PHY? */
/* these might be needed for certain MII-less cards...
* nic->flags |= ich;
* nic->flags |= ich_10h_workaround; */
without_mii = 1;
break;
default:
without_mii = 0;
break;
}
return without_mii;
}
#define NCONFIG_AUTO_SWITCH 0x0080
#define MII_NSC_CONG MII_RESV1
#define NSC_CONG_ENABLE 0x0100
#define NSC_CONG_TXREADY 0x0400
static int e100_phy_init(struct nic *nic)
{
struct net_device *netdev = nic->netdev;
u32 addr;
u16 bmcr, stat, id_lo, id_hi, cong;
/* Discover phy addr by searching addrs in order {1,0,2,..., 31} */
for (addr = 0; addr < 32; addr++) {
nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr;
bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
if (!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0))))
break;
}
if (addr == 32) {
/* uhoh, no PHY detected: check whether we seem to be some
* weird, rare variant which is *known* to not have any MII.
* But do this AFTER MII checking only, since this does
* lookup of EEPROM values which may easily be unreliable. */
if (e100_phy_check_without_mii(nic))
return 0; /* simply return and hope for the best */
else {
/* for unknown cases log a fatal error */
netif_err(nic, hw, nic->netdev,
"Failed to locate any known PHY, aborting\n");
return -EAGAIN;
}
} else
netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
"phy_addr = %d\n", nic->mii.phy_id);
/* Get phy ID */
id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1);
id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2);
nic->phy = (u32)id_hi << 16 | (u32)id_lo;
netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
"phy ID = 0x%08X\n", nic->phy);
/* Select the phy and isolate the rest */
for (addr = 0; addr < 32; addr++) {
if (addr != nic->mii.phy_id) {
mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE);
} else if (nic->phy != phy_82552_v) {
bmcr = mdio_read(netdev, addr, MII_BMCR);
mdio_write(netdev, addr, MII_BMCR,
bmcr & ~BMCR_ISOLATE);
}
}
/*
* Workaround for 82552:
* Clear the ISOLATE bit on selected phy_id last (mirrored on all
* other phy_id's) using bmcr value from addr discovery loop above.
*/
if (nic->phy == phy_82552_v)
mdio_write(netdev, nic->mii.phy_id, MII_BMCR,
bmcr & ~BMCR_ISOLATE);
/* Handle National tx phys */
#define NCS_PHY_MODEL_MASK 0xFFF0FFFF
if ((nic->phy & NCS_PHY_MODEL_MASK) == phy_nsc_tx) {
/* Disable congestion control */
cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG);
cong |= NSC_CONG_TXREADY;
cong &= ~NSC_CONG_ENABLE;
mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong);
}
if (nic->phy == phy_82552_v) {
u16 advert = mdio_read(netdev, nic->mii.phy_id, MII_ADVERTISE);
/* assign special tweaked mdio_ctrl() function */
nic->mdio_ctrl = mdio_ctrl_phy_82552_v;
/* Workaround Si not advertising flow-control during autoneg */
advert |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
mdio_write(netdev, nic->mii.phy_id, MII_ADVERTISE, advert);
/* Reset for the above changes to take effect */
bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
bmcr |= BMCR_RESET;
mdio_write(netdev, nic->mii.phy_id, MII_BMCR, bmcr);
} else if ((nic->mac >= mac_82550_D102) || ((nic->flags & ich) &&
(mdio_read(netdev, nic->mii.phy_id, MII_TPISTATUS) & 0x8000) &&
(le16_to_cpu(nic->eeprom[eeprom_cnfg_mdix]) & eeprom_mdix_enabled))) {
/* enable/disable MDI/MDI-X auto-switching. */
mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG,
nic->mii.force_media ? 0 : NCONFIG_AUTO_SWITCH);
}
return 0;
}
static int e100_hw_init(struct nic *nic)
{
int err = 0;
e100_hw_reset(nic);
netif_err(nic, hw, nic->netdev, "e100_hw_init\n");
if ((err = e100_self_test(nic)))
return err;
if ((err = e100_phy_init(nic)))
return err;
if ((err = e100_exec_cmd(nic, cuc_load_base, 0)))
return err;
if ((err = e100_exec_cmd(nic, ruc_load_base, 0)))
return err;
if ((err = e100_load_ucode_wait(nic)))
return err;
if ((err = e100_exec_cb(nic, NULL, e100_configure)))
return err;
if ((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr)))
return err;
if ((err = e100_exec_cmd(nic, cuc_dump_addr,
nic->dma_addr + offsetof(struct mem, stats))))
return err;
if ((err = e100_exec_cmd(nic, cuc_dump_reset, 0)))
return err;
e100_disable_irq(nic);
return 0;
}
static int e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb)
{
struct net_device *netdev = nic->netdev;
struct netdev_hw_addr *ha;
u16 i, count = min(netdev_mc_count(netdev), E100_MAX_MULTICAST_ADDRS);
cb->command = cpu_to_le16(cb_multi);
cb->u.multi.count = cpu_to_le16(count * ETH_ALEN);
i = 0;
netdev_for_each_mc_addr(ha, netdev) {
if (i == count)
break;
memcpy(&cb->u.multi.addr[i++ * ETH_ALEN], &ha->addr,
ETH_ALEN);
}
return 0;
}
static void e100_set_multicast_list(struct net_device *netdev)
{
struct nic *nic = netdev_priv(netdev);
netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
"mc_count=%d, flags=0x%04X\n",
netdev_mc_count(netdev), netdev->flags);
if (netdev->flags & IFF_PROMISC)
nic->flags |= promiscuous;
else
nic->flags &= ~promiscuous;
if (netdev->flags & IFF_ALLMULTI ||
netdev_mc_count(netdev) > E100_MAX_MULTICAST_ADDRS)
nic->flags |= multicast_all;
else
nic->flags &= ~multicast_all;
e100_exec_cb(nic, NULL, e100_configure);
e100_exec_cb(nic, NULL, e100_multi);
}
static void e100_update_stats(struct nic *nic)
{
struct net_device *dev = nic->netdev;
struct net_device_stats *ns = &dev->stats;
struct stats *s = &nic->mem->stats;
__le32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause :
(nic->mac < mac_82559_D101M) ? (__le32 *)&s->xmt_tco_frames :
&s->complete;
/* Device's stats reporting may take several microseconds to
* complete, so we're always waiting for results of the
* previous command. */
if (*complete == cpu_to_le32(cuc_dump_reset_complete)) {
*complete = 0;
nic->tx_frames = le32_to_cpu(s->tx_good_frames);
nic->tx_collisions = le32_to_cpu(s->tx_total_collisions);
ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions);
ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions);
ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs);
ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns);
ns->collisions += nic->tx_collisions;
ns->tx_errors += le32_to_cpu(s->tx_max_collisions) +
le32_to_cpu(s->tx_lost_crs);
nic->rx_short_frame_errors +=
le32_to_cpu(s->rx_short_frame_errors);
ns->rx_length_errors = nic->rx_short_frame_errors +
nic->rx_over_length_errors;
ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors);
ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors);
ns->rx_over_errors += le32_to_cpu(s->rx_overrun_errors);
ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors);
ns->rx_missed_errors += le32_to_cpu(s->rx_resource_errors);
ns->rx_errors += le32_to_cpu(s->rx_crc_errors) +
le32_to_cpu(s->rx_alignment_errors) +
le32_to_cpu(s->rx_short_frame_errors) +
le32_to_cpu(s->rx_cdt_errors);
nic->tx_deferred += le32_to_cpu(s->tx_deferred);
nic->tx_single_collisions +=
le32_to_cpu(s->tx_single_collisions);
nic->tx_multiple_collisions +=
le32_to_cpu(s->tx_multiple_collisions);
if (nic->mac >= mac_82558_D101_A4) {
nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause);
nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause);
nic->rx_fc_unsupported +=
le32_to_cpu(s->fc_rcv_unsupported);
if (nic->mac >= mac_82559_D101M) {
nic->tx_tco_frames +=
le16_to_cpu(s->xmt_tco_frames);
nic->rx_tco_frames +=
le16_to_cpu(s->rcv_tco_frames);
}
}
}
if (e100_exec_cmd(nic, cuc_dump_reset, 0))
netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
"exec cuc_dump_reset failed\n");
}
static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex)
{
/* Adjust inter-frame-spacing (IFS) between two transmits if
* we're getting collisions on a half-duplex connection. */
if (duplex == DUPLEX_HALF) {
u32 prev = nic->adaptive_ifs;
u32 min_frames = (speed == SPEED_100) ? 1000 : 100;
if ((nic->tx_frames / 32 < nic->tx_collisions) &&
(nic->tx_frames > min_frames)) {
if (nic->adaptive_ifs < 60)
nic->adaptive_ifs += 5;
} else if (nic->tx_frames < min_frames) {
if (nic->adaptive_ifs >= 5)
nic->adaptive_ifs -= 5;
}
if (nic->adaptive_ifs != prev)
e100_exec_cb(nic, NULL, e100_configure);
}
}
static void e100_watchdog(struct timer_list *t)
{
struct nic *nic = from_timer(nic, t, watchdog);
struct ethtool_cmd cmd = { .cmd = ETHTOOL_GSET };
u32 speed;
netif_printk(nic, timer, KERN_DEBUG, nic->netdev,
"right now = %ld\n", jiffies);
/* mii library handles link maintenance tasks */
mii_ethtool_gset(&nic->mii, &cmd);
speed = ethtool_cmd_speed(&cmd);
if (mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) {
netdev_info(nic->netdev, "NIC Link is Up %u Mbps %s Duplex\n",
speed == SPEED_100 ? 100 : 10,
cmd.duplex == DUPLEX_FULL ? "Full" : "Half");
} else if (!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) {
netdev_info(nic->netdev, "NIC Link is Down\n");
}
mii_check_link(&nic->mii);
/* Software generated interrupt to recover from (rare) Rx
* allocation failure.
* Unfortunately have to use a spinlock to not re-enable interrupts
* accidentally, due to hardware that shares a register between the
* interrupt mask bit and the SW Interrupt generation bit */
spin_lock_irq(&nic->cmd_lock);
iowrite8(ioread8(&nic->csr->scb.cmd_hi) | irq_sw_gen,&nic->csr->scb.cmd_hi);
e100_write_flush(nic);
spin_unlock_irq(&nic->cmd_lock);
e100_update_stats(nic);
e100_adjust_adaptive_ifs(nic, speed, cmd.duplex);
if (nic->mac <= mac_82557_D100_C)
/* Issue a multicast command to workaround a 557 lock up */
e100_set_multicast_list(nic->netdev);
if (nic->flags & ich && speed == SPEED_10 && cmd.duplex == DUPLEX_HALF)
/* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */
nic->flags |= ich_10h_workaround;
else
nic->flags &= ~ich_10h_workaround;
mod_timer(&nic->watchdog,
round_jiffies(jiffies + E100_WATCHDOG_PERIOD));
}
static int e100_xmit_prepare(struct nic *nic, struct cb *cb,
struct sk_buff *skb)
{
dma_addr_t dma_addr;
cb->command = nic->tx_command;
dma_addr = dma_map_single(&nic->pdev->dev, skb->data, skb->len,
DMA_TO_DEVICE);
/* If we can't map the skb, have the upper layer try later */
if (dma_mapping_error(&nic->pdev->dev, dma_addr))
return -ENOMEM;
/*
* Use the last 4 bytes of the SKB payload packet as the CRC, used for
* testing, ie sending frames with bad CRC.
*/
if (unlikely(skb->no_fcs))
cb->command |= cpu_to_le16(cb_tx_nc);
else
cb->command &= ~cpu_to_le16(cb_tx_nc);
/* interrupt every 16 packets regardless of delay */
if ((nic->cbs_avail & ~15) == nic->cbs_avail)
cb->command |= cpu_to_le16(cb_i);
cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd);
cb->u.tcb.tcb_byte_count = 0;
cb->u.tcb.threshold = nic->tx_threshold;
cb->u.tcb.tbd_count = 1;
cb->u.tcb.tbd.buf_addr = cpu_to_le32(dma_addr);
cb->u.tcb.tbd.size = cpu_to_le16(skb->len);
skb_tx_timestamp(skb);
return 0;
}
static netdev_tx_t e100_xmit_frame(struct sk_buff *skb,
struct net_device *netdev)
{
struct nic *nic = netdev_priv(netdev);
int err;
if (nic->flags & ich_10h_workaround) {
/* SW workaround for ICH[x] 10Mbps/half duplex Tx hang.
Issue a NOP command followed by a 1us delay before
issuing the Tx command. */
if (e100_exec_cmd(nic, cuc_nop, 0))
netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
"exec cuc_nop failed\n");
udelay(1);
}
err = e100_exec_cb(nic, skb, e100_xmit_prepare);
switch (err) {
case -ENOSPC:
/* We queued the skb, but now we're out of space. */
netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
"No space for CB\n");
netif_stop_queue(netdev);
break;
case -ENOMEM:
/* This is a hard error - log it. */
netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
"Out of Tx resources, returning skb\n");
netif_stop_queue(netdev);
return NETDEV_TX_BUSY;
}
return NETDEV_TX_OK;
}
static int e100_tx_clean(struct nic *nic)
{
struct net_device *dev = nic->netdev;
struct cb *cb;
int tx_cleaned = 0;
spin_lock(&nic->cb_lock);
/* Clean CBs marked complete */
for (cb = nic->cb_to_clean;
cb->status & cpu_to_le16(cb_complete);
cb = nic->cb_to_clean = cb->next) {
dma_rmb(); /* read skb after status */
netif_printk(nic, tx_done, KERN_DEBUG, nic->netdev,
"cb[%d]->status = 0x%04X\n",
(int)(((void*)cb - (void*)nic->cbs)/sizeof(struct cb)),
cb->status);
if (likely(cb->skb != NULL)) {
dev->stats.tx_packets++;
dev->stats.tx_bytes += cb->skb->len;
dma_unmap_single(&nic->pdev->dev,
le32_to_cpu(cb->u.tcb.tbd.buf_addr),
le16_to_cpu(cb->u.tcb.tbd.size),
DMA_TO_DEVICE);
dev_kfree_skb_any(cb->skb);
cb->skb = NULL;
tx_cleaned = 1;
}
cb->status = 0;
nic->cbs_avail++;
}
spin_unlock(&nic->cb_lock);
/* Recover from running out of Tx resources in xmit_frame */
if (unlikely(tx_cleaned && netif_queue_stopped(nic->netdev)))
netif_wake_queue(nic->netdev);
return tx_cleaned;
}
static void e100_clean_cbs(struct nic *nic)
{
if (nic->cbs) {
while (nic->cbs_avail != nic->params.cbs.count) {
struct cb *cb = nic->cb_to_clean;
if (cb->skb) {
dma_unmap_single(&nic->pdev->dev,
le32_to_cpu(cb->u.tcb.tbd.buf_addr),
le16_to_cpu(cb->u.tcb.tbd.size),
DMA_TO_DEVICE);
dev_kfree_skb(cb->skb);
}
nic->cb_to_clean = nic->cb_to_clean->next;
nic->cbs_avail++;
}
dma_pool_free(nic->cbs_pool, nic->cbs, nic->cbs_dma_addr);
nic->cbs = NULL;
nic->cbs_avail = 0;
}
nic->cuc_cmd = cuc_start;
nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean =
nic->cbs;
}
static int e100_alloc_cbs(struct nic *nic)
{
struct cb *cb;
unsigned int i, count = nic->params.cbs.count;
nic->cuc_cmd = cuc_start;
nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL;
nic->cbs_avail = 0;
nic->cbs = dma_pool_zalloc(nic->cbs_pool, GFP_KERNEL,
&nic->cbs_dma_addr);
if (!nic->cbs)
return -ENOMEM;
for (cb = nic->cbs, i = 0; i < count; cb++, i++) {
cb->next = (i + 1 < count) ? cb + 1 : nic->cbs;
cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1;
cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb);
cb->link = cpu_to_le32(nic->cbs_dma_addr +
((i+1) % count) * sizeof(struct cb));
}
nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs;
nic->cbs_avail = count;
return 0;
}
static inline void e100_start_receiver(struct nic *nic, struct rx *rx)
{
if (!nic->rxs) return;
if (RU_SUSPENDED != nic->ru_running) return;
/* handle init time starts */
if (!rx) rx = nic->rxs;
/* (Re)start RU if suspended or idle and RFA is non-NULL */
if (rx->skb) {
e100_exec_cmd(nic, ruc_start, rx->dma_addr);
nic->ru_running = RU_RUNNING;
}
}
#define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)
static int e100_rx_alloc_skb(struct nic *nic, struct rx *rx)
{
if (!(rx->skb = netdev_alloc_skb_ip_align(nic->netdev, RFD_BUF_LEN)))
return -ENOMEM;
/* Init, and map the RFD. */
skb_copy_to_linear_data(rx->skb, &nic->blank_rfd, sizeof(struct rfd));
rx->dma_addr = dma_map_single(&nic->pdev->dev, rx->skb->data,
RFD_BUF_LEN, DMA_BIDIRECTIONAL);
if (dma_mapping_error(&nic->pdev->dev, rx->dma_addr)) {
dev_kfree_skb_any(rx->skb);
rx->skb = NULL;
rx->dma_addr = 0;
return -ENOMEM;
}
/* Link the RFD to end of RFA by linking previous RFD to
* this one. We are safe to touch the previous RFD because
* it is protected by the before last buffer's el bit being set */
if (rx->prev->skb) {
struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data;
put_unaligned_le32(rx->dma_addr, &prev_rfd->link);
dma_sync_single_for_device(&nic->pdev->dev,
rx->prev->dma_addr,
sizeof(struct rfd),
DMA_BIDIRECTIONAL);
}
return 0;
}
static int e100_rx_indicate(struct nic *nic, struct rx *rx,
unsigned int *work_done, unsigned int work_to_do)
{
struct net_device *dev = nic->netdev;
struct sk_buff *skb = rx->skb;
struct rfd *rfd = (struct rfd *)skb->data;
u16 rfd_status, actual_size;
u16 fcs_pad = 0;
if (unlikely(work_done && *work_done >= work_to_do))
return -EAGAIN;
/* Need to sync before taking a peek at cb_complete bit */
dma_sync_single_for_cpu(&nic->pdev->dev, rx->dma_addr,
sizeof(struct rfd), DMA_BIDIRECTIONAL);
rfd_status = le16_to_cpu(rfd->status);
netif_printk(nic, rx_status, KERN_DEBUG, nic->netdev,
"status=0x%04X\n", rfd_status);
dma_rmb(); /* read size after status bit */
/* If data isn't ready, nothing to indicate */
if (unlikely(!(rfd_status & cb_complete))) {
/* If the next buffer has the el bit, but we think the receiver
* is still running, check to see if it really stopped while
* we had interrupts off.
* This allows for a fast restart without re-enabling
* interrupts */
if ((le16_to_cpu(rfd->command) & cb_el) &&
(RU_RUNNING == nic->ru_running))
if (ioread8(&nic->csr->scb.status) & rus_no_res)
nic->ru_running = RU_SUSPENDED;
dma_sync_single_for_device(&nic->pdev->dev, rx->dma_addr,
sizeof(struct rfd),
DMA_FROM_DEVICE);
return -ENODATA;
}
/* Get actual data size */
if (unlikely(dev->features & NETIF_F_RXFCS))
fcs_pad = 4;
actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF;
if (unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd)))
actual_size = RFD_BUF_LEN - sizeof(struct rfd);
/* Get data */
dma_unmap_single(&nic->pdev->dev, rx->dma_addr, RFD_BUF_LEN,
DMA_BIDIRECTIONAL);
/* If this buffer has the el bit, but we think the receiver
* is still running, check to see if it really stopped while
* we had interrupts off.
* This allows for a fast restart without re-enabling interrupts.
* This can happen when the RU sees the size change but also sees
* the el bit set. */
if ((le16_to_cpu(rfd->command) & cb_el) &&
(RU_RUNNING == nic->ru_running)) {
if (ioread8(&nic->csr->scb.status) & rus_no_res)
nic->ru_running = RU_SUSPENDED;
}
/* Pull off the RFD and put the actual data (minus eth hdr) */
skb_reserve(skb, sizeof(struct rfd));
skb_put(skb, actual_size);
skb->protocol = eth_type_trans(skb, nic->netdev);
/* If we are receiving all frames, then don't bother
* checking for errors.
*/
if (unlikely(dev->features & NETIF_F_RXALL)) {
if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN + fcs_pad)
/* Received oversized frame, but keep it. */
nic->rx_over_length_errors++;
goto process_skb;
}
if (unlikely(!(rfd_status & cb_ok))) {
/* Don't indicate if hardware indicates errors */
dev_kfree_skb_any(skb);
} else if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN + fcs_pad) {
/* Don't indicate oversized frames */
nic->rx_over_length_errors++;
dev_kfree_skb_any(skb);
} else {
process_skb:
dev->stats.rx_packets++;
dev->stats.rx_bytes += (actual_size - fcs_pad);
netif_receive_skb(skb);
if (work_done)
(*work_done)++;
}
rx->skb = NULL;
return 0;
}
static void e100_rx_clean(struct nic *nic, unsigned int *work_done,
unsigned int work_to_do)
{
struct rx *rx;
int restart_required = 0, err = 0;
struct rx *old_before_last_rx, *new_before_last_rx;
struct rfd *old_before_last_rfd, *new_before_last_rfd;
/* Indicate newly arrived packets */
for (rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) {
err = e100_rx_indicate(nic, rx, work_done, work_to_do);
/* Hit quota or no more to clean */
if (-EAGAIN == err || -ENODATA == err)
break;
}
/* On EAGAIN, hit quota so have more work to do, restart once
* cleanup is complete.
* Else, are we already rnr? then pay attention!!! this ensures that
* the state machine progression never allows a start with a
* partially cleaned list, avoiding a race between hardware
* and rx_to_clean when in NAPI mode */
if (-EAGAIN != err && RU_SUSPENDED == nic->ru_running)
restart_required = 1;
old_before_last_rx = nic->rx_to_use->prev->prev;
old_before_last_rfd = (struct rfd *)old_before_last_rx->skb->data;
/* Alloc new skbs to refill list */
for (rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) {
if (unlikely(e100_rx_alloc_skb(nic, rx)))
break; /* Better luck next time (see watchdog) */
}
new_before_last_rx = nic->rx_to_use->prev->prev;
if (new_before_last_rx != old_before_last_rx) {
/* Set the el-bit on the buffer that is before the last buffer.
* This lets us update the next pointer on the last buffer
* without worrying about hardware touching it.
* We set the size to 0 to prevent hardware from touching this
* buffer.
* When the hardware hits the before last buffer with el-bit
* and size of 0, it will RNR interrupt, the RUS will go into
* the No Resources state. It will not complete nor write to
* this buffer. */
new_before_last_rfd =
(struct rfd *)new_before_last_rx->skb->data;
new_before_last_rfd->size = 0;
new_before_last_rfd->command |= cpu_to_le16(cb_el);
dma_sync_single_for_device(&nic->pdev->dev,
new_before_last_rx->dma_addr,
sizeof(struct rfd),
DMA_BIDIRECTIONAL);
/* Now that we have a new stopping point, we can clear the old
* stopping point. We must sync twice to get the proper
* ordering on the hardware side of things. */
old_before_last_rfd->command &= ~cpu_to_le16(cb_el);
dma_sync_single_for_device(&nic->pdev->dev,
old_before_last_rx->dma_addr,
sizeof(struct rfd),
DMA_BIDIRECTIONAL);
old_before_last_rfd->size = cpu_to_le16(VLAN_ETH_FRAME_LEN
+ ETH_FCS_LEN);
dma_sync_single_for_device(&nic->pdev->dev,
old_before_last_rx->dma_addr,
sizeof(struct rfd),
DMA_BIDIRECTIONAL);
}
if (restart_required) {
// ack the rnr?
iowrite8(stat_ack_rnr, &nic->csr->scb.stat_ack);
e100_start_receiver(nic, nic->rx_to_clean);
if (work_done)
(*work_done)++;
}
}
static void e100_rx_clean_list(struct nic *nic)
{
struct rx *rx;
unsigned int i, count = nic->params.rfds.count;
nic->ru_running = RU_UNINITIALIZED;
if (nic->rxs) {
for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
if (rx->skb) {
dma_unmap_single(&nic->pdev->dev,
rx->dma_addr, RFD_BUF_LEN,
DMA_BIDIRECTIONAL);
dev_kfree_skb(rx->skb);
}
}
kfree(nic->rxs);
nic->rxs = NULL;
}
nic->rx_to_use = nic->rx_to_clean = NULL;
}
static int e100_rx_alloc_list(struct nic *nic)
{
struct rx *rx;
unsigned int i, count = nic->params.rfds.count;
struct rfd *before_last;
nic->rx_to_use = nic->rx_to_clean = NULL;
nic->ru_running = RU_UNINITIALIZED;
if (!(nic->rxs = kcalloc(count, sizeof(struct rx), GFP_KERNEL)))
return -ENOMEM;
for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
rx->next = (i + 1 < count) ? rx + 1 : nic->rxs;
rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1;
if (e100_rx_alloc_skb(nic, rx)) {
e100_rx_clean_list(nic);
return -ENOMEM;
}
}
/* Set the el-bit on the buffer that is before the last buffer.
* This lets us update the next pointer on the last buffer without
* worrying about hardware touching it.
* We set the size to 0 to prevent hardware from touching this buffer.
* When the hardware hits the before last buffer with el-bit and size
* of 0, it will RNR interrupt, the RU will go into the No Resources
* state. It will not complete nor write to this buffer. */
rx = nic->rxs->prev->prev;
before_last = (struct rfd *)rx->skb->data;
before_last->command |= cpu_to_le16(cb_el);
before_last->size = 0;
dma_sync_single_for_device(&nic->pdev->dev, rx->dma_addr,
sizeof(struct rfd), DMA_BIDIRECTIONAL);
nic->rx_to_use = nic->rx_to_clean = nic->rxs;
nic->ru_running = RU_SUSPENDED;
return 0;
}
static irqreturn_t e100_intr(int irq, void *dev_id)
{
struct net_device *netdev = dev_id;
struct nic *nic = netdev_priv(netdev);
u8 stat_ack = ioread8(&nic->csr->scb.stat_ack);
netif_printk(nic, intr, KERN_DEBUG, nic->netdev,
"stat_ack = 0x%02X\n", stat_ack);
if (stat_ack == stat_ack_not_ours || /* Not our interrupt */
stat_ack == stat_ack_not_present) /* Hardware is ejected */
return IRQ_NONE;
/* Ack interrupt(s) */
iowrite8(stat_ack, &nic->csr->scb.stat_ack);
/* We hit Receive No Resource (RNR); restart RU after cleaning */
if (stat_ack & stat_ack_rnr)
nic->ru_running = RU_SUSPENDED;
if (likely(napi_schedule_prep(&nic->napi))) {
e100_disable_irq(nic);
__napi_schedule(&nic->napi);
}
return IRQ_HANDLED;
}
static int e100_poll(struct napi_struct *napi, int budget)
{
struct nic *nic = container_of(napi, struct nic, napi);
unsigned int work_done = 0;
e100_rx_clean(nic, &work_done, budget);
e100_tx_clean(nic);
/* If budget fully consumed, continue polling */
if (work_done == budget)
return budget;
/* only re-enable interrupt if stack agrees polling is really done */
if (likely(napi_complete_done(napi, work_done)))
e100_enable_irq(nic);
return work_done;
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void e100_netpoll(struct net_device *netdev)
{
struct nic *nic = netdev_priv(netdev);
e100_disable_irq(nic);
e100_intr(nic->pdev->irq, netdev);
e100_tx_clean(nic);
e100_enable_irq(nic);
}
#endif
static int e100_set_mac_address(struct net_device *netdev, void *p)
{
struct nic *nic = netdev_priv(netdev);
struct sockaddr *addr = p;
if (!is_valid_ether_addr(addr->sa_data))
return -EADDRNOTAVAIL;
eth_hw_addr_set(netdev, addr->sa_data);
e100_exec_cb(nic, NULL, e100_setup_iaaddr);
return 0;
}
static int e100_asf(struct nic *nic)
{
/* ASF can be enabled from eeprom */
return (nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1057) &&
(le16_to_cpu(nic->eeprom[eeprom_config_asf]) & eeprom_asf) &&
!(le16_to_cpu(nic->eeprom[eeprom_config_asf]) & eeprom_gcl) &&
((le16_to_cpu(nic->eeprom[eeprom_smbus_addr]) & 0xFF) != 0xFE);
}
static int e100_up(struct nic *nic)
{
int err;
if ((err = e100_rx_alloc_list(nic)))
return err;
if ((err = e100_alloc_cbs(nic)))
goto err_rx_clean_list;
if ((err = e100_hw_init(nic)))
goto err_clean_cbs;
e100_set_multicast_list(nic->netdev);
e100_start_receiver(nic, NULL);
mod_timer(&nic->watchdog, jiffies);
if ((err = request_irq(nic->pdev->irq, e100_intr, IRQF_SHARED,
nic->netdev->name, nic->netdev)))
goto err_no_irq;
netif_wake_queue(nic->netdev);
napi_enable(&nic->napi);
/* enable ints _after_ enabling poll, preventing a race between
* disable ints+schedule */
e100_enable_irq(nic);
return 0;
err_no_irq:
del_timer_sync(&nic->watchdog);
err_clean_cbs:
e100_clean_cbs(nic);
err_rx_clean_list:
e100_rx_clean_list(nic);
return err;
}
static void e100_down(struct nic *nic)
{
/* wait here for poll to complete */
napi_disable(&nic->napi);
netif_stop_queue(nic->netdev);
e100_hw_reset(nic);
free_irq(nic->pdev->irq, nic->netdev);
del_timer_sync(&nic->watchdog);
netif_carrier_off(nic->netdev);
e100_clean_cbs(nic);
e100_rx_clean_list(nic);
}
static void e100_tx_timeout(struct net_device *netdev, unsigned int txqueue)
{
struct nic *nic = netdev_priv(netdev);
/* Reset outside of interrupt context, to avoid request_irq
* in interrupt context */
schedule_work(&nic->tx_timeout_task);
}
static void e100_tx_timeout_task(struct work_struct *work)
{
struct nic *nic = container_of(work, struct nic, tx_timeout_task);
struct net_device *netdev = nic->netdev;
netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
"scb.status=0x%02X\n", ioread8(&nic->csr->scb.status));
rtnl_lock();
if (netif_running(netdev)) {
e100_down(netdev_priv(netdev));
e100_up(netdev_priv(netdev));
}
rtnl_unlock();
}
static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode)
{
int err;
struct sk_buff *skb;
/* Use driver resources to perform internal MAC or PHY
* loopback test. A single packet is prepared and transmitted
* in loopback mode, and the test passes if the received
* packet compares byte-for-byte to the transmitted packet. */
if ((err = e100_rx_alloc_list(nic)))
return err;
if ((err = e100_alloc_cbs(nic)))
goto err_clean_rx;
/* ICH PHY loopback is broken so do MAC loopback instead */
if (nic->flags & ich && loopback_mode == lb_phy)
loopback_mode = lb_mac;
nic->loopback = loopback_mode;
if ((err = e100_hw_init(nic)))
goto err_loopback_none;
if (loopback_mode == lb_phy)
mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR,
BMCR_LOOPBACK);
e100_start_receiver(nic, NULL);
if (!(skb = netdev_alloc_skb(nic->netdev, ETH_DATA_LEN))) {
err = -ENOMEM;
goto err_loopback_none;
}
skb_put(skb, ETH_DATA_LEN);
memset(skb->data, 0xFF, ETH_DATA_LEN);
e100_xmit_frame(skb, nic->netdev);
msleep(10);
dma_sync_single_for_cpu(&nic->pdev->dev, nic->rx_to_clean->dma_addr,
RFD_BUF_LEN, DMA_BIDIRECTIONAL);
if (memcmp(nic->rx_to_clean->skb->data + sizeof(struct rfd),
skb->data, ETH_DATA_LEN))
err = -EAGAIN;
err_loopback_none:
mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0);
nic->loopback = lb_none;
e100_clean_cbs(nic);
e100_hw_reset(nic);
err_clean_rx:
e100_rx_clean_list(nic);
return err;
}
#define MII_LED_CONTROL 0x1B
#define E100_82552_LED_OVERRIDE 0x19
#define E100_82552_LED_ON 0x000F /* LEDTX and LED_RX both on */
#define E100_82552_LED_OFF 0x000A /* LEDTX and LED_RX both off */
static int e100_get_link_ksettings(struct net_device *netdev,
struct ethtool_link_ksettings *cmd)
{
struct nic *nic = netdev_priv(netdev);
mii_ethtool_get_link_ksettings(&nic->mii, cmd);
return 0;
}
static int e100_set_link_ksettings(struct net_device *netdev,
const struct ethtool_link_ksettings *cmd)
{
struct nic *nic = netdev_priv(netdev);
int err;
mdio_write(netdev, nic->mii.phy_id, MII_BMCR, BMCR_RESET);
err = mii_ethtool_set_link_ksettings(&nic->mii, cmd);
e100_exec_cb(nic, NULL, e100_configure);
return err;
}
static void e100_get_drvinfo(struct net_device *netdev,
struct ethtool_drvinfo *info)
{
struct nic *nic = netdev_priv(netdev);
strscpy(info->driver, DRV_NAME, sizeof(info->driver));
strscpy(info->bus_info, pci_name(nic->pdev),
sizeof(info->bus_info));
}
#define E100_PHY_REGS 0x1D
static int e100_get_regs_len(struct net_device *netdev)
{
struct nic *nic = netdev_priv(netdev);
/* We know the number of registers, and the size of the dump buffer.
* Calculate the total size in bytes.
*/
return (1 + E100_PHY_REGS) * sizeof(u32) + sizeof(nic->mem->dump_buf);
}
static void e100_get_regs(struct net_device *netdev,
struct ethtool_regs *regs, void *p)
{
struct nic *nic = netdev_priv(netdev);
u32 *buff = p;
int i;
regs->version = (1 << 24) | nic->pdev->revision;
buff[0] = ioread8(&nic->csr->scb.cmd_hi) << 24 |
ioread8(&nic->csr->scb.cmd_lo) << 16 |
ioread16(&nic->csr->scb.status);
for (i = 0; i < E100_PHY_REGS; i++)
/* Note that we read the registers in reverse order. This
* ordering is the ABI apparently used by ethtool and other
* applications.
*/
buff[1 + i] = mdio_read(netdev, nic->mii.phy_id,
E100_PHY_REGS - 1 - i);
memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf));
e100_exec_cb(nic, NULL, e100_dump);
msleep(10);
memcpy(&buff[1 + E100_PHY_REGS], nic->mem->dump_buf,
sizeof(nic->mem->dump_buf));
}
static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
{
struct nic *nic = netdev_priv(netdev);
wol->supported = (nic->mac >= mac_82558_D101_A4) ? WAKE_MAGIC : 0;
wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0;
}
static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
{
struct nic *nic = netdev_priv(netdev);
if ((wol->wolopts && wol->wolopts != WAKE_MAGIC) ||
!device_can_wakeup(&nic->pdev->dev))
return -EOPNOTSUPP;
if (wol->wolopts)
nic->flags |= wol_magic;
else
nic->flags &= ~wol_magic;
device_set_wakeup_enable(&nic->pdev->dev, wol->wolopts);
e100_exec_cb(nic, NULL, e100_configure);
return 0;
}
static u32 e100_get_msglevel(struct net_device *netdev)
{
struct nic *nic = netdev_priv(netdev);
return nic->msg_enable;
}
static void e100_set_msglevel(struct net_device *netdev, u32 value)
{
struct nic *nic = netdev_priv(netdev);
nic->msg_enable = value;
}
static int e100_nway_reset(struct net_device *netdev)
{
struct nic *nic = netdev_priv(netdev);
return mii_nway_restart(&nic->mii);
}
static u32 e100_get_link(struct net_device *netdev)
{
struct nic *nic = netdev_priv(netdev);
return mii_link_ok(&nic->mii);
}
static int e100_get_eeprom_len(struct net_device *netdev)
{
struct nic *nic = netdev_priv(netdev);
return nic->eeprom_wc << 1;
}
#define E100_EEPROM_MAGIC 0x1234
static int e100_get_eeprom(struct net_device *netdev,
struct ethtool_eeprom *eeprom, u8 *bytes)
{
struct nic *nic = netdev_priv(netdev);
eeprom->magic = E100_EEPROM_MAGIC;
memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len);
return 0;
}
static int e100_set_eeprom(struct net_device *netdev,
struct ethtool_eeprom *eeprom, u8 *bytes)
{
struct nic *nic = netdev_priv(netdev);
if (eeprom->magic != E100_EEPROM_MAGIC)
return -EINVAL;
memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len);
return e100_eeprom_save(nic, eeprom->offset >> 1,
(eeprom->len >> 1) + 1);
}
static void e100_get_ringparam(struct net_device *netdev,
struct ethtool_ringparam *ring,
struct kernel_ethtool_ringparam *kernel_ring,
struct netlink_ext_ack *extack)
{
struct nic *nic = netdev_priv(netdev);
struct param_range *rfds = &nic->params.rfds;
struct param_range *cbs = &nic->params.cbs;
ring->rx_max_pending = rfds->max;
ring->tx_max_pending = cbs->max;
ring->rx_pending = rfds->count;
ring->tx_pending = cbs->count;
}
static int e100_set_ringparam(struct net_device *netdev,
struct ethtool_ringparam *ring,
struct kernel_ethtool_ringparam *kernel_ring,
struct netlink_ext_ack *extack)
{
struct nic *nic = netdev_priv(netdev);
struct param_range *rfds = &nic->params.rfds;
struct param_range *cbs = &nic->params.cbs;
if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
return -EINVAL;
if (netif_running(netdev))
e100_down(nic);
rfds->count = max(ring->rx_pending, rfds->min);
rfds->count = min(rfds->count, rfds->max);
cbs->count = max(ring->tx_pending, cbs->min);
cbs->count = min(cbs->count, cbs->max);
netif_info(nic, drv, nic->netdev, "Ring Param settings: rx: %d, tx %d\n",
rfds->count, cbs->count);
if (netif_running(netdev))
e100_up(nic);
return 0;
}
static const char e100_gstrings_test[][ETH_GSTRING_LEN] = {
"Link test (on/offline)",
"Eeprom test (on/offline)",
"Self test (offline)",
"Mac loopback (offline)",
"Phy loopback (offline)",
};
#define E100_TEST_LEN ARRAY_SIZE(e100_gstrings_test)
static void e100_diag_test(struct net_device *netdev,
struct ethtool_test *test, u64 *data)
{
struct ethtool_cmd cmd;
struct nic *nic = netdev_priv(netdev);
int i;
memset(data, 0, E100_TEST_LEN * sizeof(u64));
data[0] = !mii_link_ok(&nic->mii);
data[1] = e100_eeprom_load(nic);
if (test->flags & ETH_TEST_FL_OFFLINE) {
/* save speed, duplex & autoneg settings */
mii_ethtool_gset(&nic->mii, &cmd);
if (netif_running(netdev))
e100_down(nic);
data[2] = e100_self_test(nic);
data[3] = e100_loopback_test(nic, lb_mac);
data[4] = e100_loopback_test(nic, lb_phy);
/* restore speed, duplex & autoneg settings */
mii_ethtool_sset(&nic->mii, &cmd);
if (netif_running(netdev))
e100_up(nic);
}
for (i = 0; i < E100_TEST_LEN; i++)
test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0;
msleep_interruptible(4 * 1000);
}
static int e100_set_phys_id(struct net_device *netdev,
enum ethtool_phys_id_state state)
{
struct nic *nic = netdev_priv(netdev);
enum led_state {
led_on = 0x01,
led_off = 0x04,
led_on_559 = 0x05,
led_on_557 = 0x07,
};
u16 led_reg = (nic->phy == phy_82552_v) ? E100_82552_LED_OVERRIDE :
MII_LED_CONTROL;
u16 leds = 0;
switch (state) {
case ETHTOOL_ID_ACTIVE:
return 2;
case ETHTOOL_ID_ON:
leds = (nic->phy == phy_82552_v) ? E100_82552_LED_ON :
(nic->mac < mac_82559_D101M) ? led_on_557 : led_on_559;
break;
case ETHTOOL_ID_OFF:
leds = (nic->phy == phy_82552_v) ? E100_82552_LED_OFF : led_off;
break;
case ETHTOOL_ID_INACTIVE:
break;
}
mdio_write(netdev, nic->mii.phy_id, led_reg, leds);
return 0;
}
static const char e100_gstrings_stats[][ETH_GSTRING_LEN] = {
"rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors",
"tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions",
"rx_length_errors", "rx_over_errors", "rx_crc_errors",
"rx_frame_errors", "rx_fifo_errors", "rx_missed_errors",
"tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors",
"tx_heartbeat_errors", "tx_window_errors",
/* device-specific stats */
"tx_deferred", "tx_single_collisions", "tx_multi_collisions",
"tx_flow_control_pause", "rx_flow_control_pause",
"rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets",
"rx_short_frame_errors", "rx_over_length_errors",
};
#define E100_NET_STATS_LEN 21
#define E100_STATS_LEN ARRAY_SIZE(e100_gstrings_stats)
static int e100_get_sset_count(struct net_device *netdev, int sset)
{
switch (sset) {
case ETH_SS_TEST:
return E100_TEST_LEN;
case ETH_SS_STATS:
return E100_STATS_LEN;
default:
return -EOPNOTSUPP;
}
}
static void e100_get_ethtool_stats(struct net_device *netdev,
struct ethtool_stats *stats, u64 *data)
{
struct nic *nic = netdev_priv(netdev);
int i;
for (i = 0; i < E100_NET_STATS_LEN; i++)
data[i] = ((unsigned long *)&netdev->stats)[i];
data[i++] = nic->tx_deferred;
data[i++] = nic->tx_single_collisions;
data[i++] = nic->tx_multiple_collisions;
data[i++] = nic->tx_fc_pause;
data[i++] = nic->rx_fc_pause;
data[i++] = nic->rx_fc_unsupported;
data[i++] = nic->tx_tco_frames;
data[i++] = nic->rx_tco_frames;
data[i++] = nic->rx_short_frame_errors;
data[i++] = nic->rx_over_length_errors;
}
static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
{
switch (stringset) {
case ETH_SS_TEST:
memcpy(data, e100_gstrings_test, sizeof(e100_gstrings_test));
break;
case ETH_SS_STATS:
memcpy(data, e100_gstrings_stats, sizeof(e100_gstrings_stats));
break;
}
}
static const struct ethtool_ops e100_ethtool_ops = {
.get_drvinfo = e100_get_drvinfo,
.get_regs_len = e100_get_regs_len,
.get_regs = e100_get_regs,
.get_wol = e100_get_wol,
.set_wol = e100_set_wol,
.get_msglevel = e100_get_msglevel,
.set_msglevel = e100_set_msglevel,
.nway_reset = e100_nway_reset,
.get_link = e100_get_link,
.get_eeprom_len = e100_get_eeprom_len,
.get_eeprom = e100_get_eeprom,
.set_eeprom = e100_set_eeprom,
.get_ringparam = e100_get_ringparam,
.set_ringparam = e100_set_ringparam,
.self_test = e100_diag_test,
.get_strings = e100_get_strings,
.set_phys_id = e100_set_phys_id,
.get_ethtool_stats = e100_get_ethtool_stats,
.get_sset_count = e100_get_sset_count,
.get_ts_info = ethtool_op_get_ts_info,
.get_link_ksettings = e100_get_link_ksettings,
.set_link_ksettings = e100_set_link_ksettings,
};
static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
struct nic *nic = netdev_priv(netdev);
return generic_mii_ioctl(&nic->mii, if_mii(ifr), cmd, NULL);
}
static int e100_alloc(struct nic *nic)
{
nic->mem = dma_alloc_coherent(&nic->pdev->dev, sizeof(struct mem),
&nic->dma_addr, GFP_KERNEL);
return nic->mem ? 0 : -ENOMEM;
}
static void e100_free(struct nic *nic)
{
if (nic->mem) {
dma_free_coherent(&nic->pdev->dev, sizeof(struct mem),
nic->mem, nic->dma_addr);
nic->mem = NULL;
}
}
static int e100_open(struct net_device *netdev)
{
struct nic *nic = netdev_priv(netdev);
int err = 0;
netif_carrier_off(netdev);
if ((err = e100_up(nic)))
netif_err(nic, ifup, nic->netdev, "Cannot open interface, aborting\n");
return err;
}
static int e100_close(struct net_device *netdev)
{
e100_down(netdev_priv(netdev));
return 0;
}
static int e100_set_features(struct net_device *netdev,
netdev_features_t features)
{
struct nic *nic = netdev_priv(netdev);
netdev_features_t changed = features ^ netdev->features;
if (!(changed & (NETIF_F_RXFCS | NETIF_F_RXALL)))
return 0;
netdev->features = features;
e100_exec_cb(nic, NULL, e100_configure);
return 1;
}
static const struct net_device_ops e100_netdev_ops = {
.ndo_open = e100_open,
.ndo_stop = e100_close,
.ndo_start_xmit = e100_xmit_frame,
.ndo_validate_addr = eth_validate_addr,
.ndo_set_rx_mode = e100_set_multicast_list,
.ndo_set_mac_address = e100_set_mac_address,
.ndo_eth_ioctl = e100_do_ioctl,
.ndo_tx_timeout = e100_tx_timeout,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = e100_netpoll,
#endif
.ndo_set_features = e100_set_features,
};
static int e100_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
struct net_device *netdev;
struct nic *nic;
int err;
if (!(netdev = alloc_etherdev(sizeof(struct nic))))
return -ENOMEM;
netdev->hw_features |= NETIF_F_RXFCS;
netdev->priv_flags |= IFF_SUPP_NOFCS;
netdev->hw_features |= NETIF_F_RXALL;
netdev->netdev_ops = &e100_netdev_ops;
netdev->ethtool_ops = &e100_ethtool_ops;
netdev->watchdog_timeo = E100_WATCHDOG_PERIOD;
strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
nic = netdev_priv(netdev);
netif_napi_add_weight(netdev, &nic->napi, e100_poll, E100_NAPI_WEIGHT);
nic->netdev = netdev;
nic->pdev = pdev;
nic->msg_enable = (1 << debug) - 1;
nic->mdio_ctrl = mdio_ctrl_hw;
pci_set_drvdata(pdev, netdev);
if ((err = pci_enable_device(pdev))) {
netif_err(nic, probe, nic->netdev, "Cannot enable PCI device, aborting\n");
goto err_out_free_dev;
}
if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
netif_err(nic, probe, nic->netdev, "Cannot find proper PCI device base address, aborting\n");
err = -ENODEV;
goto err_out_disable_pdev;
}
if ((err = pci_request_regions(pdev, DRV_NAME))) {
netif_err(nic, probe, nic->netdev, "Cannot obtain PCI resources, aborting\n");
goto err_out_disable_pdev;
}
if ((err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)))) {
netif_err(nic, probe, nic->netdev, "No usable DMA configuration, aborting\n");
goto err_out_free_res;
}
SET_NETDEV_DEV(netdev, &pdev->dev);
if (use_io)
netif_info(nic, probe, nic->netdev, "using i/o access mode\n");
nic->csr = pci_iomap(pdev, (use_io ? 1 : 0), sizeof(struct csr));
if (!nic->csr) {
netif_err(nic, probe, nic->netdev, "Cannot map device registers, aborting\n");
err = -ENOMEM;
goto err_out_free_res;
}
if (ent->driver_data)
nic->flags |= ich;
else
nic->flags &= ~ich;
e100_get_defaults(nic);
/* D100 MAC doesn't allow rx of vlan packets with normal MTU */
if (nic->mac < mac_82558_D101_A4)
netdev->features |= NETIF_F_VLAN_CHALLENGED;
/* locks must be initialized before calling hw_reset */
spin_lock_init(&nic->cb_lock);
spin_lock_init(&nic->cmd_lock);
spin_lock_init(&nic->mdio_lock);
/* Reset the device before pci_set_master() in case device is in some
* funky state and has an interrupt pending - hint: we don't have the
* interrupt handler registered yet. */
e100_hw_reset(nic);
pci_set_master(pdev);
timer_setup(&nic->watchdog, e100_watchdog, 0);
INIT_WORK(&nic->tx_timeout_task, e100_tx_timeout_task);
if ((err = e100_alloc(nic))) {
netif_err(nic, probe, nic->netdev, "Cannot alloc driver memory, aborting\n");
goto err_out_iounmap;
}
if ((err = e100_eeprom_load(nic)))
goto err_out_free;
e100_phy_init(nic);
eth_hw_addr_set(netdev, (u8 *)nic->eeprom);
if (!is_valid_ether_addr(netdev->dev_addr)) {
if (!eeprom_bad_csum_allow) {
netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, aborting\n");
err = -EAGAIN;
goto err_out_free;
} else {
netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, you MUST configure one.\n");
}
}
/* Wol magic packet can be enabled from eeprom */
if ((nic->mac >= mac_82558_D101_A4) &&
(le16_to_cpu(nic->eeprom[eeprom_id]) & eeprom_id_wol)) {
nic->flags |= wol_magic;
device_set_wakeup_enable(&pdev->dev, true);
}
/* ack any pending wake events, disable PME */
pci_pme_active(pdev, false);
strcpy(netdev->name, "eth%d");
if ((err = register_netdev(netdev))) {
netif_err(nic, probe, nic->netdev, "Cannot register net device, aborting\n");
goto err_out_free;
}
nic->cbs_pool = dma_pool_create(netdev->name,
&nic->pdev->dev,
nic->params.cbs.max * sizeof(struct cb),
sizeof(u32),
0);
if (!nic->cbs_pool) {
netif_err(nic, probe, nic->netdev, "Cannot create DMA pool, aborting\n");
err = -ENOMEM;
goto err_out_pool;
}
netif_info(nic, probe, nic->netdev,
"addr 0x%llx, irq %d, MAC addr %pM\n",
(unsigned long long)pci_resource_start(pdev, use_io ? 1 : 0),
pdev->irq, netdev->dev_addr);
return 0;
err_out_pool:
unregister_netdev(netdev);
err_out_free:
e100_free(nic);
err_out_iounmap:
pci_iounmap(pdev, nic->csr);
err_out_free_res:
pci_release_regions(pdev);
err_out_disable_pdev:
pci_disable_device(pdev);
err_out_free_dev:
free_netdev(netdev);
return err;
}
static void e100_remove(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
if (netdev) {
struct nic *nic = netdev_priv(netdev);
unregister_netdev(netdev);
e100_free(nic);
pci_iounmap(pdev, nic->csr);
dma_pool_destroy(nic->cbs_pool);
free_netdev(netdev);
pci_release_regions(pdev);
pci_disable_device(pdev);
}
}
#define E100_82552_SMARTSPEED 0x14 /* SmartSpeed Ctrl register */
#define E100_82552_REV_ANEG 0x0200 /* Reverse auto-negotiation */
#define E100_82552_ANEG_NOW 0x0400 /* Auto-negotiate now */
static void __e100_shutdown(struct pci_dev *pdev, bool *enable_wake)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct nic *nic = netdev_priv(netdev);
netif_device_detach(netdev);
if (netif_running(netdev))
e100_down(nic);
if ((nic->flags & wol_magic) | e100_asf(nic)) {
/* enable reverse auto-negotiation */
if (nic->phy == phy_82552_v) {
u16 smartspeed = mdio_read(netdev, nic->mii.phy_id,
E100_82552_SMARTSPEED);
mdio_write(netdev, nic->mii.phy_id,
E100_82552_SMARTSPEED, smartspeed |
E100_82552_REV_ANEG | E100_82552_ANEG_NOW);
}
*enable_wake = true;
} else {
*enable_wake = false;
}
pci_disable_device(pdev);
}
static int __e100_power_off(struct pci_dev *pdev, bool wake)
{
if (wake)
return pci_prepare_to_sleep(pdev);
pci_wake_from_d3(pdev, false);
pci_set_power_state(pdev, PCI_D3hot);
return 0;
}
static int __maybe_unused e100_suspend(struct device *dev_d)
{
bool wake;
__e100_shutdown(to_pci_dev(dev_d), &wake);
return 0;
}
static int __maybe_unused e100_resume(struct device *dev_d)
{
struct net_device *netdev = dev_get_drvdata(dev_d);
struct nic *nic = netdev_priv(netdev);
int err;
err = pci_enable_device(to_pci_dev(dev_d));
if (err) {
netdev_err(netdev, "Resume cannot enable PCI device, aborting\n");
return err;
}
pci_set_master(to_pci_dev(dev_d));
/* disable reverse auto-negotiation */
if (nic->phy == phy_82552_v) {
u16 smartspeed = mdio_read(netdev, nic->mii.phy_id,
E100_82552_SMARTSPEED);
mdio_write(netdev, nic->mii.phy_id,
E100_82552_SMARTSPEED,
smartspeed & ~(E100_82552_REV_ANEG));
}
if (netif_running(netdev))
e100_up(nic);
netif_device_attach(netdev);
return 0;
}
static void e100_shutdown(struct pci_dev *pdev)
{
bool wake;
__e100_shutdown(pdev, &wake);
if (system_state == SYSTEM_POWER_OFF)
__e100_power_off(pdev, wake);
}
/* ------------------ PCI Error Recovery infrastructure -------------- */
/**
* e100_io_error_detected - called when PCI error is detected.
* @pdev: Pointer to PCI device
* @state: The current pci connection state
*/
static pci_ers_result_t e100_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct nic *nic = netdev_priv(netdev);
netif_device_detach(netdev);
if (state == pci_channel_io_perm_failure)
return PCI_ERS_RESULT_DISCONNECT;
if (netif_running(netdev))
e100_down(nic);
pci_disable_device(pdev);
/* Request a slot reset. */
return PCI_ERS_RESULT_NEED_RESET;
}
/**
* e100_io_slot_reset - called after the pci bus has been reset.
* @pdev: Pointer to PCI device
*
* Restart the card from scratch.
*/
static pci_ers_result_t e100_io_slot_reset(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct nic *nic = netdev_priv(netdev);
if (pci_enable_device(pdev)) {
pr_err("Cannot re-enable PCI device after reset\n");
return PCI_ERS_RESULT_DISCONNECT;
}
pci_set_master(pdev);
/* Only one device per card can do a reset */
if (0 != PCI_FUNC(pdev->devfn))
return PCI_ERS_RESULT_RECOVERED;
e100_hw_reset(nic);
e100_phy_init(nic);
return PCI_ERS_RESULT_RECOVERED;
}
/**
* e100_io_resume - resume normal operations
* @pdev: Pointer to PCI device
*
* Resume normal operations after an error recovery
* sequence has been completed.
*/
static void e100_io_resume(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct nic *nic = netdev_priv(netdev);
/* ack any pending wake events, disable PME */
pci_enable_wake(pdev, PCI_D0, 0);
netif_device_attach(netdev);
if (netif_running(netdev)) {
e100_open(netdev);
mod_timer(&nic->watchdog, jiffies);
}
}
static const struct pci_error_handlers e100_err_handler = {
.error_detected = e100_io_error_detected,
.slot_reset = e100_io_slot_reset,
.resume = e100_io_resume,
};
static SIMPLE_DEV_PM_OPS(e100_pm_ops, e100_suspend, e100_resume);
static struct pci_driver e100_driver = {
.name = DRV_NAME,
.id_table = e100_id_table,
.probe = e100_probe,
.remove = e100_remove,
/* Power Management hooks */
.driver.pm = &e100_pm_ops,
.shutdown = e100_shutdown,
.err_handler = &e100_err_handler,
};
static int __init e100_init_module(void)
{
if (((1 << debug) - 1) & NETIF_MSG_DRV) {
pr_info("%s\n", DRV_DESCRIPTION);
pr_info("%s\n", DRV_COPYRIGHT);
}
return pci_register_driver(&e100_driver);
}
static void __exit e100_cleanup_module(void)
{
pci_unregister_driver(&e100_driver);
}
module_init(e100_init_module);
module_exit(e100_cleanup_module);