linux-zen-server/drivers/net/ethernet/intel/ice/ice_ddp.c

1898 lines
52 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2022, Intel Corporation. */
#include "ice_common.h"
#include "ice.h"
#include "ice_ddp.h"
/* For supporting double VLAN mode, it is necessary to enable or disable certain
* boost tcam entries. The metadata labels names that match the following
* prefixes will be saved to allow enabling double VLAN mode.
*/
#define ICE_DVM_PRE "BOOST_MAC_VLAN_DVM" /* enable these entries */
#define ICE_SVM_PRE "BOOST_MAC_VLAN_SVM" /* disable these entries */
/* To support tunneling entries by PF, the package will append the PF number to
* the label; for example TNL_VXLAN_PF0, TNL_VXLAN_PF1, TNL_VXLAN_PF2, etc.
*/
#define ICE_TNL_PRE "TNL_"
static const struct ice_tunnel_type_scan tnls[] = {
{ TNL_VXLAN, "TNL_VXLAN_PF" },
{ TNL_GENEVE, "TNL_GENEVE_PF" },
{ TNL_LAST, "" }
};
/**
* ice_verify_pkg - verify package
* @pkg: pointer to the package buffer
* @len: size of the package buffer
*
* Verifies various attributes of the package file, including length, format
* version, and the requirement of at least one segment.
*/
enum ice_ddp_state ice_verify_pkg(struct ice_pkg_hdr *pkg, u32 len)
{
u32 seg_count;
u32 i;
if (len < struct_size(pkg, seg_offset, 1))
return ICE_DDP_PKG_INVALID_FILE;
if (pkg->pkg_format_ver.major != ICE_PKG_FMT_VER_MAJ ||
pkg->pkg_format_ver.minor != ICE_PKG_FMT_VER_MNR ||
pkg->pkg_format_ver.update != ICE_PKG_FMT_VER_UPD ||
pkg->pkg_format_ver.draft != ICE_PKG_FMT_VER_DFT)
return ICE_DDP_PKG_INVALID_FILE;
/* pkg must have at least one segment */
seg_count = le32_to_cpu(pkg->seg_count);
if (seg_count < 1)
return ICE_DDP_PKG_INVALID_FILE;
/* make sure segment array fits in package length */
if (len < struct_size(pkg, seg_offset, seg_count))
return ICE_DDP_PKG_INVALID_FILE;
/* all segments must fit within length */
for (i = 0; i < seg_count; i++) {
u32 off = le32_to_cpu(pkg->seg_offset[i]);
struct ice_generic_seg_hdr *seg;
/* segment header must fit */
if (len < off + sizeof(*seg))
return ICE_DDP_PKG_INVALID_FILE;
seg = (struct ice_generic_seg_hdr *)((u8 *)pkg + off);
/* segment body must fit */
if (len < off + le32_to_cpu(seg->seg_size))
return ICE_DDP_PKG_INVALID_FILE;
}
return ICE_DDP_PKG_SUCCESS;
}
/**
* ice_free_seg - free package segment pointer
* @hw: pointer to the hardware structure
*
* Frees the package segment pointer in the proper manner, depending on if the
* segment was allocated or just the passed in pointer was stored.
*/
void ice_free_seg(struct ice_hw *hw)
{
if (hw->pkg_copy) {
devm_kfree(ice_hw_to_dev(hw), hw->pkg_copy);
hw->pkg_copy = NULL;
hw->pkg_size = 0;
}
hw->seg = NULL;
}
/**
* ice_chk_pkg_version - check package version for compatibility with driver
* @pkg_ver: pointer to a version structure to check
*
* Check to make sure that the package about to be downloaded is compatible with
* the driver. To be compatible, the major and minor components of the package
* version must match our ICE_PKG_SUPP_VER_MAJ and ICE_PKG_SUPP_VER_MNR
* definitions.
*/
static enum ice_ddp_state ice_chk_pkg_version(struct ice_pkg_ver *pkg_ver)
{
if (pkg_ver->major > ICE_PKG_SUPP_VER_MAJ ||
(pkg_ver->major == ICE_PKG_SUPP_VER_MAJ &&
pkg_ver->minor > ICE_PKG_SUPP_VER_MNR))
return ICE_DDP_PKG_FILE_VERSION_TOO_HIGH;
else if (pkg_ver->major < ICE_PKG_SUPP_VER_MAJ ||
(pkg_ver->major == ICE_PKG_SUPP_VER_MAJ &&
pkg_ver->minor < ICE_PKG_SUPP_VER_MNR))
return ICE_DDP_PKG_FILE_VERSION_TOO_LOW;
return ICE_DDP_PKG_SUCCESS;
}
/**
* ice_pkg_val_buf
* @buf: pointer to the ice buffer
*
* This helper function validates a buffer's header.
*/
struct ice_buf_hdr *ice_pkg_val_buf(struct ice_buf *buf)
{
struct ice_buf_hdr *hdr;
u16 section_count;
u16 data_end;
hdr = (struct ice_buf_hdr *)buf->buf;
/* verify data */
section_count = le16_to_cpu(hdr->section_count);
if (section_count < ICE_MIN_S_COUNT || section_count > ICE_MAX_S_COUNT)
return NULL;
data_end = le16_to_cpu(hdr->data_end);
if (data_end < ICE_MIN_S_DATA_END || data_end > ICE_MAX_S_DATA_END)
return NULL;
return hdr;
}
/**
* ice_find_buf_table
* @ice_seg: pointer to the ice segment
*
* Returns the address of the buffer table within the ice segment.
*/
static struct ice_buf_table *ice_find_buf_table(struct ice_seg *ice_seg)
{
struct ice_nvm_table *nvms = (struct ice_nvm_table *)
(ice_seg->device_table + le32_to_cpu(ice_seg->device_table_count));
return (__force struct ice_buf_table *)(nvms->vers +
le32_to_cpu(nvms->table_count));
}
/**
* ice_pkg_enum_buf
* @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
* @state: pointer to the enum state
*
* This function will enumerate all the buffers in the ice segment. The first
* call is made with the ice_seg parameter non-NULL; on subsequent calls,
* ice_seg is set to NULL which continues the enumeration. When the function
* returns a NULL pointer, then the end of the buffers has been reached, or an
* unexpected value has been detected (for example an invalid section count or
* an invalid buffer end value).
*/
static struct ice_buf_hdr *ice_pkg_enum_buf(struct ice_seg *ice_seg,
struct ice_pkg_enum *state)
{
if (ice_seg) {
state->buf_table = ice_find_buf_table(ice_seg);
if (!state->buf_table)
return NULL;
state->buf_idx = 0;
return ice_pkg_val_buf(state->buf_table->buf_array);
}
if (++state->buf_idx < le32_to_cpu(state->buf_table->buf_count))
return ice_pkg_val_buf(state->buf_table->buf_array +
state->buf_idx);
else
return NULL;
}
/**
* ice_pkg_advance_sect
* @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
* @state: pointer to the enum state
*
* This helper function will advance the section within the ice segment,
* also advancing the buffer if needed.
*/
static bool ice_pkg_advance_sect(struct ice_seg *ice_seg,
struct ice_pkg_enum *state)
{
if (!ice_seg && !state->buf)
return false;
if (!ice_seg && state->buf)
if (++state->sect_idx < le16_to_cpu(state->buf->section_count))
return true;
state->buf = ice_pkg_enum_buf(ice_seg, state);
if (!state->buf)
return false;
/* start of new buffer, reset section index */
state->sect_idx = 0;
return true;
}
/**
* ice_pkg_enum_section
* @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
* @state: pointer to the enum state
* @sect_type: section type to enumerate
*
* This function will enumerate all the sections of a particular type in the
* ice segment. The first call is made with the ice_seg parameter non-NULL;
* on subsequent calls, ice_seg is set to NULL which continues the enumeration.
* When the function returns a NULL pointer, then the end of the matching
* sections has been reached.
*/
void *ice_pkg_enum_section(struct ice_seg *ice_seg, struct ice_pkg_enum *state,
u32 sect_type)
{
u16 offset, size;
if (ice_seg)
state->type = sect_type;
if (!ice_pkg_advance_sect(ice_seg, state))
return NULL;
/* scan for next matching section */
while (state->buf->section_entry[state->sect_idx].type !=
cpu_to_le32(state->type))
if (!ice_pkg_advance_sect(NULL, state))
return NULL;
/* validate section */
offset = le16_to_cpu(state->buf->section_entry[state->sect_idx].offset);
if (offset < ICE_MIN_S_OFF || offset > ICE_MAX_S_OFF)
return NULL;
size = le16_to_cpu(state->buf->section_entry[state->sect_idx].size);
if (size < ICE_MIN_S_SZ || size > ICE_MAX_S_SZ)
return NULL;
/* make sure the section fits in the buffer */
if (offset + size > ICE_PKG_BUF_SIZE)
return NULL;
state->sect_type =
le32_to_cpu(state->buf->section_entry[state->sect_idx].type);
/* calc pointer to this section */
state->sect =
((u8 *)state->buf) +
le16_to_cpu(state->buf->section_entry[state->sect_idx].offset);
return state->sect;
}
/**
* ice_pkg_enum_entry
* @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
* @state: pointer to the enum state
* @sect_type: section type to enumerate
* @offset: pointer to variable that receives the offset in the table (optional)
* @handler: function that handles access to the entries into the section type
*
* This function will enumerate all the entries in particular section type in
* the ice segment. The first call is made with the ice_seg parameter non-NULL;
* on subsequent calls, ice_seg is set to NULL which continues the enumeration.
* When the function returns a NULL pointer, then the end of the entries has
* been reached.
*
* Since each section may have a different header and entry size, the handler
* function is needed to determine the number and location entries in each
* section.
*
* The offset parameter is optional, but should be used for sections that
* contain an offset for each section table. For such cases, the section handler
* function must return the appropriate offset + index to give the absolution
* offset for each entry. For example, if the base for a section's header
* indicates a base offset of 10, and the index for the entry is 2, then
* section handler function should set the offset to 10 + 2 = 12.
*/
static void *ice_pkg_enum_entry(struct ice_seg *ice_seg,
struct ice_pkg_enum *state, u32 sect_type,
u32 *offset,
void *(*handler)(u32 sect_type, void *section,
u32 index, u32 *offset))
{
void *entry;
if (ice_seg) {
if (!handler)
return NULL;
if (!ice_pkg_enum_section(ice_seg, state, sect_type))
return NULL;
state->entry_idx = 0;
state->handler = handler;
} else {
state->entry_idx++;
}
if (!state->handler)
return NULL;
/* get entry */
entry = state->handler(state->sect_type, state->sect, state->entry_idx,
offset);
if (!entry) {
/* end of a section, look for another section of this type */
if (!ice_pkg_enum_section(NULL, state, 0))
return NULL;
state->entry_idx = 0;
entry = state->handler(state->sect_type, state->sect,
state->entry_idx, offset);
}
return entry;
}
/**
* ice_sw_fv_handler
* @sect_type: section type
* @section: pointer to section
* @index: index of the field vector entry to be returned
* @offset: ptr to variable that receives the offset in the field vector table
*
* This is a callback function that can be passed to ice_pkg_enum_entry.
* This function treats the given section as of type ice_sw_fv_section and
* enumerates offset field. "offset" is an index into the field vector table.
*/
static void *ice_sw_fv_handler(u32 sect_type, void *section, u32 index,
u32 *offset)
{
struct ice_sw_fv_section *fv_section = section;
if (!section || sect_type != ICE_SID_FLD_VEC_SW)
return NULL;
if (index >= le16_to_cpu(fv_section->count))
return NULL;
if (offset)
/* "index" passed in to this function is relative to a given
* 4k block. To get to the true index into the field vector
* table need to add the relative index to the base_offset
* field of this section
*/
*offset = le16_to_cpu(fv_section->base_offset) + index;
return fv_section->fv + index;
}
/**
* ice_get_prof_index_max - get the max profile index for used profile
* @hw: pointer to the HW struct
*
* Calling this function will get the max profile index for used profile
* and store the index number in struct ice_switch_info *switch_info
* in HW for following use.
*/
static int ice_get_prof_index_max(struct ice_hw *hw)
{
u16 prof_index = 0, j, max_prof_index = 0;
struct ice_pkg_enum state;
struct ice_seg *ice_seg;
bool flag = false;
struct ice_fv *fv;
u32 offset;
memset(&state, 0, sizeof(state));
if (!hw->seg)
return -EINVAL;
ice_seg = hw->seg;
do {
fv = ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW,
&offset, ice_sw_fv_handler);
if (!fv)
break;
ice_seg = NULL;
/* in the profile that not be used, the prot_id is set to 0xff
* and the off is set to 0x1ff for all the field vectors.
*/
for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++)
if (fv->ew[j].prot_id != ICE_PROT_INVALID ||
fv->ew[j].off != ICE_FV_OFFSET_INVAL)
flag = true;
if (flag && prof_index > max_prof_index)
max_prof_index = prof_index;
prof_index++;
flag = false;
} while (fv);
hw->switch_info->max_used_prof_index = max_prof_index;
return 0;
}
/**
* ice_get_ddp_pkg_state - get DDP pkg state after download
* @hw: pointer to the HW struct
* @already_loaded: indicates if pkg was already loaded onto the device
*/
static enum ice_ddp_state ice_get_ddp_pkg_state(struct ice_hw *hw,
bool already_loaded)
{
if (hw->pkg_ver.major == hw->active_pkg_ver.major &&
hw->pkg_ver.minor == hw->active_pkg_ver.minor &&
hw->pkg_ver.update == hw->active_pkg_ver.update &&
hw->pkg_ver.draft == hw->active_pkg_ver.draft &&
!memcmp(hw->pkg_name, hw->active_pkg_name, sizeof(hw->pkg_name))) {
if (already_loaded)
return ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED;
else
return ICE_DDP_PKG_SUCCESS;
} else if (hw->active_pkg_ver.major != ICE_PKG_SUPP_VER_MAJ ||
hw->active_pkg_ver.minor != ICE_PKG_SUPP_VER_MNR) {
return ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED;
} else if (hw->active_pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
hw->active_pkg_ver.minor == ICE_PKG_SUPP_VER_MNR) {
return ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED;
} else {
return ICE_DDP_PKG_ERR;
}
}
/**
* ice_init_pkg_regs - initialize additional package registers
* @hw: pointer to the hardware structure
*/
static void ice_init_pkg_regs(struct ice_hw *hw)
{
#define ICE_SW_BLK_INP_MASK_L 0xFFFFFFFF
#define ICE_SW_BLK_INP_MASK_H 0x0000FFFF
#define ICE_SW_BLK_IDX 0
/* setup Switch block input mask, which is 48-bits in two parts */
wr32(hw, GL_PREEXT_L2_PMASK0(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_L);
wr32(hw, GL_PREEXT_L2_PMASK1(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_H);
}
/**
* ice_marker_ptype_tcam_handler
* @sect_type: section type
* @section: pointer to section
* @index: index of the Marker PType TCAM entry to be returned
* @offset: pointer to receive absolute offset, always 0 for ptype TCAM sections
*
* This is a callback function that can be passed to ice_pkg_enum_entry.
* Handles enumeration of individual Marker PType TCAM entries.
*/
static void *ice_marker_ptype_tcam_handler(u32 sect_type, void *section,
u32 index, u32 *offset)
{
struct ice_marker_ptype_tcam_section *marker_ptype;
if (sect_type != ICE_SID_RXPARSER_MARKER_PTYPE)
return NULL;
if (index > ICE_MAX_MARKER_PTYPE_TCAMS_IN_BUF)
return NULL;
if (offset)
*offset = 0;
marker_ptype = section;
if (index >= le16_to_cpu(marker_ptype->count))
return NULL;
return marker_ptype->tcam + index;
}
/**
* ice_add_dvm_hint
* @hw: pointer to the HW structure
* @val: value of the boost entry
* @enable: true if entry needs to be enabled, or false if needs to be disabled
*/
static void ice_add_dvm_hint(struct ice_hw *hw, u16 val, bool enable)
{
if (hw->dvm_upd.count < ICE_DVM_MAX_ENTRIES) {
hw->dvm_upd.tbl[hw->dvm_upd.count].boost_addr = val;
hw->dvm_upd.tbl[hw->dvm_upd.count].enable = enable;
hw->dvm_upd.count++;
}
}
/**
* ice_add_tunnel_hint
* @hw: pointer to the HW structure
* @label_name: label text
* @val: value of the tunnel port boost entry
*/
static void ice_add_tunnel_hint(struct ice_hw *hw, char *label_name, u16 val)
{
if (hw->tnl.count < ICE_TUNNEL_MAX_ENTRIES) {
u16 i;
for (i = 0; tnls[i].type != TNL_LAST; i++) {
size_t len = strlen(tnls[i].label_prefix);
/* Look for matching label start, before continuing */
if (strncmp(label_name, tnls[i].label_prefix, len))
continue;
/* Make sure this label matches our PF. Note that the PF
* character ('0' - '7') will be located where our
* prefix string's null terminator is located.
*/
if ((label_name[len] - '0') == hw->pf_id) {
hw->tnl.tbl[hw->tnl.count].type = tnls[i].type;
hw->tnl.tbl[hw->tnl.count].valid = false;
hw->tnl.tbl[hw->tnl.count].boost_addr = val;
hw->tnl.tbl[hw->tnl.count].port = 0;
hw->tnl.count++;
break;
}
}
}
}
/**
* ice_label_enum_handler
* @sect_type: section type
* @section: pointer to section
* @index: index of the label entry to be returned
* @offset: pointer to receive absolute offset, always zero for label sections
*
* This is a callback function that can be passed to ice_pkg_enum_entry.
* Handles enumeration of individual label entries.
*/
static void *ice_label_enum_handler(u32 __always_unused sect_type,
void *section, u32 index, u32 *offset)
{
struct ice_label_section *labels;
if (!section)
return NULL;
if (index > ICE_MAX_LABELS_IN_BUF)
return NULL;
if (offset)
*offset = 0;
labels = section;
if (index >= le16_to_cpu(labels->count))
return NULL;
return labels->label + index;
}
/**
* ice_enum_labels
* @ice_seg: pointer to the ice segment (NULL on subsequent calls)
* @type: the section type that will contain the label (0 on subsequent calls)
* @state: ice_pkg_enum structure that will hold the state of the enumeration
* @value: pointer to a value that will return the label's value if found
*
* Enumerates a list of labels in the package. The caller will call
* ice_enum_labels(ice_seg, type, ...) to start the enumeration, then call
* ice_enum_labels(NULL, 0, ...) to continue. When the function returns a NULL
* the end of the list has been reached.
*/
static char *ice_enum_labels(struct ice_seg *ice_seg, u32 type,
struct ice_pkg_enum *state, u16 *value)
{
struct ice_label *label;
/* Check for valid label section on first call */
if (type && !(type >= ICE_SID_LBL_FIRST && type <= ICE_SID_LBL_LAST))
return NULL;
label = ice_pkg_enum_entry(ice_seg, state, type, NULL,
ice_label_enum_handler);
if (!label)
return NULL;
*value = le16_to_cpu(label->value);
return label->name;
}
/**
* ice_boost_tcam_handler
* @sect_type: section type
* @section: pointer to section
* @index: index of the boost TCAM entry to be returned
* @offset: pointer to receive absolute offset, always 0 for boost TCAM sections
*
* This is a callback function that can be passed to ice_pkg_enum_entry.
* Handles enumeration of individual boost TCAM entries.
*/
static void *ice_boost_tcam_handler(u32 sect_type, void *section, u32 index,
u32 *offset)
{
struct ice_boost_tcam_section *boost;
if (!section)
return NULL;
if (sect_type != ICE_SID_RXPARSER_BOOST_TCAM)
return NULL;
if (index > ICE_MAX_BST_TCAMS_IN_BUF)
return NULL;
if (offset)
*offset = 0;
boost = section;
if (index >= le16_to_cpu(boost->count))
return NULL;
return boost->tcam + index;
}
/**
* ice_find_boost_entry
* @ice_seg: pointer to the ice segment (non-NULL)
* @addr: Boost TCAM address of entry to search for
* @entry: returns pointer to the entry
*
* Finds a particular Boost TCAM entry and returns a pointer to that entry
* if it is found. The ice_seg parameter must not be NULL since the first call
* to ice_pkg_enum_entry requires a pointer to an actual ice_segment structure.
*/
static int ice_find_boost_entry(struct ice_seg *ice_seg, u16 addr,
struct ice_boost_tcam_entry **entry)
{
struct ice_boost_tcam_entry *tcam;
struct ice_pkg_enum state;
memset(&state, 0, sizeof(state));
if (!ice_seg)
return -EINVAL;
do {
tcam = ice_pkg_enum_entry(ice_seg, &state,
ICE_SID_RXPARSER_BOOST_TCAM, NULL,
ice_boost_tcam_handler);
if (tcam && le16_to_cpu(tcam->addr) == addr) {
*entry = tcam;
return 0;
}
ice_seg = NULL;
} while (tcam);
*entry = NULL;
return -EIO;
}
/**
* ice_is_init_pkg_successful - check if DDP init was successful
* @state: state of the DDP pkg after download
*/
bool ice_is_init_pkg_successful(enum ice_ddp_state state)
{
switch (state) {
case ICE_DDP_PKG_SUCCESS:
case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED:
case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED:
return true;
default:
return false;
}
}
/**
* ice_pkg_buf_alloc
* @hw: pointer to the HW structure
*
* Allocates a package buffer and returns a pointer to the buffer header.
* Note: all package contents must be in Little Endian form.
*/
struct ice_buf_build *ice_pkg_buf_alloc(struct ice_hw *hw)
{
struct ice_buf_build *bld;
struct ice_buf_hdr *buf;
bld = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*bld), GFP_KERNEL);
if (!bld)
return NULL;
buf = (struct ice_buf_hdr *)bld;
buf->data_end =
cpu_to_le16(offsetof(struct ice_buf_hdr, section_entry));
return bld;
}
static bool ice_is_gtp_u_profile(u16 prof_idx)
{
return (prof_idx >= ICE_PROFID_IPV6_GTPU_TEID &&
prof_idx <= ICE_PROFID_IPV6_GTPU_IPV6_TCP_INNER) ||
prof_idx == ICE_PROFID_IPV4_GTPU_TEID;
}
static bool ice_is_gtp_c_profile(u16 prof_idx)
{
switch (prof_idx) {
case ICE_PROFID_IPV4_GTPC_TEID:
case ICE_PROFID_IPV4_GTPC_NO_TEID:
case ICE_PROFID_IPV6_GTPC_TEID:
case ICE_PROFID_IPV6_GTPC_NO_TEID:
return true;
default:
return false;
}
}
/**
* ice_get_sw_prof_type - determine switch profile type
* @hw: pointer to the HW structure
* @fv: pointer to the switch field vector
* @prof_idx: profile index to check
*/
static enum ice_prof_type ice_get_sw_prof_type(struct ice_hw *hw,
struct ice_fv *fv, u32 prof_idx)
{
u16 i;
if (ice_is_gtp_c_profile(prof_idx))
return ICE_PROF_TUN_GTPC;
if (ice_is_gtp_u_profile(prof_idx))
return ICE_PROF_TUN_GTPU;
for (i = 0; i < hw->blk[ICE_BLK_SW].es.fvw; i++) {
/* UDP tunnel will have UDP_OF protocol ID and VNI offset */
if (fv->ew[i].prot_id == (u8)ICE_PROT_UDP_OF &&
fv->ew[i].off == ICE_VNI_OFFSET)
return ICE_PROF_TUN_UDP;
/* GRE tunnel will have GRE protocol */
if (fv->ew[i].prot_id == (u8)ICE_PROT_GRE_OF)
return ICE_PROF_TUN_GRE;
}
return ICE_PROF_NON_TUN;
}
/**
* ice_get_sw_fv_bitmap - Get switch field vector bitmap based on profile type
* @hw: pointer to hardware structure
* @req_profs: type of profiles requested
* @bm: pointer to memory for returning the bitmap of field vectors
*/
void ice_get_sw_fv_bitmap(struct ice_hw *hw, enum ice_prof_type req_profs,
unsigned long *bm)
{
struct ice_pkg_enum state;
struct ice_seg *ice_seg;
struct ice_fv *fv;
if (req_profs == ICE_PROF_ALL) {
bitmap_set(bm, 0, ICE_MAX_NUM_PROFILES);
return;
}
memset(&state, 0, sizeof(state));
bitmap_zero(bm, ICE_MAX_NUM_PROFILES);
ice_seg = hw->seg;
do {
enum ice_prof_type prof_type;
u32 offset;
fv = ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW,
&offset, ice_sw_fv_handler);
ice_seg = NULL;
if (fv) {
/* Determine field vector type */
prof_type = ice_get_sw_prof_type(hw, fv, offset);
if (req_profs & prof_type)
set_bit((u16)offset, bm);
}
} while (fv);
}
/**
* ice_get_sw_fv_list
* @hw: pointer to the HW structure
* @lkups: list of protocol types
* @bm: bitmap of field vectors to consider
* @fv_list: Head of a list
*
* Finds all the field vector entries from switch block that contain
* a given protocol ID and offset and returns a list of structures of type
* "ice_sw_fv_list_entry". Every structure in the list has a field vector
* definition and profile ID information
* NOTE: The caller of the function is responsible for freeing the memory
* allocated for every list entry.
*/
int ice_get_sw_fv_list(struct ice_hw *hw, struct ice_prot_lkup_ext *lkups,
unsigned long *bm, struct list_head *fv_list)
{
struct ice_sw_fv_list_entry *fvl;
struct ice_sw_fv_list_entry *tmp;
struct ice_pkg_enum state;
struct ice_seg *ice_seg;
struct ice_fv *fv;
u32 offset;
memset(&state, 0, sizeof(state));
if (!lkups->n_val_words || !hw->seg)
return -EINVAL;
ice_seg = hw->seg;
do {
u16 i;
fv = ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW,
&offset, ice_sw_fv_handler);
if (!fv)
break;
ice_seg = NULL;
/* If field vector is not in the bitmap list, then skip this
* profile.
*/
if (!test_bit((u16)offset, bm))
continue;
for (i = 0; i < lkups->n_val_words; i++) {
int j;
for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++)
if (fv->ew[j].prot_id ==
lkups->fv_words[i].prot_id &&
fv->ew[j].off == lkups->fv_words[i].off)
break;
if (j >= hw->blk[ICE_BLK_SW].es.fvw)
break;
if (i + 1 == lkups->n_val_words) {
fvl = devm_kzalloc(ice_hw_to_dev(hw),
sizeof(*fvl), GFP_KERNEL);
if (!fvl)
goto err;
fvl->fv_ptr = fv;
fvl->profile_id = offset;
list_add(&fvl->list_entry, fv_list);
break;
}
}
} while (fv);
if (list_empty(fv_list)) {
dev_warn(ice_hw_to_dev(hw),
"Required profiles not found in currently loaded DDP package");
return -EIO;
}
return 0;
err:
list_for_each_entry_safe(fvl, tmp, fv_list, list_entry) {
list_del(&fvl->list_entry);
devm_kfree(ice_hw_to_dev(hw), fvl);
}
return -ENOMEM;
}
/**
* ice_init_prof_result_bm - Initialize the profile result index bitmap
* @hw: pointer to hardware structure
*/
void ice_init_prof_result_bm(struct ice_hw *hw)
{
struct ice_pkg_enum state;
struct ice_seg *ice_seg;
struct ice_fv *fv;
memset(&state, 0, sizeof(state));
if (!hw->seg)
return;
ice_seg = hw->seg;
do {
u32 off;
u16 i;
fv = ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW,
&off, ice_sw_fv_handler);
ice_seg = NULL;
if (!fv)
break;
bitmap_zero(hw->switch_info->prof_res_bm[off],
ICE_MAX_FV_WORDS);
/* Determine empty field vector indices, these can be
* used for recipe results. Skip index 0, since it is
* always used for Switch ID.
*/
for (i = 1; i < ICE_MAX_FV_WORDS; i++)
if (fv->ew[i].prot_id == ICE_PROT_INVALID &&
fv->ew[i].off == ICE_FV_OFFSET_INVAL)
set_bit(i, hw->switch_info->prof_res_bm[off]);
} while (fv);
}
/**
* ice_pkg_buf_free
* @hw: pointer to the HW structure
* @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
*
* Frees a package buffer
*/
void ice_pkg_buf_free(struct ice_hw *hw, struct ice_buf_build *bld)
{
devm_kfree(ice_hw_to_dev(hw), bld);
}
/**
* ice_pkg_buf_reserve_section
* @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
* @count: the number of sections to reserve
*
* Reserves one or more section table entries in a package buffer. This routine
* can be called multiple times as long as they are made before calling
* ice_pkg_buf_alloc_section(). Once ice_pkg_buf_alloc_section()
* is called once, the number of sections that can be allocated will not be able
* to be increased; not using all reserved sections is fine, but this will
* result in some wasted space in the buffer.
* Note: all package contents must be in Little Endian form.
*/
int ice_pkg_buf_reserve_section(struct ice_buf_build *bld, u16 count)
{
struct ice_buf_hdr *buf;
u16 section_count;
u16 data_end;
if (!bld)
return -EINVAL;
buf = (struct ice_buf_hdr *)&bld->buf;
/* already an active section, can't increase table size */
section_count = le16_to_cpu(buf->section_count);
if (section_count > 0)
return -EIO;
if (bld->reserved_section_table_entries + count > ICE_MAX_S_COUNT)
return -EIO;
bld->reserved_section_table_entries += count;
data_end = le16_to_cpu(buf->data_end) +
flex_array_size(buf, section_entry, count);
buf->data_end = cpu_to_le16(data_end);
return 0;
}
/**
* ice_pkg_buf_alloc_section
* @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
* @type: the section type value
* @size: the size of the section to reserve (in bytes)
*
* Reserves memory in the buffer for a section's content and updates the
* buffers' status accordingly. This routine returns a pointer to the first
* byte of the section start within the buffer, which is used to fill in the
* section contents.
* Note: all package contents must be in Little Endian form.
*/
void *ice_pkg_buf_alloc_section(struct ice_buf_build *bld, u32 type, u16 size)
{
struct ice_buf_hdr *buf;
u16 sect_count;
u16 data_end;
if (!bld || !type || !size)
return NULL;
buf = (struct ice_buf_hdr *)&bld->buf;
/* check for enough space left in buffer */
data_end = le16_to_cpu(buf->data_end);
/* section start must align on 4 byte boundary */
data_end = ALIGN(data_end, 4);
if ((data_end + size) > ICE_MAX_S_DATA_END)
return NULL;
/* check for more available section table entries */
sect_count = le16_to_cpu(buf->section_count);
if (sect_count < bld->reserved_section_table_entries) {
void *section_ptr = ((u8 *)buf) + data_end;
buf->section_entry[sect_count].offset = cpu_to_le16(data_end);
buf->section_entry[sect_count].size = cpu_to_le16(size);
buf->section_entry[sect_count].type = cpu_to_le32(type);
data_end += size;
buf->data_end = cpu_to_le16(data_end);
buf->section_count = cpu_to_le16(sect_count + 1);
return section_ptr;
}
/* no free section table entries */
return NULL;
}
/**
* ice_pkg_buf_alloc_single_section
* @hw: pointer to the HW structure
* @type: the section type value
* @size: the size of the section to reserve (in bytes)
* @section: returns pointer to the section
*
* Allocates a package buffer with a single section.
* Note: all package contents must be in Little Endian form.
*/
struct ice_buf_build *ice_pkg_buf_alloc_single_section(struct ice_hw *hw,
u32 type, u16 size,
void **section)
{
struct ice_buf_build *buf;
if (!section)
return NULL;
buf = ice_pkg_buf_alloc(hw);
if (!buf)
return NULL;
if (ice_pkg_buf_reserve_section(buf, 1))
goto ice_pkg_buf_alloc_single_section_err;
*section = ice_pkg_buf_alloc_section(buf, type, size);
if (!*section)
goto ice_pkg_buf_alloc_single_section_err;
return buf;
ice_pkg_buf_alloc_single_section_err:
ice_pkg_buf_free(hw, buf);
return NULL;
}
/**
* ice_pkg_buf_get_active_sections
* @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
*
* Returns the number of active sections. Before using the package buffer
* in an update package command, the caller should make sure that there is at
* least one active section - otherwise, the buffer is not legal and should
* not be used.
* Note: all package contents must be in Little Endian form.
*/
u16 ice_pkg_buf_get_active_sections(struct ice_buf_build *bld)
{
struct ice_buf_hdr *buf;
if (!bld)
return 0;
buf = (struct ice_buf_hdr *)&bld->buf;
return le16_to_cpu(buf->section_count);
}
/**
* ice_pkg_buf
* @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
*
* Return a pointer to the buffer's header
*/
struct ice_buf *ice_pkg_buf(struct ice_buf_build *bld)
{
if (!bld)
return NULL;
return &bld->buf;
}
static enum ice_ddp_state ice_map_aq_err_to_ddp_state(enum ice_aq_err aq_err)
{
switch (aq_err) {
case ICE_AQ_RC_ENOSEC:
case ICE_AQ_RC_EBADSIG:
return ICE_DDP_PKG_FILE_SIGNATURE_INVALID;
case ICE_AQ_RC_ESVN:
return ICE_DDP_PKG_FILE_REVISION_TOO_LOW;
case ICE_AQ_RC_EBADMAN:
case ICE_AQ_RC_EBADBUF:
return ICE_DDP_PKG_LOAD_ERROR;
default:
return ICE_DDP_PKG_ERR;
}
}
/**
* ice_acquire_global_cfg_lock
* @hw: pointer to the HW structure
* @access: access type (read or write)
*
* This function will request ownership of the global config lock for reading
* or writing of the package. When attempting to obtain write access, the
* caller must check for the following two return values:
*
* 0 - Means the caller has acquired the global config lock
* and can perform writing of the package.
* -EALREADY - Indicates another driver has already written the
* package or has found that no update was necessary; in
* this case, the caller can just skip performing any
* update of the package.
*/
static int ice_acquire_global_cfg_lock(struct ice_hw *hw,
enum ice_aq_res_access_type access)
{
int status;
status = ice_acquire_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID, access,
ICE_GLOBAL_CFG_LOCK_TIMEOUT);
if (!status)
mutex_lock(&ice_global_cfg_lock_sw);
else if (status == -EALREADY)
ice_debug(hw, ICE_DBG_PKG,
"Global config lock: No work to do\n");
return status;
}
/**
* ice_release_global_cfg_lock
* @hw: pointer to the HW structure
*
* This function will release the global config lock.
*/
static void ice_release_global_cfg_lock(struct ice_hw *hw)
{
mutex_unlock(&ice_global_cfg_lock_sw);
ice_release_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID);
}
/**
* ice_dwnld_cfg_bufs
* @hw: pointer to the hardware structure
* @bufs: pointer to an array of buffers
* @count: the number of buffers in the array
*
* Obtains global config lock and downloads the package configuration buffers
* to the firmware. Metadata buffers are skipped, and the first metadata buffer
* found indicates that the rest of the buffers are all metadata buffers.
*/
static enum ice_ddp_state ice_dwnld_cfg_bufs(struct ice_hw *hw,
struct ice_buf *bufs, u32 count)
{
enum ice_ddp_state state = ICE_DDP_PKG_SUCCESS;
struct ice_buf_hdr *bh;
enum ice_aq_err err;
u32 offset, info, i;
int status;
if (!bufs || !count)
return ICE_DDP_PKG_ERR;
/* If the first buffer's first section has its metadata bit set
* then there are no buffers to be downloaded, and the operation is
* considered a success.
*/
bh = (struct ice_buf_hdr *)bufs;
if (le32_to_cpu(bh->section_entry[0].type) & ICE_METADATA_BUF)
return ICE_DDP_PKG_SUCCESS;
status = ice_acquire_global_cfg_lock(hw, ICE_RES_WRITE);
if (status) {
if (status == -EALREADY)
return ICE_DDP_PKG_ALREADY_LOADED;
return ice_map_aq_err_to_ddp_state(hw->adminq.sq_last_status);
}
for (i = 0; i < count; i++) {
bool last = ((i + 1) == count);
if (!last) {
/* check next buffer for metadata flag */
bh = (struct ice_buf_hdr *)(bufs + i + 1);
/* A set metadata flag in the next buffer will signal
* that the current buffer will be the last buffer
* downloaded
*/
if (le16_to_cpu(bh->section_count))
if (le32_to_cpu(bh->section_entry[0].type) &
ICE_METADATA_BUF)
last = true;
}
bh = (struct ice_buf_hdr *)(bufs + i);
status = ice_aq_download_pkg(hw, bh, ICE_PKG_BUF_SIZE, last,
&offset, &info, NULL);
/* Save AQ status from download package */
if (status) {
ice_debug(hw, ICE_DBG_PKG,
"Pkg download failed: err %d off %d inf %d\n",
status, offset, info);
err = hw->adminq.sq_last_status;
state = ice_map_aq_err_to_ddp_state(err);
break;
}
if (last)
break;
}
if (!status) {
status = ice_set_vlan_mode(hw);
if (status)
ice_debug(hw, ICE_DBG_PKG,
"Failed to set VLAN mode: err %d\n", status);
}
ice_release_global_cfg_lock(hw);
return state;
}
/**
* ice_aq_get_pkg_info_list
* @hw: pointer to the hardware structure
* @pkg_info: the buffer which will receive the information list
* @buf_size: the size of the pkg_info information buffer
* @cd: pointer to command details structure or NULL
*
* Get Package Info List (0x0C43)
*/
static int ice_aq_get_pkg_info_list(struct ice_hw *hw,
struct ice_aqc_get_pkg_info_resp *pkg_info,
u16 buf_size, struct ice_sq_cd *cd)
{
struct ice_aq_desc desc;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_pkg_info_list);
return ice_aq_send_cmd(hw, &desc, pkg_info, buf_size, cd);
}
/**
* ice_download_pkg
* @hw: pointer to the hardware structure
* @ice_seg: pointer to the segment of the package to be downloaded
*
* Handles the download of a complete package.
*/
static enum ice_ddp_state ice_download_pkg(struct ice_hw *hw,
struct ice_seg *ice_seg)
{
struct ice_buf_table *ice_buf_tbl;
int status;
ice_debug(hw, ICE_DBG_PKG, "Segment format version: %d.%d.%d.%d\n",
ice_seg->hdr.seg_format_ver.major,
ice_seg->hdr.seg_format_ver.minor,
ice_seg->hdr.seg_format_ver.update,
ice_seg->hdr.seg_format_ver.draft);
ice_debug(hw, ICE_DBG_PKG, "Seg: type 0x%X, size %d, name %s\n",
le32_to_cpu(ice_seg->hdr.seg_type),
le32_to_cpu(ice_seg->hdr.seg_size), ice_seg->hdr.seg_id);
ice_buf_tbl = ice_find_buf_table(ice_seg);
ice_debug(hw, ICE_DBG_PKG, "Seg buf count: %d\n",
le32_to_cpu(ice_buf_tbl->buf_count));
status = ice_dwnld_cfg_bufs(hw, ice_buf_tbl->buf_array,
le32_to_cpu(ice_buf_tbl->buf_count));
ice_post_pkg_dwnld_vlan_mode_cfg(hw);
return status;
}
/**
* ice_aq_download_pkg
* @hw: pointer to the hardware structure
* @pkg_buf: the package buffer to transfer
* @buf_size: the size of the package buffer
* @last_buf: last buffer indicator
* @error_offset: returns error offset
* @error_info: returns error information
* @cd: pointer to command details structure or NULL
*
* Download Package (0x0C40)
*/
int ice_aq_download_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf,
u16 buf_size, bool last_buf, u32 *error_offset,
u32 *error_info, struct ice_sq_cd *cd)
{
struct ice_aqc_download_pkg *cmd;
struct ice_aq_desc desc;
int status;
if (error_offset)
*error_offset = 0;
if (error_info)
*error_info = 0;
cmd = &desc.params.download_pkg;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_download_pkg);
desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
if (last_buf)
cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF;
status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd);
if (status == -EIO) {
/* Read error from buffer only when the FW returned an error */
struct ice_aqc_download_pkg_resp *resp;
resp = (struct ice_aqc_download_pkg_resp *)pkg_buf;
if (error_offset)
*error_offset = le32_to_cpu(resp->error_offset);
if (error_info)
*error_info = le32_to_cpu(resp->error_info);
}
return status;
}
/**
* ice_aq_upload_section
* @hw: pointer to the hardware structure
* @pkg_buf: the package buffer which will receive the section
* @buf_size: the size of the package buffer
* @cd: pointer to command details structure or NULL
*
* Upload Section (0x0C41)
*/
int ice_aq_upload_section(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf,
u16 buf_size, struct ice_sq_cd *cd)
{
struct ice_aq_desc desc;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_upload_section);
desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
return ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd);
}
/**
* ice_aq_update_pkg
* @hw: pointer to the hardware structure
* @pkg_buf: the package cmd buffer
* @buf_size: the size of the package cmd buffer
* @last_buf: last buffer indicator
* @error_offset: returns error offset
* @error_info: returns error information
* @cd: pointer to command details structure or NULL
*
* Update Package (0x0C42)
*/
static int ice_aq_update_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf,
u16 buf_size, bool last_buf, u32 *error_offset,
u32 *error_info, struct ice_sq_cd *cd)
{
struct ice_aqc_download_pkg *cmd;
struct ice_aq_desc desc;
int status;
if (error_offset)
*error_offset = 0;
if (error_info)
*error_info = 0;
cmd = &desc.params.download_pkg;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_pkg);
desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
if (last_buf)
cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF;
status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd);
if (status == -EIO) {
/* Read error from buffer only when the FW returned an error */
struct ice_aqc_download_pkg_resp *resp;
resp = (struct ice_aqc_download_pkg_resp *)pkg_buf;
if (error_offset)
*error_offset = le32_to_cpu(resp->error_offset);
if (error_info)
*error_info = le32_to_cpu(resp->error_info);
}
return status;
}
/**
* ice_update_pkg_no_lock
* @hw: pointer to the hardware structure
* @bufs: pointer to an array of buffers
* @count: the number of buffers in the array
*/
int ice_update_pkg_no_lock(struct ice_hw *hw, struct ice_buf *bufs, u32 count)
{
int status = 0;
u32 i;
for (i = 0; i < count; i++) {
struct ice_buf_hdr *bh = (struct ice_buf_hdr *)(bufs + i);
bool last = ((i + 1) == count);
u32 offset, info;
status = ice_aq_update_pkg(hw, bh, le16_to_cpu(bh->data_end),
last, &offset, &info, NULL);
if (status) {
ice_debug(hw, ICE_DBG_PKG,
"Update pkg failed: err %d off %d inf %d\n",
status, offset, info);
break;
}
}
return status;
}
/**
* ice_update_pkg
* @hw: pointer to the hardware structure
* @bufs: pointer to an array of buffers
* @count: the number of buffers in the array
*
* Obtains change lock and updates package.
*/
int ice_update_pkg(struct ice_hw *hw, struct ice_buf *bufs, u32 count)
{
int status;
status = ice_acquire_change_lock(hw, ICE_RES_WRITE);
if (status)
return status;
status = ice_update_pkg_no_lock(hw, bufs, count);
ice_release_change_lock(hw);
return status;
}
/**
* ice_find_seg_in_pkg
* @hw: pointer to the hardware structure
* @seg_type: the segment type to search for (i.e., SEGMENT_TYPE_CPK)
* @pkg_hdr: pointer to the package header to be searched
*
* This function searches a package file for a particular segment type. On
* success it returns a pointer to the segment header, otherwise it will
* return NULL.
*/
struct ice_generic_seg_hdr *ice_find_seg_in_pkg(struct ice_hw *hw, u32 seg_type,
struct ice_pkg_hdr *pkg_hdr)
{
u32 i;
ice_debug(hw, ICE_DBG_PKG, "Package format version: %d.%d.%d.%d\n",
pkg_hdr->pkg_format_ver.major, pkg_hdr->pkg_format_ver.minor,
pkg_hdr->pkg_format_ver.update,
pkg_hdr->pkg_format_ver.draft);
/* Search all package segments for the requested segment type */
for (i = 0; i < le32_to_cpu(pkg_hdr->seg_count); i++) {
struct ice_generic_seg_hdr *seg;
seg = (struct ice_generic_seg_hdr
*)((u8 *)pkg_hdr +
le32_to_cpu(pkg_hdr->seg_offset[i]));
if (le32_to_cpu(seg->seg_type) == seg_type)
return seg;
}
return NULL;
}
/**
* ice_init_pkg_info
* @hw: pointer to the hardware structure
* @pkg_hdr: pointer to the driver's package hdr
*
* Saves off the package details into the HW structure.
*/
static enum ice_ddp_state ice_init_pkg_info(struct ice_hw *hw,
struct ice_pkg_hdr *pkg_hdr)
{
struct ice_generic_seg_hdr *seg_hdr;
if (!pkg_hdr)
return ICE_DDP_PKG_ERR;
seg_hdr = ice_find_seg_in_pkg(hw, SEGMENT_TYPE_ICE, pkg_hdr);
if (seg_hdr) {
struct ice_meta_sect *meta;
struct ice_pkg_enum state;
memset(&state, 0, sizeof(state));
/* Get package information from the Metadata Section */
meta = ice_pkg_enum_section((struct ice_seg *)seg_hdr, &state,
ICE_SID_METADATA);
if (!meta) {
ice_debug(hw, ICE_DBG_INIT,
"Did not find ice metadata section in package\n");
return ICE_DDP_PKG_INVALID_FILE;
}
hw->pkg_ver = meta->ver;
memcpy(hw->pkg_name, meta->name, sizeof(meta->name));
ice_debug(hw, ICE_DBG_PKG, "Pkg: %d.%d.%d.%d, %s\n",
meta->ver.major, meta->ver.minor, meta->ver.update,
meta->ver.draft, meta->name);
hw->ice_seg_fmt_ver = seg_hdr->seg_format_ver;
memcpy(hw->ice_seg_id, seg_hdr->seg_id, sizeof(hw->ice_seg_id));
ice_debug(hw, ICE_DBG_PKG, "Ice Seg: %d.%d.%d.%d, %s\n",
seg_hdr->seg_format_ver.major,
seg_hdr->seg_format_ver.minor,
seg_hdr->seg_format_ver.update,
seg_hdr->seg_format_ver.draft, seg_hdr->seg_id);
} else {
ice_debug(hw, ICE_DBG_INIT,
"Did not find ice segment in driver package\n");
return ICE_DDP_PKG_INVALID_FILE;
}
return ICE_DDP_PKG_SUCCESS;
}
/**
* ice_get_pkg_info
* @hw: pointer to the hardware structure
*
* Store details of the package currently loaded in HW into the HW structure.
*/
static enum ice_ddp_state ice_get_pkg_info(struct ice_hw *hw)
{
enum ice_ddp_state state = ICE_DDP_PKG_SUCCESS;
struct ice_aqc_get_pkg_info_resp *pkg_info;
u16 size;
u32 i;
size = struct_size(pkg_info, pkg_info, ICE_PKG_CNT);
pkg_info = kzalloc(size, GFP_KERNEL);
if (!pkg_info)
return ICE_DDP_PKG_ERR;
if (ice_aq_get_pkg_info_list(hw, pkg_info, size, NULL)) {
state = ICE_DDP_PKG_ERR;
goto init_pkg_free_alloc;
}
for (i = 0; i < le32_to_cpu(pkg_info->count); i++) {
#define ICE_PKG_FLAG_COUNT 4
char flags[ICE_PKG_FLAG_COUNT + 1] = { 0 };
u8 place = 0;
if (pkg_info->pkg_info[i].is_active) {
flags[place++] = 'A';
hw->active_pkg_ver = pkg_info->pkg_info[i].ver;
hw->active_track_id =
le32_to_cpu(pkg_info->pkg_info[i].track_id);
memcpy(hw->active_pkg_name, pkg_info->pkg_info[i].name,
sizeof(pkg_info->pkg_info[i].name));
hw->active_pkg_in_nvm = pkg_info->pkg_info[i].is_in_nvm;
}
if (pkg_info->pkg_info[i].is_active_at_boot)
flags[place++] = 'B';
if (pkg_info->pkg_info[i].is_modified)
flags[place++] = 'M';
if (pkg_info->pkg_info[i].is_in_nvm)
flags[place++] = 'N';
ice_debug(hw, ICE_DBG_PKG, "Pkg[%d]: %d.%d.%d.%d,%s,%s\n", i,
pkg_info->pkg_info[i].ver.major,
pkg_info->pkg_info[i].ver.minor,
pkg_info->pkg_info[i].ver.update,
pkg_info->pkg_info[i].ver.draft,
pkg_info->pkg_info[i].name, flags);
}
init_pkg_free_alloc:
kfree(pkg_info);
return state;
}
/**
* ice_chk_pkg_compat
* @hw: pointer to the hardware structure
* @ospkg: pointer to the package hdr
* @seg: pointer to the package segment hdr
*
* This function checks the package version compatibility with driver and NVM
*/
static enum ice_ddp_state ice_chk_pkg_compat(struct ice_hw *hw,
struct ice_pkg_hdr *ospkg,
struct ice_seg **seg)
{
struct ice_aqc_get_pkg_info_resp *pkg;
enum ice_ddp_state state;
u16 size;
u32 i;
/* Check package version compatibility */
state = ice_chk_pkg_version(&hw->pkg_ver);
if (state) {
ice_debug(hw, ICE_DBG_INIT, "Package version check failed.\n");
return state;
}
/* find ICE segment in given package */
*seg = (struct ice_seg *)ice_find_seg_in_pkg(hw, SEGMENT_TYPE_ICE,
ospkg);
if (!*seg) {
ice_debug(hw, ICE_DBG_INIT, "no ice segment in package.\n");
return ICE_DDP_PKG_INVALID_FILE;
}
/* Check if FW is compatible with the OS package */
size = struct_size(pkg, pkg_info, ICE_PKG_CNT);
pkg = kzalloc(size, GFP_KERNEL);
if (!pkg)
return ICE_DDP_PKG_ERR;
if (ice_aq_get_pkg_info_list(hw, pkg, size, NULL)) {
state = ICE_DDP_PKG_LOAD_ERROR;
goto fw_ddp_compat_free_alloc;
}
for (i = 0; i < le32_to_cpu(pkg->count); i++) {
/* loop till we find the NVM package */
if (!pkg->pkg_info[i].is_in_nvm)
continue;
if ((*seg)->hdr.seg_format_ver.major !=
pkg->pkg_info[i].ver.major ||
(*seg)->hdr.seg_format_ver.minor >
pkg->pkg_info[i].ver.minor) {
state = ICE_DDP_PKG_FW_MISMATCH;
ice_debug(hw, ICE_DBG_INIT,
"OS package is not compatible with NVM.\n");
}
/* done processing NVM package so break */
break;
}
fw_ddp_compat_free_alloc:
kfree(pkg);
return state;
}
/**
* ice_init_pkg_hints
* @hw: pointer to the HW structure
* @ice_seg: pointer to the segment of the package scan (non-NULL)
*
* This function will scan the package and save off relevant information
* (hints or metadata) for driver use. The ice_seg parameter must not be NULL
* since the first call to ice_enum_labels requires a pointer to an actual
* ice_seg structure.
*/
static void ice_init_pkg_hints(struct ice_hw *hw, struct ice_seg *ice_seg)
{
struct ice_pkg_enum state;
char *label_name;
u16 val;
int i;
memset(&hw->tnl, 0, sizeof(hw->tnl));
memset(&state, 0, sizeof(state));
if (!ice_seg)
return;
label_name = ice_enum_labels(ice_seg, ICE_SID_LBL_RXPARSER_TMEM, &state,
&val);
while (label_name) {
if (!strncmp(label_name, ICE_TNL_PRE, strlen(ICE_TNL_PRE)))
/* check for a tunnel entry */
ice_add_tunnel_hint(hw, label_name, val);
/* check for a dvm mode entry */
else if (!strncmp(label_name, ICE_DVM_PRE, strlen(ICE_DVM_PRE)))
ice_add_dvm_hint(hw, val, true);
/* check for a svm mode entry */
else if (!strncmp(label_name, ICE_SVM_PRE, strlen(ICE_SVM_PRE)))
ice_add_dvm_hint(hw, val, false);
label_name = ice_enum_labels(NULL, 0, &state, &val);
}
/* Cache the appropriate boost TCAM entry pointers for tunnels */
for (i = 0; i < hw->tnl.count; i++) {
ice_find_boost_entry(ice_seg, hw->tnl.tbl[i].boost_addr,
&hw->tnl.tbl[i].boost_entry);
if (hw->tnl.tbl[i].boost_entry) {
hw->tnl.tbl[i].valid = true;
if (hw->tnl.tbl[i].type < __TNL_TYPE_CNT)
hw->tnl.valid_count[hw->tnl.tbl[i].type]++;
}
}
/* Cache the appropriate boost TCAM entry pointers for DVM and SVM */
for (i = 0; i < hw->dvm_upd.count; i++)
ice_find_boost_entry(ice_seg, hw->dvm_upd.tbl[i].boost_addr,
&hw->dvm_upd.tbl[i].boost_entry);
}
/**
* ice_fill_hw_ptype - fill the enabled PTYPE bit information
* @hw: pointer to the HW structure
*/
static void ice_fill_hw_ptype(struct ice_hw *hw)
{
struct ice_marker_ptype_tcam_entry *tcam;
struct ice_seg *seg = hw->seg;
struct ice_pkg_enum state;
bitmap_zero(hw->hw_ptype, ICE_FLOW_PTYPE_MAX);
if (!seg)
return;
memset(&state, 0, sizeof(state));
do {
tcam = ice_pkg_enum_entry(seg, &state,
ICE_SID_RXPARSER_MARKER_PTYPE, NULL,
ice_marker_ptype_tcam_handler);
if (tcam &&
le16_to_cpu(tcam->addr) < ICE_MARKER_PTYPE_TCAM_ADDR_MAX &&
le16_to_cpu(tcam->ptype) < ICE_FLOW_PTYPE_MAX)
set_bit(le16_to_cpu(tcam->ptype), hw->hw_ptype);
seg = NULL;
} while (tcam);
}
/**
* ice_init_pkg - initialize/download package
* @hw: pointer to the hardware structure
* @buf: pointer to the package buffer
* @len: size of the package buffer
*
* This function initializes a package. The package contains HW tables
* required to do packet processing. First, the function extracts package
* information such as version. Then it finds the ice configuration segment
* within the package; this function then saves a copy of the segment pointer
* within the supplied package buffer. Next, the function will cache any hints
* from the package, followed by downloading the package itself. Note, that if
* a previous PF driver has already downloaded the package successfully, then
* the current driver will not have to download the package again.
*
* The local package contents will be used to query default behavior and to
* update specific sections of the HW's version of the package (e.g. to update
* the parse graph to understand new protocols).
*
* This function stores a pointer to the package buffer memory, and it is
* expected that the supplied buffer will not be freed immediately. If the
* package buffer needs to be freed, such as when read from a file, use
* ice_copy_and_init_pkg() instead of directly calling ice_init_pkg() in this
* case.
*/
enum ice_ddp_state ice_init_pkg(struct ice_hw *hw, u8 *buf, u32 len)
{
bool already_loaded = false;
enum ice_ddp_state state;
struct ice_pkg_hdr *pkg;
struct ice_seg *seg;
if (!buf || !len)
return ICE_DDP_PKG_ERR;
pkg = (struct ice_pkg_hdr *)buf;
state = ice_verify_pkg(pkg, len);
if (state) {
ice_debug(hw, ICE_DBG_INIT, "failed to verify pkg (err: %d)\n",
state);
return state;
}
/* initialize package info */
state = ice_init_pkg_info(hw, pkg);
if (state)
return state;
/* before downloading the package, check package version for
* compatibility with driver
*/
state = ice_chk_pkg_compat(hw, pkg, &seg);
if (state)
return state;
/* initialize package hints and then download package */
ice_init_pkg_hints(hw, seg);
state = ice_download_pkg(hw, seg);
if (state == ICE_DDP_PKG_ALREADY_LOADED) {
ice_debug(hw, ICE_DBG_INIT,
"package previously loaded - no work.\n");
already_loaded = true;
}
/* Get information on the package currently loaded in HW, then make sure
* the driver is compatible with this version.
*/
if (!state || state == ICE_DDP_PKG_ALREADY_LOADED) {
state = ice_get_pkg_info(hw);
if (!state)
state = ice_get_ddp_pkg_state(hw, already_loaded);
}
if (ice_is_init_pkg_successful(state)) {
hw->seg = seg;
/* on successful package download update other required
* registers to support the package and fill HW tables
* with package content.
*/
ice_init_pkg_regs(hw);
ice_fill_blk_tbls(hw);
ice_fill_hw_ptype(hw);
ice_get_prof_index_max(hw);
} else {
ice_debug(hw, ICE_DBG_INIT, "package load failed, %d\n", state);
}
return state;
}
/**
* ice_copy_and_init_pkg - initialize/download a copy of the package
* @hw: pointer to the hardware structure
* @buf: pointer to the package buffer
* @len: size of the package buffer
*
* This function copies the package buffer, and then calls ice_init_pkg() to
* initialize the copied package contents.
*
* The copying is necessary if the package buffer supplied is constant, or if
* the memory may disappear shortly after calling this function.
*
* If the package buffer resides in the data segment and can be modified, the
* caller is free to use ice_init_pkg() instead of ice_copy_and_init_pkg().
*
* However, if the package buffer needs to be copied first, such as when being
* read from a file, the caller should use ice_copy_and_init_pkg().
*
* This function will first copy the package buffer, before calling
* ice_init_pkg(). The caller is free to immediately destroy the original
* package buffer, as the new copy will be managed by this function and
* related routines.
*/
enum ice_ddp_state ice_copy_and_init_pkg(struct ice_hw *hw, const u8 *buf,
u32 len)
{
enum ice_ddp_state state;
u8 *buf_copy;
if (!buf || !len)
return ICE_DDP_PKG_ERR;
buf_copy = devm_kmemdup(ice_hw_to_dev(hw), buf, len, GFP_KERNEL);
state = ice_init_pkg(hw, buf_copy, len);
if (!ice_is_init_pkg_successful(state)) {
/* Free the copy, since we failed to initialize the package */
devm_kfree(ice_hw_to_dev(hw), buf_copy);
} else {
/* Track the copied pkg so we can free it later */
hw->pkg_copy = buf_copy;
hw->pkg_size = len;
}
return state;
}