957 lines
25 KiB
C
957 lines
25 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (c) 2017-2018 Christoph Hellwig.
|
|
*/
|
|
|
|
#include <linux/backing-dev.h>
|
|
#include <linux/moduleparam.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <trace/events/block.h>
|
|
#include "nvme.h"
|
|
|
|
bool multipath = true;
|
|
module_param(multipath, bool, 0444);
|
|
MODULE_PARM_DESC(multipath,
|
|
"turn on native support for multiple controllers per subsystem");
|
|
|
|
static const char *nvme_iopolicy_names[] = {
|
|
[NVME_IOPOLICY_NUMA] = "numa",
|
|
[NVME_IOPOLICY_RR] = "round-robin",
|
|
};
|
|
|
|
static int iopolicy = NVME_IOPOLICY_NUMA;
|
|
|
|
static int nvme_set_iopolicy(const char *val, const struct kernel_param *kp)
|
|
{
|
|
if (!val)
|
|
return -EINVAL;
|
|
if (!strncmp(val, "numa", 4))
|
|
iopolicy = NVME_IOPOLICY_NUMA;
|
|
else if (!strncmp(val, "round-robin", 11))
|
|
iopolicy = NVME_IOPOLICY_RR;
|
|
else
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int nvme_get_iopolicy(char *buf, const struct kernel_param *kp)
|
|
{
|
|
return sprintf(buf, "%s\n", nvme_iopolicy_names[iopolicy]);
|
|
}
|
|
|
|
module_param_call(iopolicy, nvme_set_iopolicy, nvme_get_iopolicy,
|
|
&iopolicy, 0644);
|
|
MODULE_PARM_DESC(iopolicy,
|
|
"Default multipath I/O policy; 'numa' (default) or 'round-robin'");
|
|
|
|
void nvme_mpath_default_iopolicy(struct nvme_subsystem *subsys)
|
|
{
|
|
subsys->iopolicy = iopolicy;
|
|
}
|
|
|
|
void nvme_mpath_unfreeze(struct nvme_subsystem *subsys)
|
|
{
|
|
struct nvme_ns_head *h;
|
|
|
|
lockdep_assert_held(&subsys->lock);
|
|
list_for_each_entry(h, &subsys->nsheads, entry)
|
|
if (h->disk)
|
|
blk_mq_unfreeze_queue(h->disk->queue);
|
|
}
|
|
|
|
void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys)
|
|
{
|
|
struct nvme_ns_head *h;
|
|
|
|
lockdep_assert_held(&subsys->lock);
|
|
list_for_each_entry(h, &subsys->nsheads, entry)
|
|
if (h->disk)
|
|
blk_mq_freeze_queue_wait(h->disk->queue);
|
|
}
|
|
|
|
void nvme_mpath_start_freeze(struct nvme_subsystem *subsys)
|
|
{
|
|
struct nvme_ns_head *h;
|
|
|
|
lockdep_assert_held(&subsys->lock);
|
|
list_for_each_entry(h, &subsys->nsheads, entry)
|
|
if (h->disk)
|
|
blk_freeze_queue_start(h->disk->queue);
|
|
}
|
|
|
|
void nvme_failover_req(struct request *req)
|
|
{
|
|
struct nvme_ns *ns = req->q->queuedata;
|
|
u16 status = nvme_req(req)->status & 0x7ff;
|
|
unsigned long flags;
|
|
struct bio *bio;
|
|
|
|
nvme_mpath_clear_current_path(ns);
|
|
|
|
/*
|
|
* If we got back an ANA error, we know the controller is alive but not
|
|
* ready to serve this namespace. Kick of a re-read of the ANA
|
|
* information page, and just try any other available path for now.
|
|
*/
|
|
if (nvme_is_ana_error(status) && ns->ctrl->ana_log_buf) {
|
|
set_bit(NVME_NS_ANA_PENDING, &ns->flags);
|
|
queue_work(nvme_wq, &ns->ctrl->ana_work);
|
|
}
|
|
|
|
spin_lock_irqsave(&ns->head->requeue_lock, flags);
|
|
for (bio = req->bio; bio; bio = bio->bi_next) {
|
|
bio_set_dev(bio, ns->head->disk->part0);
|
|
if (bio->bi_opf & REQ_POLLED) {
|
|
bio->bi_opf &= ~REQ_POLLED;
|
|
bio->bi_cookie = BLK_QC_T_NONE;
|
|
}
|
|
}
|
|
blk_steal_bios(&ns->head->requeue_list, req);
|
|
spin_unlock_irqrestore(&ns->head->requeue_lock, flags);
|
|
|
|
blk_mq_end_request(req, 0);
|
|
kblockd_schedule_work(&ns->head->requeue_work);
|
|
}
|
|
|
|
void nvme_mpath_start_request(struct request *rq)
|
|
{
|
|
struct nvme_ns *ns = rq->q->queuedata;
|
|
struct gendisk *disk = ns->head->disk;
|
|
|
|
if (!blk_queue_io_stat(disk->queue) || blk_rq_is_passthrough(rq))
|
|
return;
|
|
|
|
nvme_req(rq)->flags |= NVME_MPATH_IO_STATS;
|
|
nvme_req(rq)->start_time = bdev_start_io_acct(disk->part0, req_op(rq),
|
|
jiffies);
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_mpath_start_request);
|
|
|
|
void nvme_mpath_end_request(struct request *rq)
|
|
{
|
|
struct nvme_ns *ns = rq->q->queuedata;
|
|
|
|
if (!(nvme_req(rq)->flags & NVME_MPATH_IO_STATS))
|
|
return;
|
|
bdev_end_io_acct(ns->head->disk->part0, req_op(rq),
|
|
blk_rq_bytes(rq) >> SECTOR_SHIFT,
|
|
nvme_req(rq)->start_time);
|
|
}
|
|
|
|
void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl)
|
|
{
|
|
struct nvme_ns *ns;
|
|
|
|
down_read(&ctrl->namespaces_rwsem);
|
|
list_for_each_entry(ns, &ctrl->namespaces, list) {
|
|
if (!ns->head->disk)
|
|
continue;
|
|
kblockd_schedule_work(&ns->head->requeue_work);
|
|
if (ctrl->state == NVME_CTRL_LIVE)
|
|
disk_uevent(ns->head->disk, KOBJ_CHANGE);
|
|
}
|
|
up_read(&ctrl->namespaces_rwsem);
|
|
}
|
|
|
|
static const char *nvme_ana_state_names[] = {
|
|
[0] = "invalid state",
|
|
[NVME_ANA_OPTIMIZED] = "optimized",
|
|
[NVME_ANA_NONOPTIMIZED] = "non-optimized",
|
|
[NVME_ANA_INACCESSIBLE] = "inaccessible",
|
|
[NVME_ANA_PERSISTENT_LOSS] = "persistent-loss",
|
|
[NVME_ANA_CHANGE] = "change",
|
|
};
|
|
|
|
bool nvme_mpath_clear_current_path(struct nvme_ns *ns)
|
|
{
|
|
struct nvme_ns_head *head = ns->head;
|
|
bool changed = false;
|
|
int node;
|
|
|
|
if (!head)
|
|
goto out;
|
|
|
|
for_each_node(node) {
|
|
if (ns == rcu_access_pointer(head->current_path[node])) {
|
|
rcu_assign_pointer(head->current_path[node], NULL);
|
|
changed = true;
|
|
}
|
|
}
|
|
out:
|
|
return changed;
|
|
}
|
|
|
|
void nvme_mpath_clear_ctrl_paths(struct nvme_ctrl *ctrl)
|
|
{
|
|
struct nvme_ns *ns;
|
|
|
|
down_read(&ctrl->namespaces_rwsem);
|
|
list_for_each_entry(ns, &ctrl->namespaces, list) {
|
|
nvme_mpath_clear_current_path(ns);
|
|
kblockd_schedule_work(&ns->head->requeue_work);
|
|
}
|
|
up_read(&ctrl->namespaces_rwsem);
|
|
}
|
|
|
|
void nvme_mpath_revalidate_paths(struct nvme_ns *ns)
|
|
{
|
|
struct nvme_ns_head *head = ns->head;
|
|
sector_t capacity = get_capacity(head->disk);
|
|
int node;
|
|
int srcu_idx;
|
|
|
|
srcu_idx = srcu_read_lock(&head->srcu);
|
|
list_for_each_entry_rcu(ns, &head->list, siblings) {
|
|
if (capacity != get_capacity(ns->disk))
|
|
clear_bit(NVME_NS_READY, &ns->flags);
|
|
}
|
|
srcu_read_unlock(&head->srcu, srcu_idx);
|
|
|
|
for_each_node(node)
|
|
rcu_assign_pointer(head->current_path[node], NULL);
|
|
kblockd_schedule_work(&head->requeue_work);
|
|
}
|
|
|
|
static bool nvme_path_is_disabled(struct nvme_ns *ns)
|
|
{
|
|
/*
|
|
* We don't treat NVME_CTRL_DELETING as a disabled path as I/O should
|
|
* still be able to complete assuming that the controller is connected.
|
|
* Otherwise it will fail immediately and return to the requeue list.
|
|
*/
|
|
if (ns->ctrl->state != NVME_CTRL_LIVE &&
|
|
ns->ctrl->state != NVME_CTRL_DELETING)
|
|
return true;
|
|
if (test_bit(NVME_NS_ANA_PENDING, &ns->flags) ||
|
|
!test_bit(NVME_NS_READY, &ns->flags))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static struct nvme_ns *__nvme_find_path(struct nvme_ns_head *head, int node)
|
|
{
|
|
int found_distance = INT_MAX, fallback_distance = INT_MAX, distance;
|
|
struct nvme_ns *found = NULL, *fallback = NULL, *ns;
|
|
|
|
list_for_each_entry_rcu(ns, &head->list, siblings) {
|
|
if (nvme_path_is_disabled(ns))
|
|
continue;
|
|
|
|
if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_NUMA)
|
|
distance = node_distance(node, ns->ctrl->numa_node);
|
|
else
|
|
distance = LOCAL_DISTANCE;
|
|
|
|
switch (ns->ana_state) {
|
|
case NVME_ANA_OPTIMIZED:
|
|
if (distance < found_distance) {
|
|
found_distance = distance;
|
|
found = ns;
|
|
}
|
|
break;
|
|
case NVME_ANA_NONOPTIMIZED:
|
|
if (distance < fallback_distance) {
|
|
fallback_distance = distance;
|
|
fallback = ns;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!found)
|
|
found = fallback;
|
|
if (found)
|
|
rcu_assign_pointer(head->current_path[node], found);
|
|
return found;
|
|
}
|
|
|
|
static struct nvme_ns *nvme_next_ns(struct nvme_ns_head *head,
|
|
struct nvme_ns *ns)
|
|
{
|
|
ns = list_next_or_null_rcu(&head->list, &ns->siblings, struct nvme_ns,
|
|
siblings);
|
|
if (ns)
|
|
return ns;
|
|
return list_first_or_null_rcu(&head->list, struct nvme_ns, siblings);
|
|
}
|
|
|
|
static struct nvme_ns *nvme_round_robin_path(struct nvme_ns_head *head,
|
|
int node, struct nvme_ns *old)
|
|
{
|
|
struct nvme_ns *ns, *found = NULL;
|
|
|
|
if (list_is_singular(&head->list)) {
|
|
if (nvme_path_is_disabled(old))
|
|
return NULL;
|
|
return old;
|
|
}
|
|
|
|
for (ns = nvme_next_ns(head, old);
|
|
ns && ns != old;
|
|
ns = nvme_next_ns(head, ns)) {
|
|
if (nvme_path_is_disabled(ns))
|
|
continue;
|
|
|
|
if (ns->ana_state == NVME_ANA_OPTIMIZED) {
|
|
found = ns;
|
|
goto out;
|
|
}
|
|
if (ns->ana_state == NVME_ANA_NONOPTIMIZED)
|
|
found = ns;
|
|
}
|
|
|
|
/*
|
|
* The loop above skips the current path for round-robin semantics.
|
|
* Fall back to the current path if either:
|
|
* - no other optimized path found and current is optimized,
|
|
* - no other usable path found and current is usable.
|
|
*/
|
|
if (!nvme_path_is_disabled(old) &&
|
|
(old->ana_state == NVME_ANA_OPTIMIZED ||
|
|
(!found && old->ana_state == NVME_ANA_NONOPTIMIZED)))
|
|
return old;
|
|
|
|
if (!found)
|
|
return NULL;
|
|
out:
|
|
rcu_assign_pointer(head->current_path[node], found);
|
|
return found;
|
|
}
|
|
|
|
static inline bool nvme_path_is_optimized(struct nvme_ns *ns)
|
|
{
|
|
return ns->ctrl->state == NVME_CTRL_LIVE &&
|
|
ns->ana_state == NVME_ANA_OPTIMIZED;
|
|
}
|
|
|
|
inline struct nvme_ns *nvme_find_path(struct nvme_ns_head *head)
|
|
{
|
|
int node = numa_node_id();
|
|
struct nvme_ns *ns;
|
|
|
|
ns = srcu_dereference(head->current_path[node], &head->srcu);
|
|
if (unlikely(!ns))
|
|
return __nvme_find_path(head, node);
|
|
|
|
if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_RR)
|
|
return nvme_round_robin_path(head, node, ns);
|
|
if (unlikely(!nvme_path_is_optimized(ns)))
|
|
return __nvme_find_path(head, node);
|
|
return ns;
|
|
}
|
|
|
|
static bool nvme_available_path(struct nvme_ns_head *head)
|
|
{
|
|
struct nvme_ns *ns;
|
|
|
|
list_for_each_entry_rcu(ns, &head->list, siblings) {
|
|
if (test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ns->ctrl->flags))
|
|
continue;
|
|
switch (ns->ctrl->state) {
|
|
case NVME_CTRL_LIVE:
|
|
case NVME_CTRL_RESETTING:
|
|
case NVME_CTRL_CONNECTING:
|
|
/* fallthru */
|
|
return true;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static void nvme_ns_head_submit_bio(struct bio *bio)
|
|
{
|
|
struct nvme_ns_head *head = bio->bi_bdev->bd_disk->private_data;
|
|
struct device *dev = disk_to_dev(head->disk);
|
|
struct nvme_ns *ns;
|
|
int srcu_idx;
|
|
|
|
/*
|
|
* The namespace might be going away and the bio might be moved to a
|
|
* different queue via blk_steal_bios(), so we need to use the bio_split
|
|
* pool from the original queue to allocate the bvecs from.
|
|
*/
|
|
bio = bio_split_to_limits(bio);
|
|
if (!bio)
|
|
return;
|
|
|
|
srcu_idx = srcu_read_lock(&head->srcu);
|
|
ns = nvme_find_path(head);
|
|
if (likely(ns)) {
|
|
bio_set_dev(bio, ns->disk->part0);
|
|
bio->bi_opf |= REQ_NVME_MPATH;
|
|
trace_block_bio_remap(bio, disk_devt(ns->head->disk),
|
|
bio->bi_iter.bi_sector);
|
|
submit_bio_noacct(bio);
|
|
} else if (nvme_available_path(head)) {
|
|
dev_warn_ratelimited(dev, "no usable path - requeuing I/O\n");
|
|
|
|
spin_lock_irq(&head->requeue_lock);
|
|
bio_list_add(&head->requeue_list, bio);
|
|
spin_unlock_irq(&head->requeue_lock);
|
|
} else {
|
|
dev_warn_ratelimited(dev, "no available path - failing I/O\n");
|
|
|
|
bio_io_error(bio);
|
|
}
|
|
|
|
srcu_read_unlock(&head->srcu, srcu_idx);
|
|
}
|
|
|
|
static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
|
|
{
|
|
if (!nvme_tryget_ns_head(bdev->bd_disk->private_data))
|
|
return -ENXIO;
|
|
return 0;
|
|
}
|
|
|
|
static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
|
|
{
|
|
nvme_put_ns_head(disk->private_data);
|
|
}
|
|
|
|
#ifdef CONFIG_BLK_DEV_ZONED
|
|
static int nvme_ns_head_report_zones(struct gendisk *disk, sector_t sector,
|
|
unsigned int nr_zones, report_zones_cb cb, void *data)
|
|
{
|
|
struct nvme_ns_head *head = disk->private_data;
|
|
struct nvme_ns *ns;
|
|
int srcu_idx, ret = -EWOULDBLOCK;
|
|
|
|
srcu_idx = srcu_read_lock(&head->srcu);
|
|
ns = nvme_find_path(head);
|
|
if (ns)
|
|
ret = nvme_ns_report_zones(ns, sector, nr_zones, cb, data);
|
|
srcu_read_unlock(&head->srcu, srcu_idx);
|
|
return ret;
|
|
}
|
|
#else
|
|
#define nvme_ns_head_report_zones NULL
|
|
#endif /* CONFIG_BLK_DEV_ZONED */
|
|
|
|
const struct block_device_operations nvme_ns_head_ops = {
|
|
.owner = THIS_MODULE,
|
|
.submit_bio = nvme_ns_head_submit_bio,
|
|
.open = nvme_ns_head_open,
|
|
.release = nvme_ns_head_release,
|
|
.ioctl = nvme_ns_head_ioctl,
|
|
.compat_ioctl = blkdev_compat_ptr_ioctl,
|
|
.getgeo = nvme_getgeo,
|
|
.report_zones = nvme_ns_head_report_zones,
|
|
.pr_ops = &nvme_pr_ops,
|
|
};
|
|
|
|
static inline struct nvme_ns_head *cdev_to_ns_head(struct cdev *cdev)
|
|
{
|
|
return container_of(cdev, struct nvme_ns_head, cdev);
|
|
}
|
|
|
|
static int nvme_ns_head_chr_open(struct inode *inode, struct file *file)
|
|
{
|
|
if (!nvme_tryget_ns_head(cdev_to_ns_head(inode->i_cdev)))
|
|
return -ENXIO;
|
|
return 0;
|
|
}
|
|
|
|
static int nvme_ns_head_chr_release(struct inode *inode, struct file *file)
|
|
{
|
|
nvme_put_ns_head(cdev_to_ns_head(inode->i_cdev));
|
|
return 0;
|
|
}
|
|
|
|
static const struct file_operations nvme_ns_head_chr_fops = {
|
|
.owner = THIS_MODULE,
|
|
.open = nvme_ns_head_chr_open,
|
|
.release = nvme_ns_head_chr_release,
|
|
.unlocked_ioctl = nvme_ns_head_chr_ioctl,
|
|
.compat_ioctl = compat_ptr_ioctl,
|
|
.uring_cmd = nvme_ns_head_chr_uring_cmd,
|
|
.uring_cmd_iopoll = nvme_ns_head_chr_uring_cmd_iopoll,
|
|
};
|
|
|
|
static int nvme_add_ns_head_cdev(struct nvme_ns_head *head)
|
|
{
|
|
int ret;
|
|
|
|
head->cdev_device.parent = &head->subsys->dev;
|
|
ret = dev_set_name(&head->cdev_device, "ng%dn%d",
|
|
head->subsys->instance, head->instance);
|
|
if (ret)
|
|
return ret;
|
|
ret = nvme_cdev_add(&head->cdev, &head->cdev_device,
|
|
&nvme_ns_head_chr_fops, THIS_MODULE);
|
|
return ret;
|
|
}
|
|
|
|
static void nvme_requeue_work(struct work_struct *work)
|
|
{
|
|
struct nvme_ns_head *head =
|
|
container_of(work, struct nvme_ns_head, requeue_work);
|
|
struct bio *bio, *next;
|
|
|
|
spin_lock_irq(&head->requeue_lock);
|
|
next = bio_list_get(&head->requeue_list);
|
|
spin_unlock_irq(&head->requeue_lock);
|
|
|
|
while ((bio = next) != NULL) {
|
|
next = bio->bi_next;
|
|
bio->bi_next = NULL;
|
|
|
|
submit_bio_noacct(bio);
|
|
}
|
|
}
|
|
|
|
int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl, struct nvme_ns_head *head)
|
|
{
|
|
bool vwc = false;
|
|
|
|
mutex_init(&head->lock);
|
|
bio_list_init(&head->requeue_list);
|
|
spin_lock_init(&head->requeue_lock);
|
|
INIT_WORK(&head->requeue_work, nvme_requeue_work);
|
|
|
|
/*
|
|
* Add a multipath node if the subsystems supports multiple controllers.
|
|
* We also do this for private namespaces as the namespace sharing flag
|
|
* could change after a rescan.
|
|
*/
|
|
if (!(ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
|
|
!nvme_is_unique_nsid(ctrl, head) || !multipath)
|
|
return 0;
|
|
|
|
head->disk = blk_alloc_disk(ctrl->numa_node);
|
|
if (!head->disk)
|
|
return -ENOMEM;
|
|
head->disk->fops = &nvme_ns_head_ops;
|
|
head->disk->private_data = head;
|
|
sprintf(head->disk->disk_name, "nvme%dn%d",
|
|
ctrl->subsys->instance, head->instance);
|
|
|
|
blk_queue_flag_set(QUEUE_FLAG_NONROT, head->disk->queue);
|
|
blk_queue_flag_set(QUEUE_FLAG_NOWAIT, head->disk->queue);
|
|
blk_queue_flag_set(QUEUE_FLAG_IO_STAT, head->disk->queue);
|
|
/*
|
|
* This assumes all controllers that refer to a namespace either
|
|
* support poll queues or not. That is not a strict guarantee,
|
|
* but if the assumption is wrong the effect is only suboptimal
|
|
* performance but not correctness problem.
|
|
*/
|
|
if (ctrl->tagset->nr_maps > HCTX_TYPE_POLL &&
|
|
ctrl->tagset->map[HCTX_TYPE_POLL].nr_queues)
|
|
blk_queue_flag_set(QUEUE_FLAG_POLL, head->disk->queue);
|
|
|
|
/* set to a default value of 512 until the disk is validated */
|
|
blk_queue_logical_block_size(head->disk->queue, 512);
|
|
blk_set_stacking_limits(&head->disk->queue->limits);
|
|
blk_queue_dma_alignment(head->disk->queue, 3);
|
|
|
|
/* we need to propagate up the VMC settings */
|
|
if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
|
|
vwc = true;
|
|
blk_queue_write_cache(head->disk->queue, vwc, vwc);
|
|
return 0;
|
|
}
|
|
|
|
static void nvme_mpath_set_live(struct nvme_ns *ns)
|
|
{
|
|
struct nvme_ns_head *head = ns->head;
|
|
int rc;
|
|
|
|
if (!head->disk)
|
|
return;
|
|
|
|
/*
|
|
* test_and_set_bit() is used because it is protecting against two nvme
|
|
* paths simultaneously calling device_add_disk() on the same namespace
|
|
* head.
|
|
*/
|
|
if (!test_and_set_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) {
|
|
rc = device_add_disk(&head->subsys->dev, head->disk,
|
|
nvme_ns_id_attr_groups);
|
|
if (rc) {
|
|
clear_bit(NVME_NSHEAD_DISK_LIVE, &ns->flags);
|
|
return;
|
|
}
|
|
nvme_add_ns_head_cdev(head);
|
|
}
|
|
|
|
mutex_lock(&head->lock);
|
|
if (nvme_path_is_optimized(ns)) {
|
|
int node, srcu_idx;
|
|
|
|
srcu_idx = srcu_read_lock(&head->srcu);
|
|
for_each_node(node)
|
|
__nvme_find_path(head, node);
|
|
srcu_read_unlock(&head->srcu, srcu_idx);
|
|
}
|
|
mutex_unlock(&head->lock);
|
|
|
|
synchronize_srcu(&head->srcu);
|
|
kblockd_schedule_work(&head->requeue_work);
|
|
}
|
|
|
|
static int nvme_parse_ana_log(struct nvme_ctrl *ctrl, void *data,
|
|
int (*cb)(struct nvme_ctrl *ctrl, struct nvme_ana_group_desc *,
|
|
void *))
|
|
{
|
|
void *base = ctrl->ana_log_buf;
|
|
size_t offset = sizeof(struct nvme_ana_rsp_hdr);
|
|
int error, i;
|
|
|
|
lockdep_assert_held(&ctrl->ana_lock);
|
|
|
|
for (i = 0; i < le16_to_cpu(ctrl->ana_log_buf->ngrps); i++) {
|
|
struct nvme_ana_group_desc *desc = base + offset;
|
|
u32 nr_nsids;
|
|
size_t nsid_buf_size;
|
|
|
|
if (WARN_ON_ONCE(offset > ctrl->ana_log_size - sizeof(*desc)))
|
|
return -EINVAL;
|
|
|
|
nr_nsids = le32_to_cpu(desc->nnsids);
|
|
nsid_buf_size = flex_array_size(desc, nsids, nr_nsids);
|
|
|
|
if (WARN_ON_ONCE(desc->grpid == 0))
|
|
return -EINVAL;
|
|
if (WARN_ON_ONCE(le32_to_cpu(desc->grpid) > ctrl->anagrpmax))
|
|
return -EINVAL;
|
|
if (WARN_ON_ONCE(desc->state == 0))
|
|
return -EINVAL;
|
|
if (WARN_ON_ONCE(desc->state > NVME_ANA_CHANGE))
|
|
return -EINVAL;
|
|
|
|
offset += sizeof(*desc);
|
|
if (WARN_ON_ONCE(offset > ctrl->ana_log_size - nsid_buf_size))
|
|
return -EINVAL;
|
|
|
|
error = cb(ctrl, desc, data);
|
|
if (error)
|
|
return error;
|
|
|
|
offset += nsid_buf_size;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline bool nvme_state_is_live(enum nvme_ana_state state)
|
|
{
|
|
return state == NVME_ANA_OPTIMIZED || state == NVME_ANA_NONOPTIMIZED;
|
|
}
|
|
|
|
static void nvme_update_ns_ana_state(struct nvme_ana_group_desc *desc,
|
|
struct nvme_ns *ns)
|
|
{
|
|
ns->ana_grpid = le32_to_cpu(desc->grpid);
|
|
ns->ana_state = desc->state;
|
|
clear_bit(NVME_NS_ANA_PENDING, &ns->flags);
|
|
/*
|
|
* nvme_mpath_set_live() will trigger I/O to the multipath path device
|
|
* and in turn to this path device. However we cannot accept this I/O
|
|
* if the controller is not live. This may deadlock if called from
|
|
* nvme_mpath_init_identify() and the ctrl will never complete
|
|
* initialization, preventing I/O from completing. For this case we
|
|
* will reprocess the ANA log page in nvme_mpath_update() once the
|
|
* controller is ready.
|
|
*/
|
|
if (nvme_state_is_live(ns->ana_state) &&
|
|
ns->ctrl->state == NVME_CTRL_LIVE)
|
|
nvme_mpath_set_live(ns);
|
|
}
|
|
|
|
static int nvme_update_ana_state(struct nvme_ctrl *ctrl,
|
|
struct nvme_ana_group_desc *desc, void *data)
|
|
{
|
|
u32 nr_nsids = le32_to_cpu(desc->nnsids), n = 0;
|
|
unsigned *nr_change_groups = data;
|
|
struct nvme_ns *ns;
|
|
|
|
dev_dbg(ctrl->device, "ANA group %d: %s.\n",
|
|
le32_to_cpu(desc->grpid),
|
|
nvme_ana_state_names[desc->state]);
|
|
|
|
if (desc->state == NVME_ANA_CHANGE)
|
|
(*nr_change_groups)++;
|
|
|
|
if (!nr_nsids)
|
|
return 0;
|
|
|
|
down_read(&ctrl->namespaces_rwsem);
|
|
list_for_each_entry(ns, &ctrl->namespaces, list) {
|
|
unsigned nsid;
|
|
again:
|
|
nsid = le32_to_cpu(desc->nsids[n]);
|
|
if (ns->head->ns_id < nsid)
|
|
continue;
|
|
if (ns->head->ns_id == nsid)
|
|
nvme_update_ns_ana_state(desc, ns);
|
|
if (++n == nr_nsids)
|
|
break;
|
|
if (ns->head->ns_id > nsid)
|
|
goto again;
|
|
}
|
|
up_read(&ctrl->namespaces_rwsem);
|
|
return 0;
|
|
}
|
|
|
|
static int nvme_read_ana_log(struct nvme_ctrl *ctrl)
|
|
{
|
|
u32 nr_change_groups = 0;
|
|
int error;
|
|
|
|
mutex_lock(&ctrl->ana_lock);
|
|
error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_ANA, 0, NVME_CSI_NVM,
|
|
ctrl->ana_log_buf, ctrl->ana_log_size, 0);
|
|
if (error) {
|
|
dev_warn(ctrl->device, "Failed to get ANA log: %d\n", error);
|
|
goto out_unlock;
|
|
}
|
|
|
|
error = nvme_parse_ana_log(ctrl, &nr_change_groups,
|
|
nvme_update_ana_state);
|
|
if (error)
|
|
goto out_unlock;
|
|
|
|
/*
|
|
* In theory we should have an ANATT timer per group as they might enter
|
|
* the change state at different times. But that is a lot of overhead
|
|
* just to protect against a target that keeps entering new changes
|
|
* states while never finishing previous ones. But we'll still
|
|
* eventually time out once all groups are in change state, so this
|
|
* isn't a big deal.
|
|
*
|
|
* We also double the ANATT value to provide some slack for transports
|
|
* or AEN processing overhead.
|
|
*/
|
|
if (nr_change_groups)
|
|
mod_timer(&ctrl->anatt_timer, ctrl->anatt * HZ * 2 + jiffies);
|
|
else
|
|
del_timer_sync(&ctrl->anatt_timer);
|
|
out_unlock:
|
|
mutex_unlock(&ctrl->ana_lock);
|
|
return error;
|
|
}
|
|
|
|
static void nvme_ana_work(struct work_struct *work)
|
|
{
|
|
struct nvme_ctrl *ctrl = container_of(work, struct nvme_ctrl, ana_work);
|
|
|
|
if (ctrl->state != NVME_CTRL_LIVE)
|
|
return;
|
|
|
|
nvme_read_ana_log(ctrl);
|
|
}
|
|
|
|
void nvme_mpath_update(struct nvme_ctrl *ctrl)
|
|
{
|
|
u32 nr_change_groups = 0;
|
|
|
|
if (!ctrl->ana_log_buf)
|
|
return;
|
|
|
|
mutex_lock(&ctrl->ana_lock);
|
|
nvme_parse_ana_log(ctrl, &nr_change_groups, nvme_update_ana_state);
|
|
mutex_unlock(&ctrl->ana_lock);
|
|
}
|
|
|
|
static void nvme_anatt_timeout(struct timer_list *t)
|
|
{
|
|
struct nvme_ctrl *ctrl = from_timer(ctrl, t, anatt_timer);
|
|
|
|
dev_info(ctrl->device, "ANATT timeout, resetting controller.\n");
|
|
nvme_reset_ctrl(ctrl);
|
|
}
|
|
|
|
void nvme_mpath_stop(struct nvme_ctrl *ctrl)
|
|
{
|
|
if (!nvme_ctrl_use_ana(ctrl))
|
|
return;
|
|
del_timer_sync(&ctrl->anatt_timer);
|
|
cancel_work_sync(&ctrl->ana_work);
|
|
}
|
|
|
|
#define SUBSYS_ATTR_RW(_name, _mode, _show, _store) \
|
|
struct device_attribute subsys_attr_##_name = \
|
|
__ATTR(_name, _mode, _show, _store)
|
|
|
|
static ssize_t nvme_subsys_iopolicy_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct nvme_subsystem *subsys =
|
|
container_of(dev, struct nvme_subsystem, dev);
|
|
|
|
return sysfs_emit(buf, "%s\n",
|
|
nvme_iopolicy_names[READ_ONCE(subsys->iopolicy)]);
|
|
}
|
|
|
|
static ssize_t nvme_subsys_iopolicy_store(struct device *dev,
|
|
struct device_attribute *attr, const char *buf, size_t count)
|
|
{
|
|
struct nvme_subsystem *subsys =
|
|
container_of(dev, struct nvme_subsystem, dev);
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(nvme_iopolicy_names); i++) {
|
|
if (sysfs_streq(buf, nvme_iopolicy_names[i])) {
|
|
WRITE_ONCE(subsys->iopolicy, i);
|
|
return count;
|
|
}
|
|
}
|
|
|
|
return -EINVAL;
|
|
}
|
|
SUBSYS_ATTR_RW(iopolicy, S_IRUGO | S_IWUSR,
|
|
nvme_subsys_iopolicy_show, nvme_subsys_iopolicy_store);
|
|
|
|
static ssize_t ana_grpid_show(struct device *dev, struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
return sysfs_emit(buf, "%d\n", nvme_get_ns_from_dev(dev)->ana_grpid);
|
|
}
|
|
DEVICE_ATTR_RO(ana_grpid);
|
|
|
|
static ssize_t ana_state_show(struct device *dev, struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
|
|
|
|
return sysfs_emit(buf, "%s\n", nvme_ana_state_names[ns->ana_state]);
|
|
}
|
|
DEVICE_ATTR_RO(ana_state);
|
|
|
|
static int nvme_lookup_ana_group_desc(struct nvme_ctrl *ctrl,
|
|
struct nvme_ana_group_desc *desc, void *data)
|
|
{
|
|
struct nvme_ana_group_desc *dst = data;
|
|
|
|
if (desc->grpid != dst->grpid)
|
|
return 0;
|
|
|
|
*dst = *desc;
|
|
return -ENXIO; /* just break out of the loop */
|
|
}
|
|
|
|
void nvme_mpath_add_disk(struct nvme_ns *ns, __le32 anagrpid)
|
|
{
|
|
if (nvme_ctrl_use_ana(ns->ctrl)) {
|
|
struct nvme_ana_group_desc desc = {
|
|
.grpid = anagrpid,
|
|
.state = 0,
|
|
};
|
|
|
|
mutex_lock(&ns->ctrl->ana_lock);
|
|
ns->ana_grpid = le32_to_cpu(anagrpid);
|
|
nvme_parse_ana_log(ns->ctrl, &desc, nvme_lookup_ana_group_desc);
|
|
mutex_unlock(&ns->ctrl->ana_lock);
|
|
if (desc.state) {
|
|
/* found the group desc: update */
|
|
nvme_update_ns_ana_state(&desc, ns);
|
|
} else {
|
|
/* group desc not found: trigger a re-read */
|
|
set_bit(NVME_NS_ANA_PENDING, &ns->flags);
|
|
queue_work(nvme_wq, &ns->ctrl->ana_work);
|
|
}
|
|
} else {
|
|
ns->ana_state = NVME_ANA_OPTIMIZED;
|
|
nvme_mpath_set_live(ns);
|
|
}
|
|
|
|
if (blk_queue_stable_writes(ns->queue) && ns->head->disk)
|
|
blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES,
|
|
ns->head->disk->queue);
|
|
#ifdef CONFIG_BLK_DEV_ZONED
|
|
if (blk_queue_is_zoned(ns->queue) && ns->head->disk)
|
|
ns->head->disk->nr_zones = ns->disk->nr_zones;
|
|
#endif
|
|
}
|
|
|
|
void nvme_mpath_shutdown_disk(struct nvme_ns_head *head)
|
|
{
|
|
if (!head->disk)
|
|
return;
|
|
kblockd_schedule_work(&head->requeue_work);
|
|
if (test_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) {
|
|
nvme_cdev_del(&head->cdev, &head->cdev_device);
|
|
del_gendisk(head->disk);
|
|
}
|
|
}
|
|
|
|
void nvme_mpath_remove_disk(struct nvme_ns_head *head)
|
|
{
|
|
if (!head->disk)
|
|
return;
|
|
/* make sure all pending bios are cleaned up */
|
|
kblockd_schedule_work(&head->requeue_work);
|
|
flush_work(&head->requeue_work);
|
|
put_disk(head->disk);
|
|
}
|
|
|
|
void nvme_mpath_init_ctrl(struct nvme_ctrl *ctrl)
|
|
{
|
|
mutex_init(&ctrl->ana_lock);
|
|
timer_setup(&ctrl->anatt_timer, nvme_anatt_timeout, 0);
|
|
INIT_WORK(&ctrl->ana_work, nvme_ana_work);
|
|
}
|
|
|
|
int nvme_mpath_init_identify(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
|
|
{
|
|
size_t max_transfer_size = ctrl->max_hw_sectors << SECTOR_SHIFT;
|
|
size_t ana_log_size;
|
|
int error = 0;
|
|
|
|
/* check if multipath is enabled and we have the capability */
|
|
if (!multipath || !ctrl->subsys ||
|
|
!(ctrl->subsys->cmic & NVME_CTRL_CMIC_ANA))
|
|
return 0;
|
|
|
|
if (!ctrl->max_namespaces ||
|
|
ctrl->max_namespaces > le32_to_cpu(id->nn)) {
|
|
dev_err(ctrl->device,
|
|
"Invalid MNAN value %u\n", ctrl->max_namespaces);
|
|
return -EINVAL;
|
|
}
|
|
|
|
ctrl->anacap = id->anacap;
|
|
ctrl->anatt = id->anatt;
|
|
ctrl->nanagrpid = le32_to_cpu(id->nanagrpid);
|
|
ctrl->anagrpmax = le32_to_cpu(id->anagrpmax);
|
|
|
|
ana_log_size = sizeof(struct nvme_ana_rsp_hdr) +
|
|
ctrl->nanagrpid * sizeof(struct nvme_ana_group_desc) +
|
|
ctrl->max_namespaces * sizeof(__le32);
|
|
if (ana_log_size > max_transfer_size) {
|
|
dev_err(ctrl->device,
|
|
"ANA log page size (%zd) larger than MDTS (%zd).\n",
|
|
ana_log_size, max_transfer_size);
|
|
dev_err(ctrl->device, "disabling ANA support.\n");
|
|
goto out_uninit;
|
|
}
|
|
if (ana_log_size > ctrl->ana_log_size) {
|
|
nvme_mpath_stop(ctrl);
|
|
nvme_mpath_uninit(ctrl);
|
|
ctrl->ana_log_buf = kvmalloc(ana_log_size, GFP_KERNEL);
|
|
if (!ctrl->ana_log_buf)
|
|
return -ENOMEM;
|
|
}
|
|
ctrl->ana_log_size = ana_log_size;
|
|
error = nvme_read_ana_log(ctrl);
|
|
if (error)
|
|
goto out_uninit;
|
|
return 0;
|
|
|
|
out_uninit:
|
|
nvme_mpath_uninit(ctrl);
|
|
return error;
|
|
}
|
|
|
|
void nvme_mpath_uninit(struct nvme_ctrl *ctrl)
|
|
{
|
|
kvfree(ctrl->ana_log_buf);
|
|
ctrl->ana_log_buf = NULL;
|
|
ctrl->ana_log_size = 0;
|
|
}
|