linux-zen-server/drivers/phy/freescale/phy-fsl-imx8-mipi-dphy.c

750 lines
19 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright 2017,2018 NXP
* Copyright 2019 Purism SPC
*/
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/delay.h>
#include <linux/firmware/imx/ipc.h>
#include <linux/firmware/imx/svc/misc.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_platform.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <dt-bindings/firmware/imx/rsrc.h>
/* Control and Status Registers(CSR) */
#define PHY_CTRL 0x00
#define CCM_MASK GENMASK(7, 5)
#define CCM(n) FIELD_PREP(CCM_MASK, (n))
#define CCM_1_2V 0x5
#define CA_MASK GENMASK(4, 2)
#define CA_3_51MA 0x4
#define CA(n) FIELD_PREP(CA_MASK, (n))
#define RFB BIT(1)
#define LVDS_EN BIT(0)
/* DPHY registers */
#define DPHY_PD_DPHY 0x00
#define DPHY_M_PRG_HS_PREPARE 0x04
#define DPHY_MC_PRG_HS_PREPARE 0x08
#define DPHY_M_PRG_HS_ZERO 0x0c
#define DPHY_MC_PRG_HS_ZERO 0x10
#define DPHY_M_PRG_HS_TRAIL 0x14
#define DPHY_MC_PRG_HS_TRAIL 0x18
#define DPHY_PD_PLL 0x1c
#define DPHY_TST 0x20
#define DPHY_CN 0x24
#define DPHY_CM 0x28
#define DPHY_CO 0x2c
#define DPHY_LOCK 0x30
#define DPHY_LOCK_BYP 0x34
#define DPHY_REG_BYPASS_PLL 0x4C
#define MBPS(x) ((x) * 1000000)
#define DATA_RATE_MAX_SPEED MBPS(1500)
#define DATA_RATE_MIN_SPEED MBPS(80)
#define PLL_LOCK_SLEEP 10
#define PLL_LOCK_TIMEOUT 1000
#define CN_BUF 0xcb7a89c0
#define CO_BUF 0x63
#define CM(x) ( \
((x) < 32) ? 0xe0 | ((x) - 16) : \
((x) < 64) ? 0xc0 | ((x) - 32) : \
((x) < 128) ? 0x80 | ((x) - 64) : \
((x) - 128))
#define CN(x) (((x) == 1) ? 0x1f : (((CN_BUF) >> ((x) - 1)) & 0x1f))
#define CO(x) ((CO_BUF) >> (8 - (x)) & 0x03)
/* PHY power on is active low */
#define PWR_ON 0
#define PWR_OFF 1
#define MIN_VCO_FREQ 640000000
#define MAX_VCO_FREQ 1500000000
#define MIN_LVDS_REFCLK_FREQ 24000000
#define MAX_LVDS_REFCLK_FREQ 150000000
enum mixel_dphy_devtype {
MIXEL_IMX8MQ,
MIXEL_IMX8QXP,
};
struct mixel_dphy_devdata {
u8 reg_tx_rcal;
u8 reg_auto_pd_en;
u8 reg_rxlprp;
u8 reg_rxcdrp;
u8 reg_rxhs_settle;
bool is_combo; /* MIPI DPHY and LVDS PHY combo */
};
static const struct mixel_dphy_devdata mixel_dphy_devdata[] = {
[MIXEL_IMX8MQ] = {
.reg_tx_rcal = 0x38,
.reg_auto_pd_en = 0x3c,
.reg_rxlprp = 0x40,
.reg_rxcdrp = 0x44,
.reg_rxhs_settle = 0x48,
.is_combo = false,
},
[MIXEL_IMX8QXP] = {
.is_combo = true,
},
};
struct mixel_dphy_cfg {
/* DPHY PLL parameters */
u32 cm;
u32 cn;
u32 co;
/* DPHY register values */
u8 mc_prg_hs_prepare;
u8 m_prg_hs_prepare;
u8 mc_prg_hs_zero;
u8 m_prg_hs_zero;
u8 mc_prg_hs_trail;
u8 m_prg_hs_trail;
u8 rxhs_settle;
};
struct mixel_dphy_priv {
struct mixel_dphy_cfg cfg;
struct regmap *regmap;
struct regmap *lvds_regmap;
struct clk *phy_ref_clk;
const struct mixel_dphy_devdata *devdata;
struct imx_sc_ipc *ipc_handle;
bool is_slave;
int id;
};
static const struct regmap_config mixel_dphy_regmap_config = {
.reg_bits = 8,
.val_bits = 32,
.reg_stride = 4,
.max_register = DPHY_REG_BYPASS_PLL,
.name = "mipi-dphy",
};
static int phy_write(struct phy *phy, u32 value, unsigned int reg)
{
struct mixel_dphy_priv *priv = phy_get_drvdata(phy);
int ret;
ret = regmap_write(priv->regmap, reg, value);
if (ret < 0)
dev_err(&phy->dev, "Failed to write DPHY reg %d: %d\n", reg,
ret);
return ret;
}
/*
* Find a ratio close to the desired one using continued fraction
* approximation ending either at exact match or maximum allowed
* nominator, denominator.
*/
static void get_best_ratio(u32 *pnum, u32 *pdenom, u32 max_n, u32 max_d)
{
u32 a = *pnum;
u32 b = *pdenom;
u32 c;
u32 n[] = {0, 1};
u32 d[] = {1, 0};
u32 whole;
unsigned int i = 1;
while (b) {
i ^= 1;
whole = a / b;
n[i] += (n[i ^ 1] * whole);
d[i] += (d[i ^ 1] * whole);
if ((n[i] > max_n) || (d[i] > max_d)) {
i ^= 1;
break;
}
c = a - (b * whole);
a = b;
b = c;
}
*pnum = n[i];
*pdenom = d[i];
}
static int mixel_dphy_config_from_opts(struct phy *phy,
struct phy_configure_opts_mipi_dphy *dphy_opts,
struct mixel_dphy_cfg *cfg)
{
struct mixel_dphy_priv *priv = dev_get_drvdata(phy->dev.parent);
unsigned long ref_clk = clk_get_rate(priv->phy_ref_clk);
u32 lp_t, numerator, denominator;
unsigned long long tmp;
u32 n;
int i;
if (dphy_opts->hs_clk_rate > DATA_RATE_MAX_SPEED ||
dphy_opts->hs_clk_rate < DATA_RATE_MIN_SPEED)
return -EINVAL;
numerator = dphy_opts->hs_clk_rate;
denominator = ref_clk;
get_best_ratio(&numerator, &denominator, 255, 256);
if (!numerator || !denominator) {
dev_err(&phy->dev, "Invalid %d/%d for %ld/%ld\n",
numerator, denominator,
dphy_opts->hs_clk_rate, ref_clk);
return -EINVAL;
}
while ((numerator < 16) && (denominator <= 128)) {
numerator <<= 1;
denominator <<= 1;
}
/*
* CM ranges between 16 and 255
* CN ranges between 1 and 32
* CO is power of 2: 1, 2, 4, 8
*/
i = __ffs(denominator);
if (i > 3)
i = 3;
cfg->cn = denominator >> i;
cfg->co = 1 << i;
cfg->cm = numerator;
if (cfg->cm < 16 || cfg->cm > 255 ||
cfg->cn < 1 || cfg->cn > 32 ||
cfg->co < 1 || cfg->co > 8) {
dev_err(&phy->dev, "Invalid CM/CN/CO values: %u/%u/%u\n",
cfg->cm, cfg->cn, cfg->co);
dev_err(&phy->dev, "for hs_clk/ref_clk=%ld/%ld ~ %d/%d\n",
dphy_opts->hs_clk_rate, ref_clk,
numerator, denominator);
return -EINVAL;
}
dev_dbg(&phy->dev, "hs_clk/ref_clk=%ld/%ld ~ %d/%d\n",
dphy_opts->hs_clk_rate, ref_clk, numerator, denominator);
/* LP clock period */
tmp = 1000000000000LL;
do_div(tmp, dphy_opts->lp_clk_rate); /* ps */
if (tmp > ULONG_MAX)
return -EINVAL;
lp_t = tmp;
dev_dbg(&phy->dev, "LP clock %lu, period: %u ps\n",
dphy_opts->lp_clk_rate, lp_t);
/* hs_prepare: in lp clock periods */
if (2 * dphy_opts->hs_prepare > 5 * lp_t) {
dev_err(&phy->dev,
"hs_prepare (%u) > 2.5 * lp clock period (%u)\n",
dphy_opts->hs_prepare, lp_t);
return -EINVAL;
}
/* 00: lp_t, 01: 1.5 * lp_t, 10: 2 * lp_t, 11: 2.5 * lp_t */
if (dphy_opts->hs_prepare < lp_t) {
n = 0;
} else {
tmp = 2 * (dphy_opts->hs_prepare - lp_t);
do_div(tmp, lp_t);
n = tmp;
}
cfg->m_prg_hs_prepare = n;
/* clk_prepare: in lp clock periods */
if (2 * dphy_opts->clk_prepare > 3 * lp_t) {
dev_err(&phy->dev,
"clk_prepare (%u) > 1.5 * lp clock period (%u)\n",
dphy_opts->clk_prepare, lp_t);
return -EINVAL;
}
/* 00: lp_t, 01: 1.5 * lp_t */
cfg->mc_prg_hs_prepare = dphy_opts->clk_prepare > lp_t ? 1 : 0;
/* hs_zero: formula from NXP BSP */
n = (144 * (dphy_opts->hs_clk_rate / 1000000) - 47500) / 10000;
cfg->m_prg_hs_zero = n < 1 ? 1 : n;
/* clk_zero: formula from NXP BSP */
n = (34 * (dphy_opts->hs_clk_rate / 1000000) - 2500) / 1000;
cfg->mc_prg_hs_zero = n < 1 ? 1 : n;
/* clk_trail, hs_trail: formula from NXP BSP */
n = (103 * (dphy_opts->hs_clk_rate / 1000000) + 10000) / 10000;
if (n > 15)
n = 15;
if (n < 1)
n = 1;
cfg->m_prg_hs_trail = n;
cfg->mc_prg_hs_trail = n;
/* rxhs_settle: formula from NXP BSP */
if (dphy_opts->hs_clk_rate < MBPS(80))
cfg->rxhs_settle = 0x0d;
else if (dphy_opts->hs_clk_rate < MBPS(90))
cfg->rxhs_settle = 0x0c;
else if (dphy_opts->hs_clk_rate < MBPS(125))
cfg->rxhs_settle = 0x0b;
else if (dphy_opts->hs_clk_rate < MBPS(150))
cfg->rxhs_settle = 0x0a;
else if (dphy_opts->hs_clk_rate < MBPS(225))
cfg->rxhs_settle = 0x09;
else if (dphy_opts->hs_clk_rate < MBPS(500))
cfg->rxhs_settle = 0x08;
else
cfg->rxhs_settle = 0x07;
dev_dbg(&phy->dev, "phy_config: %u %u %u %u %u %u %u\n",
cfg->m_prg_hs_prepare, cfg->mc_prg_hs_prepare,
cfg->m_prg_hs_zero, cfg->mc_prg_hs_zero,
cfg->m_prg_hs_trail, cfg->mc_prg_hs_trail,
cfg->rxhs_settle);
return 0;
}
static void mixel_phy_set_hs_timings(struct phy *phy)
{
struct mixel_dphy_priv *priv = phy_get_drvdata(phy);
phy_write(phy, priv->cfg.m_prg_hs_prepare, DPHY_M_PRG_HS_PREPARE);
phy_write(phy, priv->cfg.mc_prg_hs_prepare, DPHY_MC_PRG_HS_PREPARE);
phy_write(phy, priv->cfg.m_prg_hs_zero, DPHY_M_PRG_HS_ZERO);
phy_write(phy, priv->cfg.mc_prg_hs_zero, DPHY_MC_PRG_HS_ZERO);
phy_write(phy, priv->cfg.m_prg_hs_trail, DPHY_M_PRG_HS_TRAIL);
phy_write(phy, priv->cfg.mc_prg_hs_trail, DPHY_MC_PRG_HS_TRAIL);
phy_write(phy, priv->cfg.rxhs_settle, priv->devdata->reg_rxhs_settle);
}
static int mixel_dphy_set_pll_params(struct phy *phy)
{
struct mixel_dphy_priv *priv = dev_get_drvdata(phy->dev.parent);
if (priv->cfg.cm < 16 || priv->cfg.cm > 255 ||
priv->cfg.cn < 1 || priv->cfg.cn > 32 ||
priv->cfg.co < 1 || priv->cfg.co > 8) {
dev_err(&phy->dev, "Invalid CM/CN/CO values! (%u/%u/%u)\n",
priv->cfg.cm, priv->cfg.cn, priv->cfg.co);
return -EINVAL;
}
dev_dbg(&phy->dev, "Using CM:%u CN:%u CO:%u\n",
priv->cfg.cm, priv->cfg.cn, priv->cfg.co);
phy_write(phy, CM(priv->cfg.cm), DPHY_CM);
phy_write(phy, CN(priv->cfg.cn), DPHY_CN);
phy_write(phy, CO(priv->cfg.co), DPHY_CO);
return 0;
}
static int
mixel_dphy_configure_mipi_dphy(struct phy *phy, union phy_configure_opts *opts)
{
struct mixel_dphy_priv *priv = phy_get_drvdata(phy);
struct mixel_dphy_cfg cfg = { 0 };
int ret;
ret = mixel_dphy_config_from_opts(phy, &opts->mipi_dphy, &cfg);
if (ret)
return ret;
/* Update the configuration */
memcpy(&priv->cfg, &cfg, sizeof(struct mixel_dphy_cfg));
phy_write(phy, 0x00, DPHY_LOCK_BYP);
phy_write(phy, 0x01, priv->devdata->reg_tx_rcal);
phy_write(phy, 0x00, priv->devdata->reg_auto_pd_en);
phy_write(phy, 0x02, priv->devdata->reg_rxlprp);
phy_write(phy, 0x02, priv->devdata->reg_rxcdrp);
phy_write(phy, 0x25, DPHY_TST);
mixel_phy_set_hs_timings(phy);
ret = mixel_dphy_set_pll_params(phy);
if (ret < 0)
return ret;
return 0;
}
static int
mixel_dphy_configure_lvds_phy(struct phy *phy, union phy_configure_opts *opts)
{
struct mixel_dphy_priv *priv = phy_get_drvdata(phy);
struct phy_configure_opts_lvds *lvds_opts = &opts->lvds;
unsigned long data_rate;
unsigned long fvco;
u32 rsc;
u32 co;
int ret;
priv->is_slave = lvds_opts->is_slave;
/* LVDS interface pins */
regmap_write(priv->lvds_regmap, PHY_CTRL,
CCM(CCM_1_2V) | CA(CA_3_51MA) | RFB);
/* enable MODE8 only for slave LVDS PHY */
rsc = priv->id ? IMX_SC_R_MIPI_1 : IMX_SC_R_MIPI_0;
ret = imx_sc_misc_set_control(priv->ipc_handle, rsc, IMX_SC_C_DUAL_MODE,
lvds_opts->is_slave);
if (ret) {
dev_err(&phy->dev, "Failed to configure MODE8: %d\n", ret);
return ret;
}
/*
* Choose an appropriate divider ratio to meet the requirement of
* PLL VCO frequency range.
*
* ----- 640MHz ~ 1500MHz ------------ ---------------
* | VCO | ----------------> | CO divider | -> | LVDS data rate|
* ----- FVCO ------------ ---------------
* 1/2/4/8 div 7 * differential_clk_rate
*/
data_rate = 7 * lvds_opts->differential_clk_rate;
for (co = 1; co <= 8; co *= 2) {
fvco = data_rate * co;
if (fvco >= MIN_VCO_FREQ)
break;
}
if (fvco < MIN_VCO_FREQ || fvco > MAX_VCO_FREQ) {
dev_err(&phy->dev, "VCO frequency %lu is out of range\n", fvco);
return -ERANGE;
}
/*
* CO is configurable, while CN and CM are not,
* as fixed ratios 1 and 7 are applied respectively.
*/
phy_write(phy, __ffs(co), DPHY_CO);
/* set reference clock rate */
clk_set_rate(priv->phy_ref_clk, lvds_opts->differential_clk_rate);
return ret;
}
static int mixel_dphy_configure(struct phy *phy, union phy_configure_opts *opts)
{
if (!opts) {
dev_err(&phy->dev, "No configuration options\n");
return -EINVAL;
}
if (phy->attrs.mode == PHY_MODE_MIPI_DPHY)
return mixel_dphy_configure_mipi_dphy(phy, opts);
else if (phy->attrs.mode == PHY_MODE_LVDS)
return mixel_dphy_configure_lvds_phy(phy, opts);
dev_err(&phy->dev,
"Failed to configure PHY with invalid PHY mode: %d\n", phy->attrs.mode);
return -EINVAL;
}
static int
mixel_dphy_validate_lvds_phy(struct phy *phy, union phy_configure_opts *opts)
{
struct phy_configure_opts_lvds *lvds_cfg = &opts->lvds;
if (lvds_cfg->bits_per_lane_and_dclk_cycle != 7) {
dev_err(&phy->dev, "Invalid bits per LVDS data lane: %u\n",
lvds_cfg->bits_per_lane_and_dclk_cycle);
return -EINVAL;
}
if (lvds_cfg->lanes != 4) {
dev_err(&phy->dev, "Invalid LVDS data lanes: %u\n", lvds_cfg->lanes);
return -EINVAL;
}
if (lvds_cfg->differential_clk_rate < MIN_LVDS_REFCLK_FREQ ||
lvds_cfg->differential_clk_rate > MAX_LVDS_REFCLK_FREQ) {
dev_err(&phy->dev,
"Invalid LVDS differential clock rate: %lu\n",
lvds_cfg->differential_clk_rate);
return -EINVAL;
}
return 0;
}
static int mixel_dphy_validate(struct phy *phy, enum phy_mode mode, int submode,
union phy_configure_opts *opts)
{
if (mode == PHY_MODE_MIPI_DPHY) {
struct mixel_dphy_cfg mipi_dphy_cfg = { 0 };
return mixel_dphy_config_from_opts(phy, &opts->mipi_dphy,
&mipi_dphy_cfg);
} else if (mode == PHY_MODE_LVDS) {
return mixel_dphy_validate_lvds_phy(phy, opts);
}
dev_err(&phy->dev,
"Failed to validate PHY with invalid PHY mode: %d\n", mode);
return -EINVAL;
}
static int mixel_dphy_init(struct phy *phy)
{
phy_write(phy, PWR_OFF, DPHY_PD_PLL);
phy_write(phy, PWR_OFF, DPHY_PD_DPHY);
return 0;
}
static int mixel_dphy_exit(struct phy *phy)
{
phy_write(phy, 0, DPHY_CM);
phy_write(phy, 0, DPHY_CN);
phy_write(phy, 0, DPHY_CO);
return 0;
}
static int mixel_dphy_power_on_mipi_dphy(struct phy *phy)
{
struct mixel_dphy_priv *priv = phy_get_drvdata(phy);
u32 locked;
int ret;
phy_write(phy, PWR_ON, DPHY_PD_PLL);
ret = regmap_read_poll_timeout(priv->regmap, DPHY_LOCK, locked,
locked, PLL_LOCK_SLEEP,
PLL_LOCK_TIMEOUT);
if (ret < 0) {
dev_err(&phy->dev, "Could not get DPHY lock (%d)!\n", ret);
return ret;
}
phy_write(phy, PWR_ON, DPHY_PD_DPHY);
return 0;
}
static int mixel_dphy_power_on_lvds_phy(struct phy *phy)
{
struct mixel_dphy_priv *priv = phy_get_drvdata(phy);
u32 locked;
int ret;
regmap_update_bits(priv->lvds_regmap, PHY_CTRL, LVDS_EN, LVDS_EN);
phy_write(phy, PWR_ON, DPHY_PD_DPHY);
phy_write(phy, PWR_ON, DPHY_PD_PLL);
/* do not wait for slave LVDS PHY being locked */
if (priv->is_slave)
return 0;
ret = regmap_read_poll_timeout(priv->regmap, DPHY_LOCK, locked,
locked, PLL_LOCK_SLEEP,
PLL_LOCK_TIMEOUT);
if (ret < 0) {
dev_err(&phy->dev, "Could not get LVDS PHY lock (%d)!\n", ret);
return ret;
}
return 0;
}
static int mixel_dphy_power_on(struct phy *phy)
{
struct mixel_dphy_priv *priv = phy_get_drvdata(phy);
int ret;
ret = clk_prepare_enable(priv->phy_ref_clk);
if (ret < 0)
return ret;
if (phy->attrs.mode == PHY_MODE_MIPI_DPHY) {
ret = mixel_dphy_power_on_mipi_dphy(phy);
} else if (phy->attrs.mode == PHY_MODE_LVDS) {
ret = mixel_dphy_power_on_lvds_phy(phy);
} else {
dev_err(&phy->dev,
"Failed to power on PHY with invalid PHY mode: %d\n",
phy->attrs.mode);
ret = -EINVAL;
}
if (ret)
goto clock_disable;
return 0;
clock_disable:
clk_disable_unprepare(priv->phy_ref_clk);
return ret;
}
static int mixel_dphy_power_off(struct phy *phy)
{
struct mixel_dphy_priv *priv = phy_get_drvdata(phy);
phy_write(phy, PWR_OFF, DPHY_PD_PLL);
phy_write(phy, PWR_OFF, DPHY_PD_DPHY);
if (phy->attrs.mode == PHY_MODE_LVDS)
regmap_update_bits(priv->lvds_regmap, PHY_CTRL, LVDS_EN, 0);
clk_disable_unprepare(priv->phy_ref_clk);
return 0;
}
static int mixel_dphy_set_mode(struct phy *phy, enum phy_mode mode, int submode)
{
struct mixel_dphy_priv *priv = phy_get_drvdata(phy);
int ret;
if (priv->devdata->is_combo && mode != PHY_MODE_LVDS) {
dev_err(&phy->dev, "Failed to set PHY mode for combo PHY\n");
return -EINVAL;
}
if (!priv->devdata->is_combo && mode != PHY_MODE_MIPI_DPHY) {
dev_err(&phy->dev, "Failed to set PHY mode to MIPI DPHY\n");
return -EINVAL;
}
if (priv->devdata->is_combo) {
u32 rsc = priv->id ? IMX_SC_R_MIPI_1 : IMX_SC_R_MIPI_0;
ret = imx_sc_misc_set_control(priv->ipc_handle,
rsc, IMX_SC_C_MODE,
mode == PHY_MODE_LVDS);
if (ret) {
dev_err(&phy->dev,
"Failed to set PHY mode via SCU ipc: %d\n", ret);
return ret;
}
}
return 0;
}
static const struct phy_ops mixel_dphy_phy_ops = {
.init = mixel_dphy_init,
.exit = mixel_dphy_exit,
.power_on = mixel_dphy_power_on,
.power_off = mixel_dphy_power_off,
.set_mode = mixel_dphy_set_mode,
.configure = mixel_dphy_configure,
.validate = mixel_dphy_validate,
.owner = THIS_MODULE,
};
static const struct of_device_id mixel_dphy_of_match[] = {
{ .compatible = "fsl,imx8mq-mipi-dphy",
.data = &mixel_dphy_devdata[MIXEL_IMX8MQ] },
{ .compatible = "fsl,imx8qxp-mipi-dphy",
.data = &mixel_dphy_devdata[MIXEL_IMX8QXP] },
{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, mixel_dphy_of_match);
static int mixel_dphy_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct device_node *np = dev->of_node;
struct phy_provider *phy_provider;
struct mixel_dphy_priv *priv;
struct phy *phy;
void __iomem *base;
int ret;
if (!np)
return -ENODEV;
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->devdata = of_device_get_match_data(&pdev->dev);
if (!priv->devdata)
return -EINVAL;
base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(base))
return PTR_ERR(base);
priv->regmap = devm_regmap_init_mmio(&pdev->dev, base,
&mixel_dphy_regmap_config);
if (IS_ERR(priv->regmap)) {
dev_err(dev, "Couldn't create the DPHY regmap\n");
return PTR_ERR(priv->regmap);
}
priv->phy_ref_clk = devm_clk_get(&pdev->dev, "phy_ref");
if (IS_ERR(priv->phy_ref_clk)) {
dev_err(dev, "No phy_ref clock found\n");
return PTR_ERR(priv->phy_ref_clk);
}
dev_dbg(dev, "phy_ref clock rate: %lu\n",
clk_get_rate(priv->phy_ref_clk));
if (priv->devdata->is_combo) {
priv->lvds_regmap =
syscon_regmap_lookup_by_phandle(np, "fsl,syscon");
if (IS_ERR(priv->lvds_regmap)) {
ret = PTR_ERR(priv->lvds_regmap);
dev_err_probe(dev, ret, "Failed to get LVDS regmap\n");
return ret;
}
priv->id = of_alias_get_id(np, "mipi_dphy");
if (priv->id < 0) {
dev_err(dev, "Failed to get phy node alias id: %d\n",
priv->id);
return priv->id;
}
ret = imx_scu_get_handle(&priv->ipc_handle);
if (ret) {
dev_err_probe(dev, ret,
"Failed to get SCU ipc handle\n");
return ret;
}
}
dev_set_drvdata(dev, priv);
phy = devm_phy_create(dev, np, &mixel_dphy_phy_ops);
if (IS_ERR(phy)) {
dev_err(dev, "Failed to create phy %ld\n", PTR_ERR(phy));
return PTR_ERR(phy);
}
phy_set_drvdata(phy, priv);
phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
return PTR_ERR_OR_ZERO(phy_provider);
}
static struct platform_driver mixel_dphy_driver = {
.probe = mixel_dphy_probe,
.driver = {
.name = "mixel-mipi-dphy",
.of_match_table = mixel_dphy_of_match,
}
};
module_platform_driver(mixel_dphy_driver);
MODULE_AUTHOR("NXP Semiconductor");
MODULE_DESCRIPTION("Mixel MIPI-DSI PHY driver");
MODULE_LICENSE("GPL");