linux-zen-server/drivers/scsi/lpfc/lpfc_nvmet.c

3646 lines
108 KiB
C

/*******************************************************************
* This file is part of the Emulex Linux Device Driver for *
* Fibre Channel Host Bus Adapters. *
* Copyright (C) 2017-2022 Broadcom. All Rights Reserved. The term *
* “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. *
* Copyright (C) 2004-2016 Emulex. All rights reserved. *
* EMULEX and SLI are trademarks of Emulex. *
* www.broadcom.com *
* Portions Copyright (C) 2004-2005 Christoph Hellwig *
* *
* This program is free software; you can redistribute it and/or *
* modify it under the terms of version 2 of the GNU General *
* Public License as published by the Free Software Foundation. *
* This program is distributed in the hope that it will be useful. *
* ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND *
* WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, *
* FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE *
* DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD *
* TO BE LEGALLY INVALID. See the GNU General Public License for *
* more details, a copy of which can be found in the file COPYING *
* included with this package. *
********************************************************************/
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <asm/unaligned.h>
#include <linux/crc-t10dif.h>
#include <net/checksum.h>
#include <scsi/scsi.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_eh.h>
#include <scsi/scsi_host.h>
#include <scsi/scsi_tcq.h>
#include <scsi/scsi_transport_fc.h>
#include <scsi/fc/fc_fs.h>
#include "lpfc_version.h"
#include "lpfc_hw4.h"
#include "lpfc_hw.h"
#include "lpfc_sli.h"
#include "lpfc_sli4.h"
#include "lpfc_nl.h"
#include "lpfc_disc.h"
#include "lpfc.h"
#include "lpfc_scsi.h"
#include "lpfc_nvme.h"
#include "lpfc_logmsg.h"
#include "lpfc_crtn.h"
#include "lpfc_vport.h"
#include "lpfc_debugfs.h"
static struct lpfc_iocbq *lpfc_nvmet_prep_ls_wqe(struct lpfc_hba *,
struct lpfc_async_xchg_ctx *,
dma_addr_t rspbuf,
uint16_t rspsize);
static struct lpfc_iocbq *lpfc_nvmet_prep_fcp_wqe(struct lpfc_hba *,
struct lpfc_async_xchg_ctx *);
static int lpfc_nvmet_sol_fcp_issue_abort(struct lpfc_hba *,
struct lpfc_async_xchg_ctx *,
uint32_t, uint16_t);
static int lpfc_nvmet_unsol_fcp_issue_abort(struct lpfc_hba *,
struct lpfc_async_xchg_ctx *,
uint32_t, uint16_t);
static void lpfc_nvmet_wqfull_flush(struct lpfc_hba *, struct lpfc_queue *,
struct lpfc_async_xchg_ctx *);
static void lpfc_nvmet_fcp_rqst_defer_work(struct work_struct *);
static void lpfc_nvmet_process_rcv_fcp_req(struct lpfc_nvmet_ctxbuf *ctx_buf);
static union lpfc_wqe128 lpfc_tsend_cmd_template;
static union lpfc_wqe128 lpfc_treceive_cmd_template;
static union lpfc_wqe128 lpfc_trsp_cmd_template;
/* Setup WQE templates for NVME IOs */
void
lpfc_nvmet_cmd_template(void)
{
union lpfc_wqe128 *wqe;
/* TSEND template */
wqe = &lpfc_tsend_cmd_template;
memset(wqe, 0, sizeof(union lpfc_wqe128));
/* Word 0, 1, 2 - BDE is variable */
/* Word 3 - payload_offset_len is zero */
/* Word 4 - relative_offset is variable */
/* Word 5 - is zero */
/* Word 6 - ctxt_tag, xri_tag is variable */
/* Word 7 - wqe_ar is variable */
bf_set(wqe_cmnd, &wqe->fcp_tsend.wqe_com, CMD_FCP_TSEND64_WQE);
bf_set(wqe_pu, &wqe->fcp_tsend.wqe_com, PARM_REL_OFF);
bf_set(wqe_class, &wqe->fcp_tsend.wqe_com, CLASS3);
bf_set(wqe_ct, &wqe->fcp_tsend.wqe_com, SLI4_CT_RPI);
bf_set(wqe_ar, &wqe->fcp_tsend.wqe_com, 1);
/* Word 8 - abort_tag is variable */
/* Word 9 - reqtag, rcvoxid is variable */
/* Word 10 - wqes, xc is variable */
bf_set(wqe_xchg, &wqe->fcp_tsend.wqe_com, LPFC_NVME_XCHG);
bf_set(wqe_dbde, &wqe->fcp_tsend.wqe_com, 1);
bf_set(wqe_wqes, &wqe->fcp_tsend.wqe_com, 0);
bf_set(wqe_xc, &wqe->fcp_tsend.wqe_com, 1);
bf_set(wqe_iod, &wqe->fcp_tsend.wqe_com, LPFC_WQE_IOD_WRITE);
bf_set(wqe_lenloc, &wqe->fcp_tsend.wqe_com, LPFC_WQE_LENLOC_WORD12);
/* Word 11 - sup, irsp, irsplen is variable */
bf_set(wqe_cmd_type, &wqe->fcp_tsend.wqe_com, FCP_COMMAND_TSEND);
bf_set(wqe_cqid, &wqe->fcp_tsend.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
bf_set(wqe_sup, &wqe->fcp_tsend.wqe_com, 0);
bf_set(wqe_irsp, &wqe->fcp_tsend.wqe_com, 0);
bf_set(wqe_irsplen, &wqe->fcp_tsend.wqe_com, 0);
bf_set(wqe_pbde, &wqe->fcp_tsend.wqe_com, 0);
/* Word 12 - fcp_data_len is variable */
/* Word 13, 14, 15 - PBDE is zero */
/* TRECEIVE template */
wqe = &lpfc_treceive_cmd_template;
memset(wqe, 0, sizeof(union lpfc_wqe128));
/* Word 0, 1, 2 - BDE is variable */
/* Word 3 */
wqe->fcp_treceive.payload_offset_len = TXRDY_PAYLOAD_LEN;
/* Word 4 - relative_offset is variable */
/* Word 5 - is zero */
/* Word 6 - ctxt_tag, xri_tag is variable */
/* Word 7 */
bf_set(wqe_cmnd, &wqe->fcp_treceive.wqe_com, CMD_FCP_TRECEIVE64_WQE);
bf_set(wqe_pu, &wqe->fcp_treceive.wqe_com, PARM_REL_OFF);
bf_set(wqe_class, &wqe->fcp_treceive.wqe_com, CLASS3);
bf_set(wqe_ct, &wqe->fcp_treceive.wqe_com, SLI4_CT_RPI);
bf_set(wqe_ar, &wqe->fcp_treceive.wqe_com, 0);
/* Word 8 - abort_tag is variable */
/* Word 9 - reqtag, rcvoxid is variable */
/* Word 10 - xc is variable */
bf_set(wqe_dbde, &wqe->fcp_treceive.wqe_com, 1);
bf_set(wqe_wqes, &wqe->fcp_treceive.wqe_com, 0);
bf_set(wqe_xchg, &wqe->fcp_treceive.wqe_com, LPFC_NVME_XCHG);
bf_set(wqe_iod, &wqe->fcp_treceive.wqe_com, LPFC_WQE_IOD_READ);
bf_set(wqe_lenloc, &wqe->fcp_treceive.wqe_com, LPFC_WQE_LENLOC_WORD12);
bf_set(wqe_xc, &wqe->fcp_tsend.wqe_com, 1);
/* Word 11 - pbde is variable */
bf_set(wqe_cmd_type, &wqe->fcp_treceive.wqe_com, FCP_COMMAND_TRECEIVE);
bf_set(wqe_cqid, &wqe->fcp_treceive.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
bf_set(wqe_sup, &wqe->fcp_treceive.wqe_com, 0);
bf_set(wqe_irsp, &wqe->fcp_treceive.wqe_com, 0);
bf_set(wqe_irsplen, &wqe->fcp_treceive.wqe_com, 0);
bf_set(wqe_pbde, &wqe->fcp_treceive.wqe_com, 1);
/* Word 12 - fcp_data_len is variable */
/* Word 13, 14, 15 - PBDE is variable */
/* TRSP template */
wqe = &lpfc_trsp_cmd_template;
memset(wqe, 0, sizeof(union lpfc_wqe128));
/* Word 0, 1, 2 - BDE is variable */
/* Word 3 - response_len is variable */
/* Word 4, 5 - is zero */
/* Word 6 - ctxt_tag, xri_tag is variable */
/* Word 7 */
bf_set(wqe_cmnd, &wqe->fcp_trsp.wqe_com, CMD_FCP_TRSP64_WQE);
bf_set(wqe_pu, &wqe->fcp_trsp.wqe_com, PARM_UNUSED);
bf_set(wqe_class, &wqe->fcp_trsp.wqe_com, CLASS3);
bf_set(wqe_ct, &wqe->fcp_trsp.wqe_com, SLI4_CT_RPI);
bf_set(wqe_ag, &wqe->fcp_trsp.wqe_com, 1); /* wqe_ar */
/* Word 8 - abort_tag is variable */
/* Word 9 - reqtag is variable */
/* Word 10 wqes, xc is variable */
bf_set(wqe_dbde, &wqe->fcp_trsp.wqe_com, 1);
bf_set(wqe_xchg, &wqe->fcp_trsp.wqe_com, LPFC_NVME_XCHG);
bf_set(wqe_wqes, &wqe->fcp_trsp.wqe_com, 0);
bf_set(wqe_xc, &wqe->fcp_trsp.wqe_com, 0);
bf_set(wqe_iod, &wqe->fcp_trsp.wqe_com, LPFC_WQE_IOD_NONE);
bf_set(wqe_lenloc, &wqe->fcp_trsp.wqe_com, LPFC_WQE_LENLOC_WORD3);
/* Word 11 irsp, irsplen is variable */
bf_set(wqe_cmd_type, &wqe->fcp_trsp.wqe_com, FCP_COMMAND_TRSP);
bf_set(wqe_cqid, &wqe->fcp_trsp.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
bf_set(wqe_sup, &wqe->fcp_trsp.wqe_com, 0);
bf_set(wqe_irsp, &wqe->fcp_trsp.wqe_com, 0);
bf_set(wqe_irsplen, &wqe->fcp_trsp.wqe_com, 0);
bf_set(wqe_pbde, &wqe->fcp_trsp.wqe_com, 0);
/* Word 12, 13, 14, 15 - is zero */
}
#if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
static struct lpfc_async_xchg_ctx *
lpfc_nvmet_get_ctx_for_xri(struct lpfc_hba *phba, u16 xri)
{
struct lpfc_async_xchg_ctx *ctxp;
unsigned long iflag;
bool found = false;
spin_lock_irqsave(&phba->sli4_hba.t_active_list_lock, iflag);
list_for_each_entry(ctxp, &phba->sli4_hba.t_active_ctx_list, list) {
if (ctxp->ctxbuf->sglq->sli4_xritag != xri)
continue;
found = true;
break;
}
spin_unlock_irqrestore(&phba->sli4_hba.t_active_list_lock, iflag);
if (found)
return ctxp;
return NULL;
}
static struct lpfc_async_xchg_ctx *
lpfc_nvmet_get_ctx_for_oxid(struct lpfc_hba *phba, u16 oxid, u32 sid)
{
struct lpfc_async_xchg_ctx *ctxp;
unsigned long iflag;
bool found = false;
spin_lock_irqsave(&phba->sli4_hba.t_active_list_lock, iflag);
list_for_each_entry(ctxp, &phba->sli4_hba.t_active_ctx_list, list) {
if (ctxp->oxid != oxid || ctxp->sid != sid)
continue;
found = true;
break;
}
spin_unlock_irqrestore(&phba->sli4_hba.t_active_list_lock, iflag);
if (found)
return ctxp;
return NULL;
}
#endif
static void
lpfc_nvmet_defer_release(struct lpfc_hba *phba,
struct lpfc_async_xchg_ctx *ctxp)
{
lockdep_assert_held(&ctxp->ctxlock);
lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
"6313 NVMET Defer ctx release oxid x%x flg x%x\n",
ctxp->oxid, ctxp->flag);
if (ctxp->flag & LPFC_NVME_CTX_RLS)
return;
ctxp->flag |= LPFC_NVME_CTX_RLS;
spin_lock(&phba->sli4_hba.t_active_list_lock);
list_del(&ctxp->list);
spin_unlock(&phba->sli4_hba.t_active_list_lock);
spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock);
list_add_tail(&ctxp->list, &phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock);
}
/**
* __lpfc_nvme_xmt_ls_rsp_cmp - Generic completion handler for the
* transmission of an NVME LS response.
* @phba: Pointer to HBA context object.
* @cmdwqe: Pointer to driver command WQE object.
* @rspwqe: Pointer to driver response WQE object.
*
* The function is called from SLI ring event handler with no
* lock held. The function frees memory resources used for the command
* used to send the NVME LS RSP.
**/
void
__lpfc_nvme_xmt_ls_rsp_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe,
struct lpfc_iocbq *rspwqe)
{
struct lpfc_async_xchg_ctx *axchg = cmdwqe->context_un.axchg;
struct lpfc_wcqe_complete *wcqe = &rspwqe->wcqe_cmpl;
struct nvmefc_ls_rsp *ls_rsp = &axchg->ls_rsp;
uint32_t status, result;
status = bf_get(lpfc_wcqe_c_status, wcqe) & LPFC_IOCB_STATUS_MASK;
result = wcqe->parameter;
if (axchg->state != LPFC_NVME_STE_LS_RSP || axchg->entry_cnt != 2) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"6410 NVMEx LS cmpl state mismatch IO x%x: "
"%d %d\n",
axchg->oxid, axchg->state, axchg->entry_cnt);
}
lpfc_nvmeio_data(phba, "NVMEx LS CMPL: xri x%x stat x%x result x%x\n",
axchg->oxid, status, result);
lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC,
"6038 NVMEx LS rsp cmpl: %d %d oxid x%x\n",
status, result, axchg->oxid);
lpfc_nlp_put(cmdwqe->ndlp);
cmdwqe->context_un.axchg = NULL;
cmdwqe->bpl_dmabuf = NULL;
lpfc_sli_release_iocbq(phba, cmdwqe);
ls_rsp->done(ls_rsp);
lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC,
"6200 NVMEx LS rsp cmpl done status %d oxid x%x\n",
status, axchg->oxid);
kfree(axchg);
}
/**
* lpfc_nvmet_xmt_ls_rsp_cmp - Completion handler for LS Response
* @phba: Pointer to HBA context object.
* @cmdwqe: Pointer to driver command WQE object.
* @rspwqe: Pointer to driver response WQE object.
*
* The function is called from SLI ring event handler with no
* lock held. This function is the completion handler for NVME LS commands
* The function updates any states and statistics, then calls the
* generic completion handler to free resources.
**/
static void
lpfc_nvmet_xmt_ls_rsp_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe,
struct lpfc_iocbq *rspwqe)
{
struct lpfc_nvmet_tgtport *tgtp;
uint32_t status, result;
struct lpfc_wcqe_complete *wcqe = &rspwqe->wcqe_cmpl;
if (!phba->targetport)
goto finish;
status = bf_get(lpfc_wcqe_c_status, wcqe) & LPFC_IOCB_STATUS_MASK;
result = wcqe->parameter;
tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
if (tgtp) {
if (status) {
atomic_inc(&tgtp->xmt_ls_rsp_error);
if (result == IOERR_ABORT_REQUESTED)
atomic_inc(&tgtp->xmt_ls_rsp_aborted);
if (bf_get(lpfc_wcqe_c_xb, wcqe))
atomic_inc(&tgtp->xmt_ls_rsp_xb_set);
} else {
atomic_inc(&tgtp->xmt_ls_rsp_cmpl);
}
}
finish:
__lpfc_nvme_xmt_ls_rsp_cmp(phba, cmdwqe, rspwqe);
}
/**
* lpfc_nvmet_ctxbuf_post - Repost a NVMET RQ DMA buffer and clean up context
* @phba: HBA buffer is associated with
* @ctx_buf: ctx buffer context
*
* Description: Frees the given DMA buffer in the appropriate way given by
* reposting it to its associated RQ so it can be reused.
*
* Notes: Takes phba->hbalock. Can be called with or without other locks held.
*
* Returns: None
**/
void
lpfc_nvmet_ctxbuf_post(struct lpfc_hba *phba, struct lpfc_nvmet_ctxbuf *ctx_buf)
{
#if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
struct lpfc_async_xchg_ctx *ctxp = ctx_buf->context;
struct lpfc_nvmet_tgtport *tgtp;
struct fc_frame_header *fc_hdr;
struct rqb_dmabuf *nvmebuf;
struct lpfc_nvmet_ctx_info *infop;
uint32_t size, oxid, sid;
int cpu;
unsigned long iflag;
if (ctxp->state == LPFC_NVME_STE_FREE) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"6411 NVMET free, already free IO x%x: %d %d\n",
ctxp->oxid, ctxp->state, ctxp->entry_cnt);
}
if (ctxp->rqb_buffer) {
spin_lock_irqsave(&ctxp->ctxlock, iflag);
nvmebuf = ctxp->rqb_buffer;
/* check if freed in another path whilst acquiring lock */
if (nvmebuf) {
ctxp->rqb_buffer = NULL;
if (ctxp->flag & LPFC_NVME_CTX_REUSE_WQ) {
ctxp->flag &= ~LPFC_NVME_CTX_REUSE_WQ;
spin_unlock_irqrestore(&ctxp->ctxlock, iflag);
nvmebuf->hrq->rqbp->rqb_free_buffer(phba,
nvmebuf);
} else {
spin_unlock_irqrestore(&ctxp->ctxlock, iflag);
/* repost */
lpfc_rq_buf_free(phba, &nvmebuf->hbuf);
}
} else {
spin_unlock_irqrestore(&ctxp->ctxlock, iflag);
}
}
ctxp->state = LPFC_NVME_STE_FREE;
spin_lock_irqsave(&phba->sli4_hba.nvmet_io_wait_lock, iflag);
if (phba->sli4_hba.nvmet_io_wait_cnt) {
list_remove_head(&phba->sli4_hba.lpfc_nvmet_io_wait_list,
nvmebuf, struct rqb_dmabuf,
hbuf.list);
phba->sli4_hba.nvmet_io_wait_cnt--;
spin_unlock_irqrestore(&phba->sli4_hba.nvmet_io_wait_lock,
iflag);
fc_hdr = (struct fc_frame_header *)(nvmebuf->hbuf.virt);
oxid = be16_to_cpu(fc_hdr->fh_ox_id);
tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
size = nvmebuf->bytes_recv;
sid = sli4_sid_from_fc_hdr(fc_hdr);
ctxp = (struct lpfc_async_xchg_ctx *)ctx_buf->context;
ctxp->wqeq = NULL;
ctxp->offset = 0;
ctxp->phba = phba;
ctxp->size = size;
ctxp->oxid = oxid;
ctxp->sid = sid;
ctxp->state = LPFC_NVME_STE_RCV;
ctxp->entry_cnt = 1;
ctxp->flag = 0;
ctxp->ctxbuf = ctx_buf;
ctxp->rqb_buffer = (void *)nvmebuf;
spin_lock_init(&ctxp->ctxlock);
#ifdef CONFIG_SCSI_LPFC_DEBUG_FS
/* NOTE: isr time stamp is stale when context is re-assigned*/
if (ctxp->ts_isr_cmd) {
ctxp->ts_cmd_nvme = 0;
ctxp->ts_nvme_data = 0;
ctxp->ts_data_wqput = 0;
ctxp->ts_isr_data = 0;
ctxp->ts_data_nvme = 0;
ctxp->ts_nvme_status = 0;
ctxp->ts_status_wqput = 0;
ctxp->ts_isr_status = 0;
ctxp->ts_status_nvme = 0;
}
#endif
atomic_inc(&tgtp->rcv_fcp_cmd_in);
/* Indicate that a replacement buffer has been posted */
spin_lock_irqsave(&ctxp->ctxlock, iflag);
ctxp->flag |= LPFC_NVME_CTX_REUSE_WQ;
spin_unlock_irqrestore(&ctxp->ctxlock, iflag);
if (!queue_work(phba->wq, &ctx_buf->defer_work)) {
atomic_inc(&tgtp->rcv_fcp_cmd_drop);
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"6181 Unable to queue deferred work "
"for oxid x%x. "
"FCP Drop IO [x%x x%x x%x]\n",
ctxp->oxid,
atomic_read(&tgtp->rcv_fcp_cmd_in),
atomic_read(&tgtp->rcv_fcp_cmd_out),
atomic_read(&tgtp->xmt_fcp_release));
spin_lock_irqsave(&ctxp->ctxlock, iflag);
lpfc_nvmet_defer_release(phba, ctxp);
spin_unlock_irqrestore(&ctxp->ctxlock, iflag);
lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, sid, oxid);
}
return;
}
spin_unlock_irqrestore(&phba->sli4_hba.nvmet_io_wait_lock, iflag);
/*
* Use the CPU context list, from the MRQ the IO was received on
* (ctxp->idx), to save context structure.
*/
spin_lock_irqsave(&phba->sli4_hba.t_active_list_lock, iflag);
list_del_init(&ctxp->list);
spin_unlock_irqrestore(&phba->sli4_hba.t_active_list_lock, iflag);
cpu = raw_smp_processor_id();
infop = lpfc_get_ctx_list(phba, cpu, ctxp->idx);
spin_lock_irqsave(&infop->nvmet_ctx_list_lock, iflag);
list_add_tail(&ctx_buf->list, &infop->nvmet_ctx_list);
infop->nvmet_ctx_list_cnt++;
spin_unlock_irqrestore(&infop->nvmet_ctx_list_lock, iflag);
#endif
}
#ifdef CONFIG_SCSI_LPFC_DEBUG_FS
static void
lpfc_nvmet_ktime(struct lpfc_hba *phba,
struct lpfc_async_xchg_ctx *ctxp)
{
uint64_t seg1, seg2, seg3, seg4, seg5;
uint64_t seg6, seg7, seg8, seg9, seg10;
uint64_t segsum;
if (!ctxp->ts_isr_cmd || !ctxp->ts_cmd_nvme ||
!ctxp->ts_nvme_data || !ctxp->ts_data_wqput ||
!ctxp->ts_isr_data || !ctxp->ts_data_nvme ||
!ctxp->ts_nvme_status || !ctxp->ts_status_wqput ||
!ctxp->ts_isr_status || !ctxp->ts_status_nvme)
return;
if (ctxp->ts_status_nvme < ctxp->ts_isr_cmd)
return;
if (ctxp->ts_isr_cmd > ctxp->ts_cmd_nvme)
return;
if (ctxp->ts_cmd_nvme > ctxp->ts_nvme_data)
return;
if (ctxp->ts_nvme_data > ctxp->ts_data_wqput)
return;
if (ctxp->ts_data_wqput > ctxp->ts_isr_data)
return;
if (ctxp->ts_isr_data > ctxp->ts_data_nvme)
return;
if (ctxp->ts_data_nvme > ctxp->ts_nvme_status)
return;
if (ctxp->ts_nvme_status > ctxp->ts_status_wqput)
return;
if (ctxp->ts_status_wqput > ctxp->ts_isr_status)
return;
if (ctxp->ts_isr_status > ctxp->ts_status_nvme)
return;
/*
* Segment 1 - Time from FCP command received by MSI-X ISR
* to FCP command is passed to NVME Layer.
* Segment 2 - Time from FCP command payload handed
* off to NVME Layer to Driver receives a Command op
* from NVME Layer.
* Segment 3 - Time from Driver receives a Command op
* from NVME Layer to Command is put on WQ.
* Segment 4 - Time from Driver WQ put is done
* to MSI-X ISR for Command cmpl.
* Segment 5 - Time from MSI-X ISR for Command cmpl to
* Command cmpl is passed to NVME Layer.
* Segment 6 - Time from Command cmpl is passed to NVME
* Layer to Driver receives a RSP op from NVME Layer.
* Segment 7 - Time from Driver receives a RSP op from
* NVME Layer to WQ put is done on TRSP FCP Status.
* Segment 8 - Time from Driver WQ put is done on TRSP
* FCP Status to MSI-X ISR for TRSP cmpl.
* Segment 9 - Time from MSI-X ISR for TRSP cmpl to
* TRSP cmpl is passed to NVME Layer.
* Segment 10 - Time from FCP command received by
* MSI-X ISR to command is completed on wire.
* (Segments 1 thru 8) for READDATA / WRITEDATA
* (Segments 1 thru 4) for READDATA_RSP
*/
seg1 = ctxp->ts_cmd_nvme - ctxp->ts_isr_cmd;
segsum = seg1;
seg2 = ctxp->ts_nvme_data - ctxp->ts_isr_cmd;
if (segsum > seg2)
return;
seg2 -= segsum;
segsum += seg2;
seg3 = ctxp->ts_data_wqput - ctxp->ts_isr_cmd;
if (segsum > seg3)
return;
seg3 -= segsum;
segsum += seg3;
seg4 = ctxp->ts_isr_data - ctxp->ts_isr_cmd;
if (segsum > seg4)
return;
seg4 -= segsum;
segsum += seg4;
seg5 = ctxp->ts_data_nvme - ctxp->ts_isr_cmd;
if (segsum > seg5)
return;
seg5 -= segsum;
segsum += seg5;
/* For auto rsp commands seg6 thru seg10 will be 0 */
if (ctxp->ts_nvme_status > ctxp->ts_data_nvme) {
seg6 = ctxp->ts_nvme_status - ctxp->ts_isr_cmd;
if (segsum > seg6)
return;
seg6 -= segsum;
segsum += seg6;
seg7 = ctxp->ts_status_wqput - ctxp->ts_isr_cmd;
if (segsum > seg7)
return;
seg7 -= segsum;
segsum += seg7;
seg8 = ctxp->ts_isr_status - ctxp->ts_isr_cmd;
if (segsum > seg8)
return;
seg8 -= segsum;
segsum += seg8;
seg9 = ctxp->ts_status_nvme - ctxp->ts_isr_cmd;
if (segsum > seg9)
return;
seg9 -= segsum;
segsum += seg9;
if (ctxp->ts_isr_status < ctxp->ts_isr_cmd)
return;
seg10 = (ctxp->ts_isr_status -
ctxp->ts_isr_cmd);
} else {
if (ctxp->ts_isr_data < ctxp->ts_isr_cmd)
return;
seg6 = 0;
seg7 = 0;
seg8 = 0;
seg9 = 0;
seg10 = (ctxp->ts_isr_data - ctxp->ts_isr_cmd);
}
phba->ktime_seg1_total += seg1;
if (seg1 < phba->ktime_seg1_min)
phba->ktime_seg1_min = seg1;
else if (seg1 > phba->ktime_seg1_max)
phba->ktime_seg1_max = seg1;
phba->ktime_seg2_total += seg2;
if (seg2 < phba->ktime_seg2_min)
phba->ktime_seg2_min = seg2;
else if (seg2 > phba->ktime_seg2_max)
phba->ktime_seg2_max = seg2;
phba->ktime_seg3_total += seg3;
if (seg3 < phba->ktime_seg3_min)
phba->ktime_seg3_min = seg3;
else if (seg3 > phba->ktime_seg3_max)
phba->ktime_seg3_max = seg3;
phba->ktime_seg4_total += seg4;
if (seg4 < phba->ktime_seg4_min)
phba->ktime_seg4_min = seg4;
else if (seg4 > phba->ktime_seg4_max)
phba->ktime_seg4_max = seg4;
phba->ktime_seg5_total += seg5;
if (seg5 < phba->ktime_seg5_min)
phba->ktime_seg5_min = seg5;
else if (seg5 > phba->ktime_seg5_max)
phba->ktime_seg5_max = seg5;
phba->ktime_data_samples++;
if (!seg6)
goto out;
phba->ktime_seg6_total += seg6;
if (seg6 < phba->ktime_seg6_min)
phba->ktime_seg6_min = seg6;
else if (seg6 > phba->ktime_seg6_max)
phba->ktime_seg6_max = seg6;
phba->ktime_seg7_total += seg7;
if (seg7 < phba->ktime_seg7_min)
phba->ktime_seg7_min = seg7;
else if (seg7 > phba->ktime_seg7_max)
phba->ktime_seg7_max = seg7;
phba->ktime_seg8_total += seg8;
if (seg8 < phba->ktime_seg8_min)
phba->ktime_seg8_min = seg8;
else if (seg8 > phba->ktime_seg8_max)
phba->ktime_seg8_max = seg8;
phba->ktime_seg9_total += seg9;
if (seg9 < phba->ktime_seg9_min)
phba->ktime_seg9_min = seg9;
else if (seg9 > phba->ktime_seg9_max)
phba->ktime_seg9_max = seg9;
out:
phba->ktime_seg10_total += seg10;
if (seg10 < phba->ktime_seg10_min)
phba->ktime_seg10_min = seg10;
else if (seg10 > phba->ktime_seg10_max)
phba->ktime_seg10_max = seg10;
phba->ktime_status_samples++;
}
#endif
/**
* lpfc_nvmet_xmt_fcp_op_cmp - Completion handler for FCP Response
* @phba: Pointer to HBA context object.
* @cmdwqe: Pointer to driver command WQE object.
* @rspwqe: Pointer to driver response WQE object.
*
* The function is called from SLI ring event handler with no
* lock held. This function is the completion handler for NVME FCP commands
* The function frees memory resources used for the NVME commands.
**/
static void
lpfc_nvmet_xmt_fcp_op_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe,
struct lpfc_iocbq *rspwqe)
{
struct lpfc_nvmet_tgtport *tgtp;
struct nvmefc_tgt_fcp_req *rsp;
struct lpfc_async_xchg_ctx *ctxp;
uint32_t status, result, op, logerr;
struct lpfc_wcqe_complete *wcqe = &rspwqe->wcqe_cmpl;
#ifdef CONFIG_SCSI_LPFC_DEBUG_FS
int id;
#endif
ctxp = cmdwqe->context_un.axchg;
ctxp->flag &= ~LPFC_NVME_IO_INP;
rsp = &ctxp->hdlrctx.fcp_req;
op = rsp->op;
status = bf_get(lpfc_wcqe_c_status, wcqe);
result = wcqe->parameter;
if (phba->targetport)
tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
else
tgtp = NULL;
lpfc_nvmeio_data(phba, "NVMET FCP CMPL: xri x%x op x%x status x%x\n",
ctxp->oxid, op, status);
if (status) {
rsp->fcp_error = NVME_SC_DATA_XFER_ERROR;
rsp->transferred_length = 0;
if (tgtp) {
atomic_inc(&tgtp->xmt_fcp_rsp_error);
if (result == IOERR_ABORT_REQUESTED)
atomic_inc(&tgtp->xmt_fcp_rsp_aborted);
}
logerr = LOG_NVME_IOERR;
/* pick up SLI4 exhange busy condition */
if (bf_get(lpfc_wcqe_c_xb, wcqe)) {
ctxp->flag |= LPFC_NVME_XBUSY;
logerr |= LOG_NVME_ABTS;
if (tgtp)
atomic_inc(&tgtp->xmt_fcp_rsp_xb_set);
} else {
ctxp->flag &= ~LPFC_NVME_XBUSY;
}
lpfc_printf_log(phba, KERN_INFO, logerr,
"6315 IO Error Cmpl oxid: x%x xri: x%x %x/%x "
"XBUSY:x%x\n",
ctxp->oxid, ctxp->ctxbuf->sglq->sli4_xritag,
status, result, ctxp->flag);
} else {
rsp->fcp_error = NVME_SC_SUCCESS;
if (op == NVMET_FCOP_RSP)
rsp->transferred_length = rsp->rsplen;
else
rsp->transferred_length = rsp->transfer_length;
if (tgtp)
atomic_inc(&tgtp->xmt_fcp_rsp_cmpl);
}
if ((op == NVMET_FCOP_READDATA_RSP) ||
(op == NVMET_FCOP_RSP)) {
/* Sanity check */
ctxp->state = LPFC_NVME_STE_DONE;
ctxp->entry_cnt++;
#ifdef CONFIG_SCSI_LPFC_DEBUG_FS
if (ctxp->ts_cmd_nvme) {
if (rsp->op == NVMET_FCOP_READDATA_RSP) {
ctxp->ts_isr_data =
cmdwqe->isr_timestamp;
ctxp->ts_data_nvme =
ktime_get_ns();
ctxp->ts_nvme_status =
ctxp->ts_data_nvme;
ctxp->ts_status_wqput =
ctxp->ts_data_nvme;
ctxp->ts_isr_status =
ctxp->ts_data_nvme;
ctxp->ts_status_nvme =
ctxp->ts_data_nvme;
} else {
ctxp->ts_isr_status =
cmdwqe->isr_timestamp;
ctxp->ts_status_nvme =
ktime_get_ns();
}
}
#endif
rsp->done(rsp);
#ifdef CONFIG_SCSI_LPFC_DEBUG_FS
if (ctxp->ts_cmd_nvme)
lpfc_nvmet_ktime(phba, ctxp);
#endif
/* lpfc_nvmet_xmt_fcp_release() will recycle the context */
} else {
ctxp->entry_cnt++;
memset_startat(cmdwqe, 0, cmd_flag);
#ifdef CONFIG_SCSI_LPFC_DEBUG_FS
if (ctxp->ts_cmd_nvme) {
ctxp->ts_isr_data = cmdwqe->isr_timestamp;
ctxp->ts_data_nvme = ktime_get_ns();
}
#endif
rsp->done(rsp);
}
#ifdef CONFIG_SCSI_LPFC_DEBUG_FS
if (phba->hdwqstat_on & LPFC_CHECK_NVMET_IO) {
id = raw_smp_processor_id();
this_cpu_inc(phba->sli4_hba.c_stat->cmpl_io);
if (ctxp->cpu != id)
lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR,
"6704 CPU Check cmdcmpl: "
"cpu %d expect %d\n",
id, ctxp->cpu);
}
#endif
}
/**
* __lpfc_nvme_xmt_ls_rsp - Generic service routine to issue transmit
* an NVME LS rsp for a prior NVME LS request that was received.
* @axchg: pointer to exchange context for the NVME LS request the response
* is for.
* @ls_rsp: pointer to the transport LS RSP that is to be sent
* @xmt_ls_rsp_cmp: completion routine to call upon RSP transmit done
*
* This routine is used to format and send a WQE to transmit a NVME LS
* Response. The response is for a prior NVME LS request that was
* received and posted to the transport.
*
* Returns:
* 0 : if response successfully transmit
* non-zero : if response failed to transmit, of the form -Exxx.
**/
int
__lpfc_nvme_xmt_ls_rsp(struct lpfc_async_xchg_ctx *axchg,
struct nvmefc_ls_rsp *ls_rsp,
void (*xmt_ls_rsp_cmp)(struct lpfc_hba *phba,
struct lpfc_iocbq *cmdwqe,
struct lpfc_iocbq *rspwqe))
{
struct lpfc_hba *phba = axchg->phba;
struct hbq_dmabuf *nvmebuf = (struct hbq_dmabuf *)axchg->rqb_buffer;
struct lpfc_iocbq *nvmewqeq;
struct lpfc_dmabuf dmabuf;
struct ulp_bde64 bpl;
int rc;
if (phba->pport->load_flag & FC_UNLOADING)
return -ENODEV;
lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC,
"6023 NVMEx LS rsp oxid x%x\n", axchg->oxid);
if (axchg->state != LPFC_NVME_STE_LS_RCV || axchg->entry_cnt != 1) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"6412 NVMEx LS rsp state mismatch "
"oxid x%x: %d %d\n",
axchg->oxid, axchg->state, axchg->entry_cnt);
return -EALREADY;
}
axchg->state = LPFC_NVME_STE_LS_RSP;
axchg->entry_cnt++;
nvmewqeq = lpfc_nvmet_prep_ls_wqe(phba, axchg, ls_rsp->rspdma,
ls_rsp->rsplen);
if (nvmewqeq == NULL) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"6150 NVMEx LS Drop Rsp x%x: Prep\n",
axchg->oxid);
rc = -ENOMEM;
goto out_free_buf;
}
/* Save numBdes for bpl2sgl */
nvmewqeq->num_bdes = 1;
nvmewqeq->hba_wqidx = 0;
nvmewqeq->bpl_dmabuf = &dmabuf;
dmabuf.virt = &bpl;
bpl.addrLow = nvmewqeq->wqe.xmit_sequence.bde.addrLow;
bpl.addrHigh = nvmewqeq->wqe.xmit_sequence.bde.addrHigh;
bpl.tus.f.bdeSize = ls_rsp->rsplen;
bpl.tus.f.bdeFlags = 0;
bpl.tus.w = le32_to_cpu(bpl.tus.w);
/*
* Note: although we're using stack space for the dmabuf, the
* call to lpfc_sli4_issue_wqe is synchronous, so it will not
* be referenced after it returns back to this routine.
*/
nvmewqeq->cmd_cmpl = xmt_ls_rsp_cmp;
nvmewqeq->context_un.axchg = axchg;
lpfc_nvmeio_data(phba, "NVMEx LS RSP: xri x%x wqidx x%x len x%x\n",
axchg->oxid, nvmewqeq->hba_wqidx, ls_rsp->rsplen);
rc = lpfc_sli4_issue_wqe(phba, axchg->hdwq, nvmewqeq);
/* clear to be sure there's no reference */
nvmewqeq->bpl_dmabuf = NULL;
if (rc == WQE_SUCCESS) {
/*
* Okay to repost buffer here, but wait till cmpl
* before freeing ctxp and iocbq.
*/
lpfc_in_buf_free(phba, &nvmebuf->dbuf);
return 0;
}
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"6151 NVMEx LS RSP x%x: failed to transmit %d\n",
axchg->oxid, rc);
rc = -ENXIO;
lpfc_nlp_put(nvmewqeq->ndlp);
out_free_buf:
/* Give back resources */
lpfc_in_buf_free(phba, &nvmebuf->dbuf);
/*
* As transport doesn't track completions of responses, if the rsp
* fails to send, the transport will effectively ignore the rsp
* and consider the LS done. However, the driver has an active
* exchange open for the LS - so be sure to abort the exchange
* if the response isn't sent.
*/
lpfc_nvme_unsol_ls_issue_abort(phba, axchg, axchg->sid, axchg->oxid);
return rc;
}
/**
* lpfc_nvmet_xmt_ls_rsp - Transmit NVME LS response
* @tgtport: pointer to target port that NVME LS is to be transmit from.
* @ls_rsp: pointer to the transport LS RSP that is to be sent
*
* Driver registers this routine to transmit responses for received NVME
* LS requests.
*
* This routine is used to format and send a WQE to transmit a NVME LS
* Response. The ls_rsp is used to reverse-map the LS to the original
* NVME LS request sequence, which provides addressing information for
* the remote port the LS to be sent to, as well as the exchange id
* that is the LS is bound to.
*
* Returns:
* 0 : if response successfully transmit
* non-zero : if response failed to transmit, of the form -Exxx.
**/
static int
lpfc_nvmet_xmt_ls_rsp(struct nvmet_fc_target_port *tgtport,
struct nvmefc_ls_rsp *ls_rsp)
{
struct lpfc_async_xchg_ctx *axchg =
container_of(ls_rsp, struct lpfc_async_xchg_ctx, ls_rsp);
struct lpfc_nvmet_tgtport *nvmep = tgtport->private;
int rc;
if (axchg->phba->pport->load_flag & FC_UNLOADING)
return -ENODEV;
rc = __lpfc_nvme_xmt_ls_rsp(axchg, ls_rsp, lpfc_nvmet_xmt_ls_rsp_cmp);
if (rc) {
atomic_inc(&nvmep->xmt_ls_drop);
/*
* unless the failure is due to having already sent
* the response, an abort will be generated for the
* exchange if the rsp can't be sent.
*/
if (rc != -EALREADY)
atomic_inc(&nvmep->xmt_ls_abort);
return rc;
}
atomic_inc(&nvmep->xmt_ls_rsp);
return 0;
}
static int
lpfc_nvmet_xmt_fcp_op(struct nvmet_fc_target_port *tgtport,
struct nvmefc_tgt_fcp_req *rsp)
{
struct lpfc_nvmet_tgtport *lpfc_nvmep = tgtport->private;
struct lpfc_async_xchg_ctx *ctxp =
container_of(rsp, struct lpfc_async_xchg_ctx, hdlrctx.fcp_req);
struct lpfc_hba *phba = ctxp->phba;
struct lpfc_queue *wq;
struct lpfc_iocbq *nvmewqeq;
struct lpfc_sli_ring *pring;
unsigned long iflags;
int rc;
#ifdef CONFIG_SCSI_LPFC_DEBUG_FS
int id;
#endif
if (phba->pport->load_flag & FC_UNLOADING) {
rc = -ENODEV;
goto aerr;
}
#ifdef CONFIG_SCSI_LPFC_DEBUG_FS
if (ctxp->ts_cmd_nvme) {
if (rsp->op == NVMET_FCOP_RSP)
ctxp->ts_nvme_status = ktime_get_ns();
else
ctxp->ts_nvme_data = ktime_get_ns();
}
/* Setup the hdw queue if not already set */
if (!ctxp->hdwq)
ctxp->hdwq = &phba->sli4_hba.hdwq[rsp->hwqid];
if (phba->hdwqstat_on & LPFC_CHECK_NVMET_IO) {
id = raw_smp_processor_id();
this_cpu_inc(phba->sli4_hba.c_stat->xmt_io);
if (rsp->hwqid != id)
lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR,
"6705 CPU Check OP: "
"cpu %d expect %d\n",
id, rsp->hwqid);
ctxp->cpu = id; /* Setup cpu for cmpl check */
}
#endif
/* Sanity check */
if ((ctxp->flag & LPFC_NVME_ABTS_RCV) ||
(ctxp->state == LPFC_NVME_STE_ABORT)) {
atomic_inc(&lpfc_nvmep->xmt_fcp_drop);
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"6102 IO oxid x%x aborted\n",
ctxp->oxid);
rc = -ENXIO;
goto aerr;
}
nvmewqeq = lpfc_nvmet_prep_fcp_wqe(phba, ctxp);
if (nvmewqeq == NULL) {
atomic_inc(&lpfc_nvmep->xmt_fcp_drop);
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"6152 FCP Drop IO x%x: Prep\n",
ctxp->oxid);
rc = -ENXIO;
goto aerr;
}
nvmewqeq->cmd_cmpl = lpfc_nvmet_xmt_fcp_op_cmp;
nvmewqeq->context_un.axchg = ctxp;
nvmewqeq->cmd_flag |= LPFC_IO_NVMET;
ctxp->wqeq->hba_wqidx = rsp->hwqid;
lpfc_nvmeio_data(phba, "NVMET FCP CMND: xri x%x op x%x len x%x\n",
ctxp->oxid, rsp->op, rsp->rsplen);
ctxp->flag |= LPFC_NVME_IO_INP;
rc = lpfc_sli4_issue_wqe(phba, ctxp->hdwq, nvmewqeq);
if (rc == WQE_SUCCESS) {
#ifdef CONFIG_SCSI_LPFC_DEBUG_FS
if (!ctxp->ts_cmd_nvme)
return 0;
if (rsp->op == NVMET_FCOP_RSP)
ctxp->ts_status_wqput = ktime_get_ns();
else
ctxp->ts_data_wqput = ktime_get_ns();
#endif
return 0;
}
if (rc == -EBUSY) {
/*
* WQ was full, so queue nvmewqeq to be sent after
* WQE release CQE
*/
ctxp->flag |= LPFC_NVME_DEFER_WQFULL;
wq = ctxp->hdwq->io_wq;
pring = wq->pring;
spin_lock_irqsave(&pring->ring_lock, iflags);
list_add_tail(&nvmewqeq->list, &wq->wqfull_list);
wq->q_flag |= HBA_NVMET_WQFULL;
spin_unlock_irqrestore(&pring->ring_lock, iflags);
atomic_inc(&lpfc_nvmep->defer_wqfull);
return 0;
}
/* Give back resources */
atomic_inc(&lpfc_nvmep->xmt_fcp_drop);
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"6153 FCP Drop IO x%x: Issue: %d\n",
ctxp->oxid, rc);
ctxp->wqeq->hba_wqidx = 0;
nvmewqeq->context_un.axchg = NULL;
nvmewqeq->bpl_dmabuf = NULL;
rc = -EBUSY;
aerr:
return rc;
}
static void
lpfc_nvmet_targetport_delete(struct nvmet_fc_target_port *targetport)
{
struct lpfc_nvmet_tgtport *tport = targetport->private;
/* release any threads waiting for the unreg to complete */
if (tport->phba->targetport)
complete(tport->tport_unreg_cmp);
}
static void
lpfc_nvmet_xmt_fcp_abort(struct nvmet_fc_target_port *tgtport,
struct nvmefc_tgt_fcp_req *req)
{
struct lpfc_nvmet_tgtport *lpfc_nvmep = tgtport->private;
struct lpfc_async_xchg_ctx *ctxp =
container_of(req, struct lpfc_async_xchg_ctx, hdlrctx.fcp_req);
struct lpfc_hba *phba = ctxp->phba;
struct lpfc_queue *wq;
unsigned long flags;
if (phba->pport->load_flag & FC_UNLOADING)
return;
if (!ctxp->hdwq)
ctxp->hdwq = &phba->sli4_hba.hdwq[0];
lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
"6103 NVMET Abort op: oxid x%x flg x%x ste %d\n",
ctxp->oxid, ctxp->flag, ctxp->state);
lpfc_nvmeio_data(phba, "NVMET FCP ABRT: xri x%x flg x%x ste x%x\n",
ctxp->oxid, ctxp->flag, ctxp->state);
atomic_inc(&lpfc_nvmep->xmt_fcp_abort);
spin_lock_irqsave(&ctxp->ctxlock, flags);
/* Since iaab/iaar are NOT set, we need to check
* if the firmware is in process of aborting IO
*/
if (ctxp->flag & (LPFC_NVME_XBUSY | LPFC_NVME_ABORT_OP)) {
spin_unlock_irqrestore(&ctxp->ctxlock, flags);
return;
}
ctxp->flag |= LPFC_NVME_ABORT_OP;
if (ctxp->flag & LPFC_NVME_DEFER_WQFULL) {
spin_unlock_irqrestore(&ctxp->ctxlock, flags);
lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, ctxp->sid,
ctxp->oxid);
wq = ctxp->hdwq->io_wq;
lpfc_nvmet_wqfull_flush(phba, wq, ctxp);
return;
}
spin_unlock_irqrestore(&ctxp->ctxlock, flags);
/* A state of LPFC_NVME_STE_RCV means we have just received
* the NVME command and have not started processing it.
* (by issuing any IO WQEs on this exchange yet)
*/
if (ctxp->state == LPFC_NVME_STE_RCV)
lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, ctxp->sid,
ctxp->oxid);
else
lpfc_nvmet_sol_fcp_issue_abort(phba, ctxp, ctxp->sid,
ctxp->oxid);
}
static void
lpfc_nvmet_xmt_fcp_release(struct nvmet_fc_target_port *tgtport,
struct nvmefc_tgt_fcp_req *rsp)
{
struct lpfc_nvmet_tgtport *lpfc_nvmep = tgtport->private;
struct lpfc_async_xchg_ctx *ctxp =
container_of(rsp, struct lpfc_async_xchg_ctx, hdlrctx.fcp_req);
struct lpfc_hba *phba = ctxp->phba;
unsigned long flags;
bool aborting = false;
spin_lock_irqsave(&ctxp->ctxlock, flags);
if (ctxp->flag & LPFC_NVME_XBUSY)
lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR,
"6027 NVMET release with XBUSY flag x%x"
" oxid x%x\n",
ctxp->flag, ctxp->oxid);
else if (ctxp->state != LPFC_NVME_STE_DONE &&
ctxp->state != LPFC_NVME_STE_ABORT)
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"6413 NVMET release bad state %d %d oxid x%x\n",
ctxp->state, ctxp->entry_cnt, ctxp->oxid);
if ((ctxp->flag & LPFC_NVME_ABORT_OP) ||
(ctxp->flag & LPFC_NVME_XBUSY)) {
aborting = true;
/* let the abort path do the real release */
lpfc_nvmet_defer_release(phba, ctxp);
}
spin_unlock_irqrestore(&ctxp->ctxlock, flags);
lpfc_nvmeio_data(phba, "NVMET FCP FREE: xri x%x ste %d abt %d\n", ctxp->oxid,
ctxp->state, aborting);
atomic_inc(&lpfc_nvmep->xmt_fcp_release);
ctxp->flag &= ~LPFC_NVME_TNOTIFY;
if (aborting)
return;
lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf);
}
static void
lpfc_nvmet_defer_rcv(struct nvmet_fc_target_port *tgtport,
struct nvmefc_tgt_fcp_req *rsp)
{
struct lpfc_nvmet_tgtport *tgtp;
struct lpfc_async_xchg_ctx *ctxp =
container_of(rsp, struct lpfc_async_xchg_ctx, hdlrctx.fcp_req);
struct rqb_dmabuf *nvmebuf = ctxp->rqb_buffer;
struct lpfc_hba *phba = ctxp->phba;
unsigned long iflag;
lpfc_nvmeio_data(phba, "NVMET DEFERRCV: xri x%x sz %d CPU %02x\n",
ctxp->oxid, ctxp->size, raw_smp_processor_id());
if (!nvmebuf) {
lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR,
"6425 Defer rcv: no buffer oxid x%x: "
"flg %x ste %x\n",
ctxp->oxid, ctxp->flag, ctxp->state);
return;
}
tgtp = phba->targetport->private;
if (tgtp)
atomic_inc(&tgtp->rcv_fcp_cmd_defer);
/* Free the nvmebuf since a new buffer already replaced it */
nvmebuf->hrq->rqbp->rqb_free_buffer(phba, nvmebuf);
spin_lock_irqsave(&ctxp->ctxlock, iflag);
ctxp->rqb_buffer = NULL;
spin_unlock_irqrestore(&ctxp->ctxlock, iflag);
}
/**
* lpfc_nvmet_ls_req_cmp - completion handler for a nvme ls request
* @phba: Pointer to HBA context object
* @cmdwqe: Pointer to driver command WQE object.
* @rspwqe: Pointer to driver response WQE object.
*
* This function is the completion handler for NVME LS requests.
* The function updates any states and statistics, then calls the
* generic completion handler to finish completion of the request.
**/
static void
lpfc_nvmet_ls_req_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe,
struct lpfc_iocbq *rspwqe)
{
struct lpfc_wcqe_complete *wcqe = &rspwqe->wcqe_cmpl;
__lpfc_nvme_ls_req_cmp(phba, cmdwqe->vport, cmdwqe, wcqe);
}
/**
* lpfc_nvmet_ls_req - Issue an Link Service request
* @targetport: pointer to target instance registered with nvmet transport.
* @hosthandle: hosthandle set by the driver in a prior ls_rqst_rcv.
* Driver sets this value to the ndlp pointer.
* @pnvme_lsreq: the transport nvme_ls_req structure for the LS
*
* Driver registers this routine to handle any link service request
* from the nvme_fc transport to a remote nvme-aware port.
*
* Return value :
* 0 - Success
* non-zero: various error codes, in form of -Exxx
**/
static int
lpfc_nvmet_ls_req(struct nvmet_fc_target_port *targetport,
void *hosthandle,
struct nvmefc_ls_req *pnvme_lsreq)
{
struct lpfc_nvmet_tgtport *lpfc_nvmet = targetport->private;
struct lpfc_hba *phba;
struct lpfc_nodelist *ndlp;
int ret;
u32 hstate;
if (!lpfc_nvmet)
return -EINVAL;
phba = lpfc_nvmet->phba;
if (phba->pport->load_flag & FC_UNLOADING)
return -EINVAL;
hstate = atomic_read(&lpfc_nvmet->state);
if (hstate == LPFC_NVMET_INV_HOST_ACTIVE)
return -EACCES;
ndlp = (struct lpfc_nodelist *)hosthandle;
ret = __lpfc_nvme_ls_req(phba->pport, ndlp, pnvme_lsreq,
lpfc_nvmet_ls_req_cmp);
return ret;
}
/**
* lpfc_nvmet_ls_abort - Abort a prior NVME LS request
* @targetport: Transport targetport, that LS was issued from.
* @hosthandle: hosthandle set by the driver in a prior ls_rqst_rcv.
* Driver sets this value to the ndlp pointer.
* @pnvme_lsreq: the transport nvme_ls_req structure for LS to be aborted
*
* Driver registers this routine to abort an NVME LS request that is
* in progress (from the transports perspective).
**/
static void
lpfc_nvmet_ls_abort(struct nvmet_fc_target_port *targetport,
void *hosthandle,
struct nvmefc_ls_req *pnvme_lsreq)
{
struct lpfc_nvmet_tgtport *lpfc_nvmet = targetport->private;
struct lpfc_hba *phba;
struct lpfc_nodelist *ndlp;
int ret;
phba = lpfc_nvmet->phba;
if (phba->pport->load_flag & FC_UNLOADING)
return;
ndlp = (struct lpfc_nodelist *)hosthandle;
ret = __lpfc_nvme_ls_abort(phba->pport, ndlp, pnvme_lsreq);
if (!ret)
atomic_inc(&lpfc_nvmet->xmt_ls_abort);
}
static void
lpfc_nvmet_host_release(void *hosthandle)
{
struct lpfc_nodelist *ndlp = hosthandle;
struct lpfc_hba *phba = ndlp->phba;
struct lpfc_nvmet_tgtport *tgtp;
if (!phba->targetport || !phba->targetport->private)
return;
lpfc_printf_log(phba, KERN_ERR, LOG_NVME,
"6202 NVMET XPT releasing hosthandle x%px "
"DID x%x xflags x%x refcnt %d\n",
hosthandle, ndlp->nlp_DID, ndlp->fc4_xpt_flags,
kref_read(&ndlp->kref));
tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
spin_lock_irq(&ndlp->lock);
ndlp->fc4_xpt_flags &= ~NLP_XPT_HAS_HH;
spin_unlock_irq(&ndlp->lock);
lpfc_nlp_put(ndlp);
atomic_set(&tgtp->state, 0);
}
static void
lpfc_nvmet_discovery_event(struct nvmet_fc_target_port *tgtport)
{
struct lpfc_nvmet_tgtport *tgtp;
struct lpfc_hba *phba;
uint32_t rc;
tgtp = tgtport->private;
phba = tgtp->phba;
rc = lpfc_issue_els_rscn(phba->pport, 0);
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"6420 NVMET subsystem change: Notification %s\n",
(rc) ? "Failed" : "Sent");
}
static struct nvmet_fc_target_template lpfc_tgttemplate = {
.targetport_delete = lpfc_nvmet_targetport_delete,
.xmt_ls_rsp = lpfc_nvmet_xmt_ls_rsp,
.fcp_op = lpfc_nvmet_xmt_fcp_op,
.fcp_abort = lpfc_nvmet_xmt_fcp_abort,
.fcp_req_release = lpfc_nvmet_xmt_fcp_release,
.defer_rcv = lpfc_nvmet_defer_rcv,
.discovery_event = lpfc_nvmet_discovery_event,
.ls_req = lpfc_nvmet_ls_req,
.ls_abort = lpfc_nvmet_ls_abort,
.host_release = lpfc_nvmet_host_release,
.max_hw_queues = 1,
.max_sgl_segments = LPFC_NVMET_DEFAULT_SEGS,
.max_dif_sgl_segments = LPFC_NVMET_DEFAULT_SEGS,
.dma_boundary = 0xFFFFFFFF,
/* optional features */
.target_features = 0,
/* sizes of additional private data for data structures */
.target_priv_sz = sizeof(struct lpfc_nvmet_tgtport),
.lsrqst_priv_sz = 0,
};
static void
__lpfc_nvmet_clean_io_for_cpu(struct lpfc_hba *phba,
struct lpfc_nvmet_ctx_info *infop)
{
struct lpfc_nvmet_ctxbuf *ctx_buf, *next_ctx_buf;
unsigned long flags;
spin_lock_irqsave(&infop->nvmet_ctx_list_lock, flags);
list_for_each_entry_safe(ctx_buf, next_ctx_buf,
&infop->nvmet_ctx_list, list) {
spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock);
list_del_init(&ctx_buf->list);
spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock);
spin_lock(&phba->hbalock);
__lpfc_clear_active_sglq(phba, ctx_buf->sglq->sli4_lxritag);
spin_unlock(&phba->hbalock);
ctx_buf->sglq->state = SGL_FREED;
ctx_buf->sglq->ndlp = NULL;
spin_lock(&phba->sli4_hba.sgl_list_lock);
list_add_tail(&ctx_buf->sglq->list,
&phba->sli4_hba.lpfc_nvmet_sgl_list);
spin_unlock(&phba->sli4_hba.sgl_list_lock);
lpfc_sli_release_iocbq(phba, ctx_buf->iocbq);
kfree(ctx_buf->context);
}
spin_unlock_irqrestore(&infop->nvmet_ctx_list_lock, flags);
}
static void
lpfc_nvmet_cleanup_io_context(struct lpfc_hba *phba)
{
struct lpfc_nvmet_ctx_info *infop;
int i, j;
/* The first context list, MRQ 0 CPU 0 */
infop = phba->sli4_hba.nvmet_ctx_info;
if (!infop)
return;
/* Cycle the entire CPU context list for every MRQ */
for (i = 0; i < phba->cfg_nvmet_mrq; i++) {
for_each_present_cpu(j) {
infop = lpfc_get_ctx_list(phba, j, i);
__lpfc_nvmet_clean_io_for_cpu(phba, infop);
}
}
kfree(phba->sli4_hba.nvmet_ctx_info);
phba->sli4_hba.nvmet_ctx_info = NULL;
}
static int
lpfc_nvmet_setup_io_context(struct lpfc_hba *phba)
{
struct lpfc_nvmet_ctxbuf *ctx_buf;
struct lpfc_iocbq *nvmewqe;
union lpfc_wqe128 *wqe;
struct lpfc_nvmet_ctx_info *last_infop;
struct lpfc_nvmet_ctx_info *infop;
int i, j, idx, cpu;
lpfc_printf_log(phba, KERN_INFO, LOG_NVME,
"6403 Allocate NVMET resources for %d XRIs\n",
phba->sli4_hba.nvmet_xri_cnt);
phba->sli4_hba.nvmet_ctx_info = kcalloc(
phba->sli4_hba.num_possible_cpu * phba->cfg_nvmet_mrq,
sizeof(struct lpfc_nvmet_ctx_info), GFP_KERNEL);
if (!phba->sli4_hba.nvmet_ctx_info) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"6419 Failed allocate memory for "
"nvmet context lists\n");
return -ENOMEM;
}
/*
* Assuming X CPUs in the system, and Y MRQs, allocate some
* lpfc_nvmet_ctx_info structures as follows:
*
* cpu0/mrq0 cpu1/mrq0 ... cpuX/mrq0
* cpu0/mrq1 cpu1/mrq1 ... cpuX/mrq1
* ...
* cpuX/mrqY cpuX/mrqY ... cpuX/mrqY
*
* Each line represents a MRQ "silo" containing an entry for
* every CPU.
*
* MRQ X is initially assumed to be associated with CPU X, thus
* contexts are initially distributed across all MRQs using
* the MRQ index (N) as follows cpuN/mrqN. When contexts are
* freed, the are freed to the MRQ silo based on the CPU number
* of the IO completion. Thus a context that was allocated for MRQ A
* whose IO completed on CPU B will be freed to cpuB/mrqA.
*/
for_each_possible_cpu(i) {
for (j = 0; j < phba->cfg_nvmet_mrq; j++) {
infop = lpfc_get_ctx_list(phba, i, j);
INIT_LIST_HEAD(&infop->nvmet_ctx_list);
spin_lock_init(&infop->nvmet_ctx_list_lock);
infop->nvmet_ctx_list_cnt = 0;
}
}
/*
* Setup the next CPU context info ptr for each MRQ.
* MRQ 0 will cycle thru CPUs 0 - X separately from
* MRQ 1 cycling thru CPUs 0 - X, and so on.
*/
for (j = 0; j < phba->cfg_nvmet_mrq; j++) {
last_infop = lpfc_get_ctx_list(phba,
cpumask_first(cpu_present_mask),
j);
for (i = phba->sli4_hba.num_possible_cpu - 1; i >= 0; i--) {
infop = lpfc_get_ctx_list(phba, i, j);
infop->nvmet_ctx_next_cpu = last_infop;
last_infop = infop;
}
}
/* For all nvmet xris, allocate resources needed to process a
* received command on a per xri basis.
*/
idx = 0;
cpu = cpumask_first(cpu_present_mask);
for (i = 0; i < phba->sli4_hba.nvmet_xri_cnt; i++) {
ctx_buf = kzalloc(sizeof(*ctx_buf), GFP_KERNEL);
if (!ctx_buf) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"6404 Ran out of memory for NVMET\n");
return -ENOMEM;
}
ctx_buf->context = kzalloc(sizeof(*ctx_buf->context),
GFP_KERNEL);
if (!ctx_buf->context) {
kfree(ctx_buf);
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"6405 Ran out of NVMET "
"context memory\n");
return -ENOMEM;
}
ctx_buf->context->ctxbuf = ctx_buf;
ctx_buf->context->state = LPFC_NVME_STE_FREE;
ctx_buf->iocbq = lpfc_sli_get_iocbq(phba);
if (!ctx_buf->iocbq) {
kfree(ctx_buf->context);
kfree(ctx_buf);
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"6406 Ran out of NVMET iocb/WQEs\n");
return -ENOMEM;
}
ctx_buf->iocbq->cmd_flag = LPFC_IO_NVMET;
nvmewqe = ctx_buf->iocbq;
wqe = &nvmewqe->wqe;
/* Initialize WQE */
memset(wqe, 0, sizeof(union lpfc_wqe));
ctx_buf->iocbq->cmd_dmabuf = NULL;
spin_lock(&phba->sli4_hba.sgl_list_lock);
ctx_buf->sglq = __lpfc_sli_get_nvmet_sglq(phba, ctx_buf->iocbq);
spin_unlock(&phba->sli4_hba.sgl_list_lock);
if (!ctx_buf->sglq) {
lpfc_sli_release_iocbq(phba, ctx_buf->iocbq);
kfree(ctx_buf->context);
kfree(ctx_buf);
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"6407 Ran out of NVMET XRIs\n");
return -ENOMEM;
}
INIT_WORK(&ctx_buf->defer_work, lpfc_nvmet_fcp_rqst_defer_work);
/*
* Add ctx to MRQidx context list. Our initial assumption
* is MRQidx will be associated with CPUidx. This association
* can change on the fly.
*/
infop = lpfc_get_ctx_list(phba, cpu, idx);
spin_lock(&infop->nvmet_ctx_list_lock);
list_add_tail(&ctx_buf->list, &infop->nvmet_ctx_list);
infop->nvmet_ctx_list_cnt++;
spin_unlock(&infop->nvmet_ctx_list_lock);
/* Spread ctx structures evenly across all MRQs */
idx++;
if (idx >= phba->cfg_nvmet_mrq) {
idx = 0;
cpu = cpumask_first(cpu_present_mask);
continue;
}
cpu = cpumask_next(cpu, cpu_present_mask);
if (cpu == nr_cpu_ids)
cpu = cpumask_first(cpu_present_mask);
}
for_each_present_cpu(i) {
for (j = 0; j < phba->cfg_nvmet_mrq; j++) {
infop = lpfc_get_ctx_list(phba, i, j);
lpfc_printf_log(phba, KERN_INFO, LOG_NVME | LOG_INIT,
"6408 TOTAL NVMET ctx for CPU %d "
"MRQ %d: cnt %d nextcpu x%px\n",
i, j, infop->nvmet_ctx_list_cnt,
infop->nvmet_ctx_next_cpu);
}
}
return 0;
}
int
lpfc_nvmet_create_targetport(struct lpfc_hba *phba)
{
struct lpfc_vport *vport = phba->pport;
struct lpfc_nvmet_tgtport *tgtp;
struct nvmet_fc_port_info pinfo;
int error;
if (phba->targetport)
return 0;
error = lpfc_nvmet_setup_io_context(phba);
if (error)
return error;
memset(&pinfo, 0, sizeof(struct nvmet_fc_port_info));
pinfo.node_name = wwn_to_u64(vport->fc_nodename.u.wwn);
pinfo.port_name = wwn_to_u64(vport->fc_portname.u.wwn);
pinfo.port_id = vport->fc_myDID;
/* We need to tell the transport layer + 1 because it takes page
* alignment into account. When space for the SGL is allocated we
* allocate + 3, one for cmd, one for rsp and one for this alignment
*/
lpfc_tgttemplate.max_sgl_segments = phba->cfg_nvme_seg_cnt + 1;
lpfc_tgttemplate.max_hw_queues = phba->cfg_hdw_queue;
lpfc_tgttemplate.target_features = NVMET_FCTGTFEAT_READDATA_RSP;
#if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
error = nvmet_fc_register_targetport(&pinfo, &lpfc_tgttemplate,
&phba->pcidev->dev,
&phba->targetport);
#else
error = -ENOENT;
#endif
if (error) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"6025 Cannot register NVME targetport x%x: "
"portnm %llx nodenm %llx segs %d qs %d\n",
error,
pinfo.port_name, pinfo.node_name,
lpfc_tgttemplate.max_sgl_segments,
lpfc_tgttemplate.max_hw_queues);
phba->targetport = NULL;
phba->nvmet_support = 0;
lpfc_nvmet_cleanup_io_context(phba);
} else {
tgtp = (struct lpfc_nvmet_tgtport *)
phba->targetport->private;
tgtp->phba = phba;
lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC,
"6026 Registered NVME "
"targetport: x%px, private x%px "
"portnm %llx nodenm %llx segs %d qs %d\n",
phba->targetport, tgtp,
pinfo.port_name, pinfo.node_name,
lpfc_tgttemplate.max_sgl_segments,
lpfc_tgttemplate.max_hw_queues);
atomic_set(&tgtp->rcv_ls_req_in, 0);
atomic_set(&tgtp->rcv_ls_req_out, 0);
atomic_set(&tgtp->rcv_ls_req_drop, 0);
atomic_set(&tgtp->xmt_ls_abort, 0);
atomic_set(&tgtp->xmt_ls_abort_cmpl, 0);
atomic_set(&tgtp->xmt_ls_rsp, 0);
atomic_set(&tgtp->xmt_ls_drop, 0);
atomic_set(&tgtp->xmt_ls_rsp_error, 0);
atomic_set(&tgtp->xmt_ls_rsp_xb_set, 0);
atomic_set(&tgtp->xmt_ls_rsp_aborted, 0);
atomic_set(&tgtp->xmt_ls_rsp_cmpl, 0);
atomic_set(&tgtp->rcv_fcp_cmd_in, 0);
atomic_set(&tgtp->rcv_fcp_cmd_out, 0);
atomic_set(&tgtp->rcv_fcp_cmd_drop, 0);
atomic_set(&tgtp->xmt_fcp_drop, 0);
atomic_set(&tgtp->xmt_fcp_read_rsp, 0);
atomic_set(&tgtp->xmt_fcp_read, 0);
atomic_set(&tgtp->xmt_fcp_write, 0);
atomic_set(&tgtp->xmt_fcp_rsp, 0);
atomic_set(&tgtp->xmt_fcp_release, 0);
atomic_set(&tgtp->xmt_fcp_rsp_cmpl, 0);
atomic_set(&tgtp->xmt_fcp_rsp_error, 0);
atomic_set(&tgtp->xmt_fcp_rsp_xb_set, 0);
atomic_set(&tgtp->xmt_fcp_rsp_aborted, 0);
atomic_set(&tgtp->xmt_fcp_rsp_drop, 0);
atomic_set(&tgtp->xmt_fcp_xri_abort_cqe, 0);
atomic_set(&tgtp->xmt_fcp_abort, 0);
atomic_set(&tgtp->xmt_fcp_abort_cmpl, 0);
atomic_set(&tgtp->xmt_abort_unsol, 0);
atomic_set(&tgtp->xmt_abort_sol, 0);
atomic_set(&tgtp->xmt_abort_rsp, 0);
atomic_set(&tgtp->xmt_abort_rsp_error, 0);
atomic_set(&tgtp->defer_ctx, 0);
atomic_set(&tgtp->defer_fod, 0);
atomic_set(&tgtp->defer_wqfull, 0);
}
return error;
}
int
lpfc_nvmet_update_targetport(struct lpfc_hba *phba)
{
struct lpfc_vport *vport = phba->pport;
if (!phba->targetport)
return 0;
lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME,
"6007 Update NVMET port x%px did x%x\n",
phba->targetport, vport->fc_myDID);
phba->targetport->port_id = vport->fc_myDID;
return 0;
}
/**
* lpfc_sli4_nvmet_xri_aborted - Fast-path process of nvmet xri abort
* @phba: pointer to lpfc hba data structure.
* @axri: pointer to the nvmet xri abort wcqe structure.
*
* This routine is invoked by the worker thread to process a SLI4 fast-path
* NVMET aborted xri.
**/
void
lpfc_sli4_nvmet_xri_aborted(struct lpfc_hba *phba,
struct sli4_wcqe_xri_aborted *axri)
{
#if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
uint16_t xri = bf_get(lpfc_wcqe_xa_xri, axri);
uint16_t rxid = bf_get(lpfc_wcqe_xa_remote_xid, axri);
struct lpfc_async_xchg_ctx *ctxp, *next_ctxp;
struct lpfc_nvmet_tgtport *tgtp;
struct nvmefc_tgt_fcp_req *req = NULL;
struct lpfc_nodelist *ndlp;
unsigned long iflag = 0;
int rrq_empty = 0;
bool released = false;
lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
"6317 XB aborted xri x%x rxid x%x\n", xri, rxid);
if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME))
return;
if (phba->targetport) {
tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
atomic_inc(&tgtp->xmt_fcp_xri_abort_cqe);
}
spin_lock_irqsave(&phba->sli4_hba.abts_nvmet_buf_list_lock, iflag);
list_for_each_entry_safe(ctxp, next_ctxp,
&phba->sli4_hba.lpfc_abts_nvmet_ctx_list,
list) {
if (ctxp->ctxbuf->sglq->sli4_xritag != xri)
continue;
spin_unlock_irqrestore(&phba->sli4_hba.abts_nvmet_buf_list_lock,
iflag);
spin_lock_irqsave(&ctxp->ctxlock, iflag);
/* Check if we already received a free context call
* and we have completed processing an abort situation.
*/
if (ctxp->flag & LPFC_NVME_CTX_RLS &&
!(ctxp->flag & LPFC_NVME_ABORT_OP)) {
spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock);
list_del_init(&ctxp->list);
spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock);
released = true;
}
ctxp->flag &= ~LPFC_NVME_XBUSY;
spin_unlock_irqrestore(&ctxp->ctxlock, iflag);
rrq_empty = list_empty(&phba->active_rrq_list);
ndlp = lpfc_findnode_did(phba->pport, ctxp->sid);
if (ndlp &&
(ndlp->nlp_state == NLP_STE_UNMAPPED_NODE ||
ndlp->nlp_state == NLP_STE_MAPPED_NODE)) {
lpfc_set_rrq_active(phba, ndlp,
ctxp->ctxbuf->sglq->sli4_lxritag,
rxid, 1);
lpfc_sli4_abts_err_handler(phba, ndlp, axri);
}
lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
"6318 XB aborted oxid x%x flg x%x (%x)\n",
ctxp->oxid, ctxp->flag, released);
if (released)
lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf);
if (rrq_empty)
lpfc_worker_wake_up(phba);
return;
}
spin_unlock_irqrestore(&phba->sli4_hba.abts_nvmet_buf_list_lock, iflag);
ctxp = lpfc_nvmet_get_ctx_for_xri(phba, xri);
if (ctxp) {
/*
* Abort already done by FW, so BA_ACC sent.
* However, the transport may be unaware.
*/
lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
"6323 NVMET Rcv ABTS xri x%x ctxp state x%x "
"flag x%x oxid x%x rxid x%x\n",
xri, ctxp->state, ctxp->flag, ctxp->oxid,
rxid);
spin_lock_irqsave(&ctxp->ctxlock, iflag);
ctxp->flag |= LPFC_NVME_ABTS_RCV;
ctxp->state = LPFC_NVME_STE_ABORT;
spin_unlock_irqrestore(&ctxp->ctxlock, iflag);
lpfc_nvmeio_data(phba,
"NVMET ABTS RCV: xri x%x CPU %02x rjt %d\n",
xri, raw_smp_processor_id(), 0);
req = &ctxp->hdlrctx.fcp_req;
if (req)
nvmet_fc_rcv_fcp_abort(phba->targetport, req);
}
#endif
}
int
lpfc_nvmet_rcv_unsol_abort(struct lpfc_vport *vport,
struct fc_frame_header *fc_hdr)
{
#if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
struct lpfc_hba *phba = vport->phba;
struct lpfc_async_xchg_ctx *ctxp, *next_ctxp;
struct nvmefc_tgt_fcp_req *rsp;
uint32_t sid;
uint16_t oxid, xri;
unsigned long iflag = 0;
sid = sli4_sid_from_fc_hdr(fc_hdr);
oxid = be16_to_cpu(fc_hdr->fh_ox_id);
spin_lock_irqsave(&phba->sli4_hba.abts_nvmet_buf_list_lock, iflag);
list_for_each_entry_safe(ctxp, next_ctxp,
&phba->sli4_hba.lpfc_abts_nvmet_ctx_list,
list) {
if (ctxp->oxid != oxid || ctxp->sid != sid)
continue;
xri = ctxp->ctxbuf->sglq->sli4_xritag;
spin_unlock_irqrestore(&phba->sli4_hba.abts_nvmet_buf_list_lock,
iflag);
spin_lock_irqsave(&ctxp->ctxlock, iflag);
ctxp->flag |= LPFC_NVME_ABTS_RCV;
spin_unlock_irqrestore(&ctxp->ctxlock, iflag);
lpfc_nvmeio_data(phba,
"NVMET ABTS RCV: xri x%x CPU %02x rjt %d\n",
xri, raw_smp_processor_id(), 0);
lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
"6319 NVMET Rcv ABTS:acc xri x%x\n", xri);
rsp = &ctxp->hdlrctx.fcp_req;
nvmet_fc_rcv_fcp_abort(phba->targetport, rsp);
/* Respond with BA_ACC accordingly */
lpfc_sli4_seq_abort_rsp(vport, fc_hdr, 1);
return 0;
}
spin_unlock_irqrestore(&phba->sli4_hba.abts_nvmet_buf_list_lock, iflag);
/* check the wait list */
if (phba->sli4_hba.nvmet_io_wait_cnt) {
struct rqb_dmabuf *nvmebuf;
struct fc_frame_header *fc_hdr_tmp;
u32 sid_tmp;
u16 oxid_tmp;
bool found = false;
spin_lock_irqsave(&phba->sli4_hba.nvmet_io_wait_lock, iflag);
/* match by oxid and s_id */
list_for_each_entry(nvmebuf,
&phba->sli4_hba.lpfc_nvmet_io_wait_list,
hbuf.list) {
fc_hdr_tmp = (struct fc_frame_header *)
(nvmebuf->hbuf.virt);
oxid_tmp = be16_to_cpu(fc_hdr_tmp->fh_ox_id);
sid_tmp = sli4_sid_from_fc_hdr(fc_hdr_tmp);
if (oxid_tmp != oxid || sid_tmp != sid)
continue;
lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
"6321 NVMET Rcv ABTS oxid x%x from x%x "
"is waiting for a ctxp\n",
oxid, sid);
list_del_init(&nvmebuf->hbuf.list);
phba->sli4_hba.nvmet_io_wait_cnt--;
found = true;
break;
}
spin_unlock_irqrestore(&phba->sli4_hba.nvmet_io_wait_lock,
iflag);
/* free buffer since already posted a new DMA buffer to RQ */
if (found) {
nvmebuf->hrq->rqbp->rqb_free_buffer(phba, nvmebuf);
/* Respond with BA_ACC accordingly */
lpfc_sli4_seq_abort_rsp(vport, fc_hdr, 1);
return 0;
}
}
/* check active list */
ctxp = lpfc_nvmet_get_ctx_for_oxid(phba, oxid, sid);
if (ctxp) {
xri = ctxp->ctxbuf->sglq->sli4_xritag;
spin_lock_irqsave(&ctxp->ctxlock, iflag);
ctxp->flag |= (LPFC_NVME_ABTS_RCV | LPFC_NVME_ABORT_OP);
spin_unlock_irqrestore(&ctxp->ctxlock, iflag);
lpfc_nvmeio_data(phba,
"NVMET ABTS RCV: xri x%x CPU %02x rjt %d\n",
xri, raw_smp_processor_id(), 0);
lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
"6322 NVMET Rcv ABTS:acc oxid x%x xri x%x "
"flag x%x state x%x\n",
ctxp->oxid, xri, ctxp->flag, ctxp->state);
if (ctxp->flag & LPFC_NVME_TNOTIFY) {
/* Notify the transport */
nvmet_fc_rcv_fcp_abort(phba->targetport,
&ctxp->hdlrctx.fcp_req);
} else {
cancel_work_sync(&ctxp->ctxbuf->defer_work);
spin_lock_irqsave(&ctxp->ctxlock, iflag);
lpfc_nvmet_defer_release(phba, ctxp);
spin_unlock_irqrestore(&ctxp->ctxlock, iflag);
}
lpfc_nvmet_sol_fcp_issue_abort(phba, ctxp, ctxp->sid,
ctxp->oxid);
lpfc_sli4_seq_abort_rsp(vport, fc_hdr, 1);
return 0;
}
lpfc_nvmeio_data(phba, "NVMET ABTS RCV: oxid x%x CPU %02x rjt %d\n",
oxid, raw_smp_processor_id(), 1);
lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
"6320 NVMET Rcv ABTS:rjt oxid x%x\n", oxid);
/* Respond with BA_RJT accordingly */
lpfc_sli4_seq_abort_rsp(vport, fc_hdr, 0);
#endif
return 0;
}
static void
lpfc_nvmet_wqfull_flush(struct lpfc_hba *phba, struct lpfc_queue *wq,
struct lpfc_async_xchg_ctx *ctxp)
{
struct lpfc_sli_ring *pring;
struct lpfc_iocbq *nvmewqeq;
struct lpfc_iocbq *next_nvmewqeq;
unsigned long iflags;
struct lpfc_wcqe_complete wcqe;
struct lpfc_wcqe_complete *wcqep;
pring = wq->pring;
wcqep = &wcqe;
/* Fake an ABORT error code back to cmpl routine */
memset(wcqep, 0, sizeof(struct lpfc_wcqe_complete));
bf_set(lpfc_wcqe_c_status, wcqep, IOSTAT_LOCAL_REJECT);
wcqep->parameter = IOERR_ABORT_REQUESTED;
spin_lock_irqsave(&pring->ring_lock, iflags);
list_for_each_entry_safe(nvmewqeq, next_nvmewqeq,
&wq->wqfull_list, list) {
if (ctxp) {
/* Checking for a specific IO to flush */
if (nvmewqeq->context_un.axchg == ctxp) {
list_del(&nvmewqeq->list);
spin_unlock_irqrestore(&pring->ring_lock,
iflags);
memcpy(&nvmewqeq->wcqe_cmpl, wcqep,
sizeof(*wcqep));
lpfc_nvmet_xmt_fcp_op_cmp(phba, nvmewqeq,
nvmewqeq);
return;
}
continue;
} else {
/* Flush all IOs */
list_del(&nvmewqeq->list);
spin_unlock_irqrestore(&pring->ring_lock, iflags);
memcpy(&nvmewqeq->wcqe_cmpl, wcqep, sizeof(*wcqep));
lpfc_nvmet_xmt_fcp_op_cmp(phba, nvmewqeq, nvmewqeq);
spin_lock_irqsave(&pring->ring_lock, iflags);
}
}
if (!ctxp)
wq->q_flag &= ~HBA_NVMET_WQFULL;
spin_unlock_irqrestore(&pring->ring_lock, iflags);
}
void
lpfc_nvmet_wqfull_process(struct lpfc_hba *phba,
struct lpfc_queue *wq)
{
#if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
struct lpfc_sli_ring *pring;
struct lpfc_iocbq *nvmewqeq;
struct lpfc_async_xchg_ctx *ctxp;
unsigned long iflags;
int rc;
/*
* Some WQE slots are available, so try to re-issue anything
* on the WQ wqfull_list.
*/
pring = wq->pring;
spin_lock_irqsave(&pring->ring_lock, iflags);
while (!list_empty(&wq->wqfull_list)) {
list_remove_head(&wq->wqfull_list, nvmewqeq, struct lpfc_iocbq,
list);
spin_unlock_irqrestore(&pring->ring_lock, iflags);
ctxp = nvmewqeq->context_un.axchg;
rc = lpfc_sli4_issue_wqe(phba, ctxp->hdwq, nvmewqeq);
spin_lock_irqsave(&pring->ring_lock, iflags);
if (rc == -EBUSY) {
/* WQ was full again, so put it back on the list */
list_add(&nvmewqeq->list, &wq->wqfull_list);
spin_unlock_irqrestore(&pring->ring_lock, iflags);
return;
}
if (rc == WQE_SUCCESS) {
#ifdef CONFIG_SCSI_LPFC_DEBUG_FS
if (ctxp->ts_cmd_nvme) {
if (ctxp->hdlrctx.fcp_req.op == NVMET_FCOP_RSP)
ctxp->ts_status_wqput = ktime_get_ns();
else
ctxp->ts_data_wqput = ktime_get_ns();
}
#endif
} else {
WARN_ON(rc);
}
}
wq->q_flag &= ~HBA_NVMET_WQFULL;
spin_unlock_irqrestore(&pring->ring_lock, iflags);
#endif
}
void
lpfc_nvmet_destroy_targetport(struct lpfc_hba *phba)
{
#if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
struct lpfc_nvmet_tgtport *tgtp;
struct lpfc_queue *wq;
uint32_t qidx;
DECLARE_COMPLETION_ONSTACK(tport_unreg_cmp);
if (phba->nvmet_support == 0)
return;
if (phba->targetport) {
tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) {
wq = phba->sli4_hba.hdwq[qidx].io_wq;
lpfc_nvmet_wqfull_flush(phba, wq, NULL);
}
tgtp->tport_unreg_cmp = &tport_unreg_cmp;
nvmet_fc_unregister_targetport(phba->targetport);
if (!wait_for_completion_timeout(&tport_unreg_cmp,
msecs_to_jiffies(LPFC_NVMET_WAIT_TMO)))
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"6179 Unreg targetport x%px timeout "
"reached.\n", phba->targetport);
lpfc_nvmet_cleanup_io_context(phba);
}
phba->targetport = NULL;
#endif
}
/**
* lpfc_nvmet_handle_lsreq - Process an NVME LS request
* @phba: pointer to lpfc hba data structure.
* @axchg: pointer to exchange context for the NVME LS request
*
* This routine is used for processing an asychronously received NVME LS
* request. Any remaining validation is done and the LS is then forwarded
* to the nvmet-fc transport via nvmet_fc_rcv_ls_req().
*
* The calling sequence should be: nvmet_fc_rcv_ls_req() -> (processing)
* -> lpfc_nvmet_xmt_ls_rsp/cmp -> req->done.
* lpfc_nvme_xmt_ls_rsp_cmp should free the allocated axchg.
*
* Returns 0 if LS was handled and delivered to the transport
* Returns 1 if LS failed to be handled and should be dropped
*/
int
lpfc_nvmet_handle_lsreq(struct lpfc_hba *phba,
struct lpfc_async_xchg_ctx *axchg)
{
#if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
struct lpfc_nvmet_tgtport *tgtp = phba->targetport->private;
uint32_t *payload = axchg->payload;
int rc;
atomic_inc(&tgtp->rcv_ls_req_in);
/*
* Driver passes the ndlp as the hosthandle argument allowing
* the transport to generate LS requests for any associateions
* that are created.
*/
rc = nvmet_fc_rcv_ls_req(phba->targetport, axchg->ndlp, &axchg->ls_rsp,
axchg->payload, axchg->size);
lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC,
"6037 NVMET Unsol rcv: sz %d rc %d: %08x %08x %08x "
"%08x %08x %08x\n", axchg->size, rc,
*payload, *(payload+1), *(payload+2),
*(payload+3), *(payload+4), *(payload+5));
if (!rc) {
atomic_inc(&tgtp->rcv_ls_req_out);
return 0;
}
atomic_inc(&tgtp->rcv_ls_req_drop);
#endif
return 1;
}
static void
lpfc_nvmet_process_rcv_fcp_req(struct lpfc_nvmet_ctxbuf *ctx_buf)
{
#if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
struct lpfc_async_xchg_ctx *ctxp = ctx_buf->context;
struct lpfc_hba *phba = ctxp->phba;
struct rqb_dmabuf *nvmebuf = ctxp->rqb_buffer;
struct lpfc_nvmet_tgtport *tgtp;
uint32_t *payload, qno;
uint32_t rc;
unsigned long iflags;
if (!nvmebuf) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"6159 process_rcv_fcp_req, nvmebuf is NULL, "
"oxid: x%x flg: x%x state: x%x\n",
ctxp->oxid, ctxp->flag, ctxp->state);
spin_lock_irqsave(&ctxp->ctxlock, iflags);
lpfc_nvmet_defer_release(phba, ctxp);
spin_unlock_irqrestore(&ctxp->ctxlock, iflags);
lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, ctxp->sid,
ctxp->oxid);
return;
}
if (ctxp->flag & LPFC_NVME_ABTS_RCV) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"6324 IO oxid x%x aborted\n",
ctxp->oxid);
return;
}
payload = (uint32_t *)(nvmebuf->dbuf.virt);
tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
ctxp->flag |= LPFC_NVME_TNOTIFY;
#ifdef CONFIG_SCSI_LPFC_DEBUG_FS
if (ctxp->ts_isr_cmd)
ctxp->ts_cmd_nvme = ktime_get_ns();
#endif
/*
* The calling sequence should be:
* nvmet_fc_rcv_fcp_req->lpfc_nvmet_xmt_fcp_op/cmp- req->done
* lpfc_nvmet_xmt_fcp_op_cmp should free the allocated ctxp.
* When we return from nvmet_fc_rcv_fcp_req, all relevant info
* the NVME command / FC header is stored.
* A buffer has already been reposted for this IO, so just free
* the nvmebuf.
*/
rc = nvmet_fc_rcv_fcp_req(phba->targetport, &ctxp->hdlrctx.fcp_req,
payload, ctxp->size);
/* Process FCP command */
if (rc == 0) {
atomic_inc(&tgtp->rcv_fcp_cmd_out);
spin_lock_irqsave(&ctxp->ctxlock, iflags);
if ((ctxp->flag & LPFC_NVME_CTX_REUSE_WQ) ||
(nvmebuf != ctxp->rqb_buffer)) {
spin_unlock_irqrestore(&ctxp->ctxlock, iflags);
return;
}
ctxp->rqb_buffer = NULL;
spin_unlock_irqrestore(&ctxp->ctxlock, iflags);
lpfc_rq_buf_free(phba, &nvmebuf->hbuf); /* repost */
return;
}
/* Processing of FCP command is deferred */
if (rc == -EOVERFLOW) {
lpfc_nvmeio_data(phba, "NVMET RCV BUSY: xri x%x sz %d "
"from %06x\n",
ctxp->oxid, ctxp->size, ctxp->sid);
atomic_inc(&tgtp->rcv_fcp_cmd_out);
atomic_inc(&tgtp->defer_fod);
spin_lock_irqsave(&ctxp->ctxlock, iflags);
if (ctxp->flag & LPFC_NVME_CTX_REUSE_WQ) {
spin_unlock_irqrestore(&ctxp->ctxlock, iflags);
return;
}
spin_unlock_irqrestore(&ctxp->ctxlock, iflags);
/*
* Post a replacement DMA buffer to RQ and defer
* freeing rcv buffer till .defer_rcv callback
*/
qno = nvmebuf->idx;
lpfc_post_rq_buffer(
phba, phba->sli4_hba.nvmet_mrq_hdr[qno],
phba->sli4_hba.nvmet_mrq_data[qno], 1, qno);
return;
}
ctxp->flag &= ~LPFC_NVME_TNOTIFY;
atomic_inc(&tgtp->rcv_fcp_cmd_drop);
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"2582 FCP Drop IO x%x: err x%x: x%x x%x x%x\n",
ctxp->oxid, rc,
atomic_read(&tgtp->rcv_fcp_cmd_in),
atomic_read(&tgtp->rcv_fcp_cmd_out),
atomic_read(&tgtp->xmt_fcp_release));
lpfc_nvmeio_data(phba, "NVMET FCP DROP: xri x%x sz %d from %06x\n",
ctxp->oxid, ctxp->size, ctxp->sid);
spin_lock_irqsave(&ctxp->ctxlock, iflags);
lpfc_nvmet_defer_release(phba, ctxp);
spin_unlock_irqrestore(&ctxp->ctxlock, iflags);
lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, ctxp->sid, ctxp->oxid);
#endif
}
static void
lpfc_nvmet_fcp_rqst_defer_work(struct work_struct *work)
{
#if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
struct lpfc_nvmet_ctxbuf *ctx_buf =
container_of(work, struct lpfc_nvmet_ctxbuf, defer_work);
lpfc_nvmet_process_rcv_fcp_req(ctx_buf);
#endif
}
static struct lpfc_nvmet_ctxbuf *
lpfc_nvmet_replenish_context(struct lpfc_hba *phba,
struct lpfc_nvmet_ctx_info *current_infop)
{
#if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
struct lpfc_nvmet_ctxbuf *ctx_buf = NULL;
struct lpfc_nvmet_ctx_info *get_infop;
int i;
/*
* The current_infop for the MRQ a NVME command IU was received
* on is empty. Our goal is to replenish this MRQs context
* list from a another CPUs.
*
* First we need to pick a context list to start looking on.
* nvmet_ctx_start_cpu has available context the last time
* we needed to replenish this CPU where nvmet_ctx_next_cpu
* is just the next sequential CPU for this MRQ.
*/
if (current_infop->nvmet_ctx_start_cpu)
get_infop = current_infop->nvmet_ctx_start_cpu;
else
get_infop = current_infop->nvmet_ctx_next_cpu;
for (i = 0; i < phba->sli4_hba.num_possible_cpu; i++) {
if (get_infop == current_infop) {
get_infop = get_infop->nvmet_ctx_next_cpu;
continue;
}
spin_lock(&get_infop->nvmet_ctx_list_lock);
/* Just take the entire context list, if there are any */
if (get_infop->nvmet_ctx_list_cnt) {
list_splice_init(&get_infop->nvmet_ctx_list,
&current_infop->nvmet_ctx_list);
current_infop->nvmet_ctx_list_cnt =
get_infop->nvmet_ctx_list_cnt - 1;
get_infop->nvmet_ctx_list_cnt = 0;
spin_unlock(&get_infop->nvmet_ctx_list_lock);
current_infop->nvmet_ctx_start_cpu = get_infop;
list_remove_head(&current_infop->nvmet_ctx_list,
ctx_buf, struct lpfc_nvmet_ctxbuf,
list);
return ctx_buf;
}
/* Otherwise, move on to the next CPU for this MRQ */
spin_unlock(&get_infop->nvmet_ctx_list_lock);
get_infop = get_infop->nvmet_ctx_next_cpu;
}
#endif
/* Nothing found, all contexts for the MRQ are in-flight */
return NULL;
}
/**
* lpfc_nvmet_unsol_fcp_buffer - Process an unsolicited event data buffer
* @phba: pointer to lpfc hba data structure.
* @idx: relative index of MRQ vector
* @nvmebuf: pointer to lpfc nvme command HBQ data structure.
* @isr_timestamp: in jiffies.
* @cqflag: cq processing information regarding workload.
*
* This routine is used for processing the WQE associated with a unsolicited
* event. It first determines whether there is an existing ndlp that matches
* the DID from the unsolicited WQE. If not, it will create a new one with
* the DID from the unsolicited WQE. The ELS command from the unsolicited
* WQE is then used to invoke the proper routine and to set up proper state
* of the discovery state machine.
**/
static void
lpfc_nvmet_unsol_fcp_buffer(struct lpfc_hba *phba,
uint32_t idx,
struct rqb_dmabuf *nvmebuf,
uint64_t isr_timestamp,
uint8_t cqflag)
{
struct lpfc_async_xchg_ctx *ctxp;
struct lpfc_nvmet_tgtport *tgtp;
struct fc_frame_header *fc_hdr;
struct lpfc_nvmet_ctxbuf *ctx_buf;
struct lpfc_nvmet_ctx_info *current_infop;
uint32_t size, oxid, sid, qno;
unsigned long iflag;
int current_cpu;
if (!IS_ENABLED(CONFIG_NVME_TARGET_FC))
return;
ctx_buf = NULL;
if (!nvmebuf || !phba->targetport) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"6157 NVMET FCP Drop IO\n");
if (nvmebuf)
lpfc_rq_buf_free(phba, &nvmebuf->hbuf);
return;
}
/*
* Get a pointer to the context list for this MRQ based on
* the CPU this MRQ IRQ is associated with. If the CPU association
* changes from our initial assumption, the context list could
* be empty, thus it would need to be replenished with the
* context list from another CPU for this MRQ.
*/
current_cpu = raw_smp_processor_id();
current_infop = lpfc_get_ctx_list(phba, current_cpu, idx);
spin_lock_irqsave(&current_infop->nvmet_ctx_list_lock, iflag);
if (current_infop->nvmet_ctx_list_cnt) {
list_remove_head(&current_infop->nvmet_ctx_list,
ctx_buf, struct lpfc_nvmet_ctxbuf, list);
current_infop->nvmet_ctx_list_cnt--;
} else {
ctx_buf = lpfc_nvmet_replenish_context(phba, current_infop);
}
spin_unlock_irqrestore(&current_infop->nvmet_ctx_list_lock, iflag);
fc_hdr = (struct fc_frame_header *)(nvmebuf->hbuf.virt);
oxid = be16_to_cpu(fc_hdr->fh_ox_id);
size = nvmebuf->bytes_recv;
#ifdef CONFIG_SCSI_LPFC_DEBUG_FS
if (phba->hdwqstat_on & LPFC_CHECK_NVMET_IO) {
this_cpu_inc(phba->sli4_hba.c_stat->rcv_io);
if (idx != current_cpu)
lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR,
"6703 CPU Check rcv: "
"cpu %d expect %d\n",
current_cpu, idx);
}
#endif
lpfc_nvmeio_data(phba, "NVMET FCP RCV: xri x%x sz %d CPU %02x\n",
oxid, size, raw_smp_processor_id());
tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
if (!ctx_buf) {
/* Queue this NVME IO to process later */
spin_lock_irqsave(&phba->sli4_hba.nvmet_io_wait_lock, iflag);
list_add_tail(&nvmebuf->hbuf.list,
&phba->sli4_hba.lpfc_nvmet_io_wait_list);
phba->sli4_hba.nvmet_io_wait_cnt++;
phba->sli4_hba.nvmet_io_wait_total++;
spin_unlock_irqrestore(&phba->sli4_hba.nvmet_io_wait_lock,
iflag);
/* Post a brand new DMA buffer to RQ */
qno = nvmebuf->idx;
lpfc_post_rq_buffer(
phba, phba->sli4_hba.nvmet_mrq_hdr[qno],
phba->sli4_hba.nvmet_mrq_data[qno], 1, qno);
atomic_inc(&tgtp->defer_ctx);
return;
}
sid = sli4_sid_from_fc_hdr(fc_hdr);
ctxp = (struct lpfc_async_xchg_ctx *)ctx_buf->context;
spin_lock_irqsave(&phba->sli4_hba.t_active_list_lock, iflag);
list_add_tail(&ctxp->list, &phba->sli4_hba.t_active_ctx_list);
spin_unlock_irqrestore(&phba->sli4_hba.t_active_list_lock, iflag);
if (ctxp->state != LPFC_NVME_STE_FREE) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"6414 NVMET Context corrupt %d %d oxid x%x\n",
ctxp->state, ctxp->entry_cnt, ctxp->oxid);
}
ctxp->wqeq = NULL;
ctxp->offset = 0;
ctxp->phba = phba;
ctxp->size = size;
ctxp->oxid = oxid;
ctxp->sid = sid;
ctxp->idx = idx;
ctxp->state = LPFC_NVME_STE_RCV;
ctxp->entry_cnt = 1;
ctxp->flag = 0;
ctxp->ctxbuf = ctx_buf;
ctxp->rqb_buffer = (void *)nvmebuf;
ctxp->hdwq = NULL;
spin_lock_init(&ctxp->ctxlock);
#ifdef CONFIG_SCSI_LPFC_DEBUG_FS
if (isr_timestamp)
ctxp->ts_isr_cmd = isr_timestamp;
ctxp->ts_cmd_nvme = 0;
ctxp->ts_nvme_data = 0;
ctxp->ts_data_wqput = 0;
ctxp->ts_isr_data = 0;
ctxp->ts_data_nvme = 0;
ctxp->ts_nvme_status = 0;
ctxp->ts_status_wqput = 0;
ctxp->ts_isr_status = 0;
ctxp->ts_status_nvme = 0;
#endif
atomic_inc(&tgtp->rcv_fcp_cmd_in);
/* check for cq processing load */
if (!cqflag) {
lpfc_nvmet_process_rcv_fcp_req(ctx_buf);
return;
}
if (!queue_work(phba->wq, &ctx_buf->defer_work)) {
atomic_inc(&tgtp->rcv_fcp_cmd_drop);
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"6325 Unable to queue work for oxid x%x. "
"FCP Drop IO [x%x x%x x%x]\n",
ctxp->oxid,
atomic_read(&tgtp->rcv_fcp_cmd_in),
atomic_read(&tgtp->rcv_fcp_cmd_out),
atomic_read(&tgtp->xmt_fcp_release));
spin_lock_irqsave(&ctxp->ctxlock, iflag);
lpfc_nvmet_defer_release(phba, ctxp);
spin_unlock_irqrestore(&ctxp->ctxlock, iflag);
lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, sid, oxid);
}
}
/**
* lpfc_nvmet_unsol_fcp_event - Process an unsolicited event from an nvme nport
* @phba: pointer to lpfc hba data structure.
* @idx: relative index of MRQ vector
* @nvmebuf: pointer to received nvme data structure.
* @isr_timestamp: in jiffies.
* @cqflag: cq processing information regarding workload.
*
* This routine is used to process an unsolicited event received from a SLI
* (Service Level Interface) ring. The actual processing of the data buffer
* associated with the unsolicited event is done by invoking the routine
* lpfc_nvmet_unsol_fcp_buffer() after properly set up the buffer from the
* SLI RQ on which the unsolicited event was received.
**/
void
lpfc_nvmet_unsol_fcp_event(struct lpfc_hba *phba,
uint32_t idx,
struct rqb_dmabuf *nvmebuf,
uint64_t isr_timestamp,
uint8_t cqflag)
{
if (!nvmebuf) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"3167 NVMET FCP Drop IO\n");
return;
}
if (phba->nvmet_support == 0) {
lpfc_rq_buf_free(phba, &nvmebuf->hbuf);
return;
}
lpfc_nvmet_unsol_fcp_buffer(phba, idx, nvmebuf, isr_timestamp, cqflag);
}
/**
* lpfc_nvmet_prep_ls_wqe - Allocate and prepare a lpfc wqe data structure
* @phba: pointer to a host N_Port data structure.
* @ctxp: Context info for NVME LS Request
* @rspbuf: DMA buffer of NVME command.
* @rspsize: size of the NVME command.
*
* This routine is used for allocating a lpfc-WQE data structure from
* the driver lpfc-WQE free-list and prepare the WQE with the parameters
* passed into the routine for discovery state machine to issue an Extended
* Link Service (NVME) commands. It is a generic lpfc-WQE allocation
* and preparation routine that is used by all the discovery state machine
* routines and the NVME command-specific fields will be later set up by
* the individual discovery machine routines after calling this routine
* allocating and preparing a generic WQE data structure. It fills in the
* Buffer Descriptor Entries (BDEs), allocates buffers for both command
* payload and response payload (if expected). The reference count on the
* ndlp is incremented by 1 and the reference to the ndlp is put into
* context1 of the WQE data structure for this WQE to hold the ndlp
* reference for the command's callback function to access later.
*
* Return code
* Pointer to the newly allocated/prepared nvme wqe data structure
* NULL - when nvme wqe data structure allocation/preparation failed
**/
static struct lpfc_iocbq *
lpfc_nvmet_prep_ls_wqe(struct lpfc_hba *phba,
struct lpfc_async_xchg_ctx *ctxp,
dma_addr_t rspbuf, uint16_t rspsize)
{
struct lpfc_nodelist *ndlp;
struct lpfc_iocbq *nvmewqe;
union lpfc_wqe128 *wqe;
if (!lpfc_is_link_up(phba)) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"6104 NVMET prep LS wqe: link err: "
"NPORT x%x oxid:x%x ste %d\n",
ctxp->sid, ctxp->oxid, ctxp->state);
return NULL;
}
/* Allocate buffer for command wqe */
nvmewqe = lpfc_sli_get_iocbq(phba);
if (nvmewqe == NULL) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"6105 NVMET prep LS wqe: No WQE: "
"NPORT x%x oxid x%x ste %d\n",
ctxp->sid, ctxp->oxid, ctxp->state);
return NULL;
}
ndlp = lpfc_findnode_did(phba->pport, ctxp->sid);
if (!ndlp ||
((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) &&
(ndlp->nlp_state != NLP_STE_MAPPED_NODE))) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"6106 NVMET prep LS wqe: No ndlp: "
"NPORT x%x oxid x%x ste %d\n",
ctxp->sid, ctxp->oxid, ctxp->state);
goto nvme_wqe_free_wqeq_exit;
}
ctxp->wqeq = nvmewqe;
/* prevent preparing wqe with NULL ndlp reference */
nvmewqe->ndlp = lpfc_nlp_get(ndlp);
if (!nvmewqe->ndlp)
goto nvme_wqe_free_wqeq_exit;
nvmewqe->context_un.axchg = ctxp;
wqe = &nvmewqe->wqe;
memset(wqe, 0, sizeof(union lpfc_wqe));
/* Words 0 - 2 */
wqe->xmit_sequence.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64;
wqe->xmit_sequence.bde.tus.f.bdeSize = rspsize;
wqe->xmit_sequence.bde.addrLow = le32_to_cpu(putPaddrLow(rspbuf));
wqe->xmit_sequence.bde.addrHigh = le32_to_cpu(putPaddrHigh(rspbuf));
/* Word 3 */
/* Word 4 */
/* Word 5 */
bf_set(wqe_dfctl, &wqe->xmit_sequence.wge_ctl, 0);
bf_set(wqe_ls, &wqe->xmit_sequence.wge_ctl, 1);
bf_set(wqe_la, &wqe->xmit_sequence.wge_ctl, 0);
bf_set(wqe_rctl, &wqe->xmit_sequence.wge_ctl, FC_RCTL_ELS4_REP);
bf_set(wqe_type, &wqe->xmit_sequence.wge_ctl, FC_TYPE_NVME);
/* Word 6 */
bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com,
phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
bf_set(wqe_xri_tag, &wqe->xmit_sequence.wqe_com, nvmewqe->sli4_xritag);
/* Word 7 */
bf_set(wqe_cmnd, &wqe->xmit_sequence.wqe_com,
CMD_XMIT_SEQUENCE64_WQE);
bf_set(wqe_ct, &wqe->xmit_sequence.wqe_com, SLI4_CT_RPI);
bf_set(wqe_class, &wqe->xmit_sequence.wqe_com, CLASS3);
bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0);
/* Word 8 */
wqe->xmit_sequence.wqe_com.abort_tag = nvmewqe->iotag;
/* Word 9 */
bf_set(wqe_reqtag, &wqe->xmit_sequence.wqe_com, nvmewqe->iotag);
/* Needs to be set by caller */
bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com, ctxp->oxid);
/* Word 10 */
bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1);
bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com, LPFC_WQE_IOD_WRITE);
bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com,
LPFC_WQE_LENLOC_WORD12);
bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0);
/* Word 11 */
bf_set(wqe_cqid, &wqe->xmit_sequence.wqe_com,
LPFC_WQE_CQ_ID_DEFAULT);
bf_set(wqe_cmd_type, &wqe->xmit_sequence.wqe_com,
OTHER_COMMAND);
/* Word 12 */
wqe->xmit_sequence.xmit_len = rspsize;
nvmewqe->retry = 1;
nvmewqe->vport = phba->pport;
nvmewqe->drvrTimeout = (phba->fc_ratov * 3) + LPFC_DRVR_TIMEOUT;
nvmewqe->cmd_flag |= LPFC_IO_NVME_LS;
/* Xmit NVMET response to remote NPORT <did> */
lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC,
"6039 Xmit NVMET LS response to remote "
"NPORT x%x iotag:x%x oxid:x%x size:x%x\n",
ndlp->nlp_DID, nvmewqe->iotag, ctxp->oxid,
rspsize);
return nvmewqe;
nvme_wqe_free_wqeq_exit:
nvmewqe->context_un.axchg = NULL;
nvmewqe->ndlp = NULL;
nvmewqe->bpl_dmabuf = NULL;
lpfc_sli_release_iocbq(phba, nvmewqe);
return NULL;
}
static struct lpfc_iocbq *
lpfc_nvmet_prep_fcp_wqe(struct lpfc_hba *phba,
struct lpfc_async_xchg_ctx *ctxp)
{
struct nvmefc_tgt_fcp_req *rsp = &ctxp->hdlrctx.fcp_req;
struct lpfc_nvmet_tgtport *tgtp;
struct sli4_sge *sgl;
struct lpfc_nodelist *ndlp;
struct lpfc_iocbq *nvmewqe;
struct scatterlist *sgel;
union lpfc_wqe128 *wqe;
struct ulp_bde64 *bde;
dma_addr_t physaddr;
int i, cnt, nsegs;
bool use_pbde = false;
int xc = 1;
if (!lpfc_is_link_up(phba)) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"6107 NVMET prep FCP wqe: link err:"
"NPORT x%x oxid x%x ste %d\n",
ctxp->sid, ctxp->oxid, ctxp->state);
return NULL;
}
ndlp = lpfc_findnode_did(phba->pport, ctxp->sid);
if (!ndlp ||
((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) &&
(ndlp->nlp_state != NLP_STE_MAPPED_NODE))) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"6108 NVMET prep FCP wqe: no ndlp: "
"NPORT x%x oxid x%x ste %d\n",
ctxp->sid, ctxp->oxid, ctxp->state);
return NULL;
}
if (rsp->sg_cnt > lpfc_tgttemplate.max_sgl_segments) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"6109 NVMET prep FCP wqe: seg cnt err: "
"NPORT x%x oxid x%x ste %d cnt %d\n",
ctxp->sid, ctxp->oxid, ctxp->state,
phba->cfg_nvme_seg_cnt);
return NULL;
}
nsegs = rsp->sg_cnt;
tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
nvmewqe = ctxp->wqeq;
if (nvmewqe == NULL) {
/* Allocate buffer for command wqe */
nvmewqe = ctxp->ctxbuf->iocbq;
if (nvmewqe == NULL) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"6110 NVMET prep FCP wqe: No "
"WQE: NPORT x%x oxid x%x ste %d\n",
ctxp->sid, ctxp->oxid, ctxp->state);
return NULL;
}
ctxp->wqeq = nvmewqe;
xc = 0; /* create new XRI */
nvmewqe->sli4_lxritag = NO_XRI;
nvmewqe->sli4_xritag = NO_XRI;
}
/* Sanity check */
if (((ctxp->state == LPFC_NVME_STE_RCV) &&
(ctxp->entry_cnt == 1)) ||
(ctxp->state == LPFC_NVME_STE_DATA)) {
wqe = &nvmewqe->wqe;
} else {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"6111 Wrong state NVMET FCP: %d cnt %d\n",
ctxp->state, ctxp->entry_cnt);
return NULL;
}
sgl = (struct sli4_sge *)ctxp->ctxbuf->sglq->sgl;
switch (rsp->op) {
case NVMET_FCOP_READDATA:
case NVMET_FCOP_READDATA_RSP:
/* From the tsend template, initialize words 7 - 11 */
memcpy(&wqe->words[7],
&lpfc_tsend_cmd_template.words[7],
sizeof(uint32_t) * 5);
/* Words 0 - 2 : The first sg segment */
sgel = &rsp->sg[0];
physaddr = sg_dma_address(sgel);
wqe->fcp_tsend.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64;
wqe->fcp_tsend.bde.tus.f.bdeSize = sg_dma_len(sgel);
wqe->fcp_tsend.bde.addrLow = cpu_to_le32(putPaddrLow(physaddr));
wqe->fcp_tsend.bde.addrHigh =
cpu_to_le32(putPaddrHigh(physaddr));
/* Word 3 */
wqe->fcp_tsend.payload_offset_len = 0;
/* Word 4 */
wqe->fcp_tsend.relative_offset = ctxp->offset;
/* Word 5 */
wqe->fcp_tsend.reserved = 0;
/* Word 6 */
bf_set(wqe_ctxt_tag, &wqe->fcp_tsend.wqe_com,
phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
bf_set(wqe_xri_tag, &wqe->fcp_tsend.wqe_com,
nvmewqe->sli4_xritag);
/* Word 7 - set ar later */
/* Word 8 */
wqe->fcp_tsend.wqe_com.abort_tag = nvmewqe->iotag;
/* Word 9 */
bf_set(wqe_reqtag, &wqe->fcp_tsend.wqe_com, nvmewqe->iotag);
bf_set(wqe_rcvoxid, &wqe->fcp_tsend.wqe_com, ctxp->oxid);
/* Word 10 - set wqes later, in template xc=1 */
if (!xc)
bf_set(wqe_xc, &wqe->fcp_tsend.wqe_com, 0);
/* Word 12 */
wqe->fcp_tsend.fcp_data_len = rsp->transfer_length;
/* Setup 2 SKIP SGEs */
sgl->addr_hi = 0;
sgl->addr_lo = 0;
sgl->word2 = 0;
bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_SKIP);
sgl->word2 = cpu_to_le32(sgl->word2);
sgl->sge_len = 0;
sgl++;
sgl->addr_hi = 0;
sgl->addr_lo = 0;
sgl->word2 = 0;
bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_SKIP);
sgl->word2 = cpu_to_le32(sgl->word2);
sgl->sge_len = 0;
sgl++;
if (rsp->op == NVMET_FCOP_READDATA_RSP) {
atomic_inc(&tgtp->xmt_fcp_read_rsp);
/* In template ar=1 wqes=0 sup=0 irsp=0 irsplen=0 */
if (rsp->rsplen == LPFC_NVMET_SUCCESS_LEN) {
if (ndlp->nlp_flag & NLP_SUPPRESS_RSP)
bf_set(wqe_sup,
&wqe->fcp_tsend.wqe_com, 1);
} else {
bf_set(wqe_wqes, &wqe->fcp_tsend.wqe_com, 1);
bf_set(wqe_irsp, &wqe->fcp_tsend.wqe_com, 1);
bf_set(wqe_irsplen, &wqe->fcp_tsend.wqe_com,
((rsp->rsplen >> 2) - 1));
memcpy(&wqe->words[16], rsp->rspaddr,
rsp->rsplen);
}
} else {
atomic_inc(&tgtp->xmt_fcp_read);
/* In template ar=1 wqes=0 sup=0 irsp=0 irsplen=0 */
bf_set(wqe_ar, &wqe->fcp_tsend.wqe_com, 0);
}
break;
case NVMET_FCOP_WRITEDATA:
/* From the treceive template, initialize words 3 - 11 */
memcpy(&wqe->words[3],
&lpfc_treceive_cmd_template.words[3],
sizeof(uint32_t) * 9);
/* Words 0 - 2 : First SGE is skipped, set invalid BDE type */
wqe->fcp_treceive.bde.tus.f.bdeFlags = LPFC_SGE_TYPE_SKIP;
wqe->fcp_treceive.bde.tus.f.bdeSize = 0;
wqe->fcp_treceive.bde.addrLow = 0;
wqe->fcp_treceive.bde.addrHigh = 0;
/* Word 4 */
wqe->fcp_treceive.relative_offset = ctxp->offset;
/* Word 6 */
bf_set(wqe_ctxt_tag, &wqe->fcp_treceive.wqe_com,
phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
bf_set(wqe_xri_tag, &wqe->fcp_treceive.wqe_com,
nvmewqe->sli4_xritag);
/* Word 7 */
/* Word 8 */
wqe->fcp_treceive.wqe_com.abort_tag = nvmewqe->iotag;
/* Word 9 */
bf_set(wqe_reqtag, &wqe->fcp_treceive.wqe_com, nvmewqe->iotag);
bf_set(wqe_rcvoxid, &wqe->fcp_treceive.wqe_com, ctxp->oxid);
/* Word 10 - in template xc=1 */
if (!xc)
bf_set(wqe_xc, &wqe->fcp_treceive.wqe_com, 0);
/* Word 11 - check for pbde */
if (nsegs == 1 && phba->cfg_enable_pbde) {
use_pbde = true;
/* Word 11 - PBDE bit already preset by template */
} else {
/* Overwrite default template setting */
bf_set(wqe_pbde, &wqe->fcp_treceive.wqe_com, 0);
}
/* Word 12 */
wqe->fcp_tsend.fcp_data_len = rsp->transfer_length;
/* Setup 2 SKIP SGEs */
sgl->addr_hi = 0;
sgl->addr_lo = 0;
sgl->word2 = 0;
bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_SKIP);
sgl->word2 = cpu_to_le32(sgl->word2);
sgl->sge_len = 0;
sgl++;
sgl->addr_hi = 0;
sgl->addr_lo = 0;
sgl->word2 = 0;
bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_SKIP);
sgl->word2 = cpu_to_le32(sgl->word2);
sgl->sge_len = 0;
sgl++;
atomic_inc(&tgtp->xmt_fcp_write);
break;
case NVMET_FCOP_RSP:
/* From the treceive template, initialize words 4 - 11 */
memcpy(&wqe->words[4],
&lpfc_trsp_cmd_template.words[4],
sizeof(uint32_t) * 8);
/* Words 0 - 2 */
physaddr = rsp->rspdma;
wqe->fcp_trsp.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64;
wqe->fcp_trsp.bde.tus.f.bdeSize = rsp->rsplen;
wqe->fcp_trsp.bde.addrLow =
cpu_to_le32(putPaddrLow(physaddr));
wqe->fcp_trsp.bde.addrHigh =
cpu_to_le32(putPaddrHigh(physaddr));
/* Word 3 */
wqe->fcp_trsp.response_len = rsp->rsplen;
/* Word 6 */
bf_set(wqe_ctxt_tag, &wqe->fcp_trsp.wqe_com,
phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
bf_set(wqe_xri_tag, &wqe->fcp_trsp.wqe_com,
nvmewqe->sli4_xritag);
/* Word 7 */
/* Word 8 */
wqe->fcp_trsp.wqe_com.abort_tag = nvmewqe->iotag;
/* Word 9 */
bf_set(wqe_reqtag, &wqe->fcp_trsp.wqe_com, nvmewqe->iotag);
bf_set(wqe_rcvoxid, &wqe->fcp_trsp.wqe_com, ctxp->oxid);
/* Word 10 */
if (xc)
bf_set(wqe_xc, &wqe->fcp_trsp.wqe_com, 1);
/* Word 11 */
/* In template wqes=0 irsp=0 irsplen=0 - good response */
if (rsp->rsplen != LPFC_NVMET_SUCCESS_LEN) {
/* Bad response - embed it */
bf_set(wqe_wqes, &wqe->fcp_trsp.wqe_com, 1);
bf_set(wqe_irsp, &wqe->fcp_trsp.wqe_com, 1);
bf_set(wqe_irsplen, &wqe->fcp_trsp.wqe_com,
((rsp->rsplen >> 2) - 1));
memcpy(&wqe->words[16], rsp->rspaddr, rsp->rsplen);
}
/* Word 12 */
wqe->fcp_trsp.rsvd_12_15[0] = 0;
/* Use rspbuf, NOT sg list */
nsegs = 0;
sgl->word2 = 0;
atomic_inc(&tgtp->xmt_fcp_rsp);
break;
default:
lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR,
"6064 Unknown Rsp Op %d\n",
rsp->op);
return NULL;
}
nvmewqe->retry = 1;
nvmewqe->vport = phba->pport;
nvmewqe->drvrTimeout = (phba->fc_ratov * 3) + LPFC_DRVR_TIMEOUT;
nvmewqe->ndlp = ndlp;
for_each_sg(rsp->sg, sgel, nsegs, i) {
physaddr = sg_dma_address(sgel);
cnt = sg_dma_len(sgel);
sgl->addr_hi = putPaddrHigh(physaddr);
sgl->addr_lo = putPaddrLow(physaddr);
sgl->word2 = 0;
bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_DATA);
bf_set(lpfc_sli4_sge_offset, sgl, ctxp->offset);
if ((i+1) == rsp->sg_cnt)
bf_set(lpfc_sli4_sge_last, sgl, 1);
sgl->word2 = cpu_to_le32(sgl->word2);
sgl->sge_len = cpu_to_le32(cnt);
sgl++;
ctxp->offset += cnt;
}
bde = (struct ulp_bde64 *)&wqe->words[13];
if (use_pbde) {
/* decrement sgl ptr backwards once to first data sge */
sgl--;
/* Words 13-15 (PBDE) */
bde->addrLow = sgl->addr_lo;
bde->addrHigh = sgl->addr_hi;
bde->tus.f.bdeSize = le32_to_cpu(sgl->sge_len);
bde->tus.f.bdeFlags = BUFF_TYPE_BDE_64;
bde->tus.w = cpu_to_le32(bde->tus.w);
} else {
memset(bde, 0, sizeof(struct ulp_bde64));
}
ctxp->state = LPFC_NVME_STE_DATA;
ctxp->entry_cnt++;
return nvmewqe;
}
/**
* lpfc_nvmet_sol_fcp_abort_cmp - Completion handler for ABTS
* @phba: Pointer to HBA context object.
* @cmdwqe: Pointer to driver command WQE object.
* @rspwqe: Pointer to driver response WQE object.
*
* The function is called from SLI ring event handler with no
* lock held. This function is the completion handler for NVME ABTS for FCP cmds
* The function frees memory resources used for the NVME commands.
**/
static void
lpfc_nvmet_sol_fcp_abort_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe,
struct lpfc_iocbq *rspwqe)
{
struct lpfc_async_xchg_ctx *ctxp;
struct lpfc_nvmet_tgtport *tgtp;
uint32_t result;
unsigned long flags;
bool released = false;
struct lpfc_wcqe_complete *wcqe = &rspwqe->wcqe_cmpl;
ctxp = cmdwqe->context_un.axchg;
result = wcqe->parameter;
tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
if (ctxp->flag & LPFC_NVME_ABORT_OP)
atomic_inc(&tgtp->xmt_fcp_abort_cmpl);
spin_lock_irqsave(&ctxp->ctxlock, flags);
ctxp->state = LPFC_NVME_STE_DONE;
/* Check if we already received a free context call
* and we have completed processing an abort situation.
*/
if ((ctxp->flag & LPFC_NVME_CTX_RLS) &&
!(ctxp->flag & LPFC_NVME_XBUSY)) {
spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock);
list_del_init(&ctxp->list);
spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock);
released = true;
}
ctxp->flag &= ~LPFC_NVME_ABORT_OP;
spin_unlock_irqrestore(&ctxp->ctxlock, flags);
atomic_inc(&tgtp->xmt_abort_rsp);
lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
"6165 ABORT cmpl: oxid x%x flg x%x (%d) "
"WCQE: %08x %08x %08x %08x\n",
ctxp->oxid, ctxp->flag, released,
wcqe->word0, wcqe->total_data_placed,
result, wcqe->word3);
cmdwqe->rsp_dmabuf = NULL;
cmdwqe->bpl_dmabuf = NULL;
/*
* if transport has released ctx, then can reuse it. Otherwise,
* will be recycled by transport release call.
*/
if (released)
lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf);
/* This is the iocbq for the abort, not the command */
lpfc_sli_release_iocbq(phba, cmdwqe);
/* Since iaab/iaar are NOT set, there is no work left.
* For LPFC_NVME_XBUSY, lpfc_sli4_nvmet_xri_aborted
* should have been called already.
*/
}
/**
* lpfc_nvmet_unsol_fcp_abort_cmp - Completion handler for ABTS
* @phba: Pointer to HBA context object.
* @cmdwqe: Pointer to driver command WQE object.
* @rspwqe: Pointer to driver response WQE object.
*
* The function is called from SLI ring event handler with no
* lock held. This function is the completion handler for NVME ABTS for FCP cmds
* The function frees memory resources used for the NVME commands.
**/
static void
lpfc_nvmet_unsol_fcp_abort_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe,
struct lpfc_iocbq *rspwqe)
{
struct lpfc_async_xchg_ctx *ctxp;
struct lpfc_nvmet_tgtport *tgtp;
unsigned long flags;
uint32_t result;
bool released = false;
struct lpfc_wcqe_complete *wcqe = &rspwqe->wcqe_cmpl;
ctxp = cmdwqe->context_un.axchg;
result = wcqe->parameter;
if (!ctxp) {
/* if context is clear, related io alrady complete */
lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
"6070 ABTS cmpl: WCQE: %08x %08x %08x %08x\n",
wcqe->word0, wcqe->total_data_placed,
result, wcqe->word3);
return;
}
tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
spin_lock_irqsave(&ctxp->ctxlock, flags);
if (ctxp->flag & LPFC_NVME_ABORT_OP)
atomic_inc(&tgtp->xmt_fcp_abort_cmpl);
/* Sanity check */
if (ctxp->state != LPFC_NVME_STE_ABORT) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"6112 ABTS Wrong state:%d oxid x%x\n",
ctxp->state, ctxp->oxid);
}
/* Check if we already received a free context call
* and we have completed processing an abort situation.
*/
ctxp->state = LPFC_NVME_STE_DONE;
if ((ctxp->flag & LPFC_NVME_CTX_RLS) &&
!(ctxp->flag & LPFC_NVME_XBUSY)) {
spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock);
list_del_init(&ctxp->list);
spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock);
released = true;
}
ctxp->flag &= ~LPFC_NVME_ABORT_OP;
spin_unlock_irqrestore(&ctxp->ctxlock, flags);
atomic_inc(&tgtp->xmt_abort_rsp);
lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
"6316 ABTS cmpl oxid x%x flg x%x (%x) "
"WCQE: %08x %08x %08x %08x\n",
ctxp->oxid, ctxp->flag, released,
wcqe->word0, wcqe->total_data_placed,
result, wcqe->word3);
cmdwqe->rsp_dmabuf = NULL;
cmdwqe->bpl_dmabuf = NULL;
/*
* if transport has released ctx, then can reuse it. Otherwise,
* will be recycled by transport release call.
*/
if (released)
lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf);
/* Since iaab/iaar are NOT set, there is no work left.
* For LPFC_NVME_XBUSY, lpfc_sli4_nvmet_xri_aborted
* should have been called already.
*/
}
/**
* lpfc_nvmet_xmt_ls_abort_cmp - Completion handler for ABTS
* @phba: Pointer to HBA context object.
* @cmdwqe: Pointer to driver command WQE object.
* @rspwqe: Pointer to driver response WQE object.
*
* The function is called from SLI ring event handler with no
* lock held. This function is the completion handler for NVME ABTS for LS cmds
* The function frees memory resources used for the NVME commands.
**/
static void
lpfc_nvmet_xmt_ls_abort_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe,
struct lpfc_iocbq *rspwqe)
{
struct lpfc_async_xchg_ctx *ctxp;
struct lpfc_nvmet_tgtport *tgtp;
uint32_t result;
struct lpfc_wcqe_complete *wcqe = &rspwqe->wcqe_cmpl;
ctxp = cmdwqe->context_un.axchg;
result = wcqe->parameter;
if (phba->nvmet_support) {
tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
atomic_inc(&tgtp->xmt_ls_abort_cmpl);
}
lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
"6083 Abort cmpl: ctx x%px WCQE:%08x %08x %08x %08x\n",
ctxp, wcqe->word0, wcqe->total_data_placed,
result, wcqe->word3);
if (!ctxp) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"6415 NVMET LS Abort No ctx: WCQE: "
"%08x %08x %08x %08x\n",
wcqe->word0, wcqe->total_data_placed,
result, wcqe->word3);
lpfc_sli_release_iocbq(phba, cmdwqe);
return;
}
if (ctxp->state != LPFC_NVME_STE_LS_ABORT) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"6416 NVMET LS abort cmpl state mismatch: "
"oxid x%x: %d %d\n",
ctxp->oxid, ctxp->state, ctxp->entry_cnt);
}
cmdwqe->rsp_dmabuf = NULL;
cmdwqe->bpl_dmabuf = NULL;
lpfc_sli_release_iocbq(phba, cmdwqe);
kfree(ctxp);
}
static int
lpfc_nvmet_unsol_issue_abort(struct lpfc_hba *phba,
struct lpfc_async_xchg_ctx *ctxp,
uint32_t sid, uint16_t xri)
{
struct lpfc_nvmet_tgtport *tgtp = NULL;
struct lpfc_iocbq *abts_wqeq;
union lpfc_wqe128 *wqe_abts;
struct lpfc_nodelist *ndlp;
lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
"6067 ABTS: sid %x xri x%x/x%x\n",
sid, xri, ctxp->wqeq->sli4_xritag);
if (phba->nvmet_support && phba->targetport)
tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
ndlp = lpfc_findnode_did(phba->pport, sid);
if (!ndlp ||
((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) &&
(ndlp->nlp_state != NLP_STE_MAPPED_NODE))) {
if (tgtp)
atomic_inc(&tgtp->xmt_abort_rsp_error);
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"6134 Drop ABTS - wrong NDLP state x%x.\n",
(ndlp) ? ndlp->nlp_state : NLP_STE_MAX_STATE);
/* No failure to an ABTS request. */
return 0;
}
abts_wqeq = ctxp->wqeq;
wqe_abts = &abts_wqeq->wqe;
/*
* Since we zero the whole WQE, we need to ensure we set the WQE fields
* that were initialized in lpfc_sli4_nvmet_alloc.
*/
memset(wqe_abts, 0, sizeof(union lpfc_wqe));
/* Word 5 */
bf_set(wqe_dfctl, &wqe_abts->xmit_sequence.wge_ctl, 0);
bf_set(wqe_ls, &wqe_abts->xmit_sequence.wge_ctl, 1);
bf_set(wqe_la, &wqe_abts->xmit_sequence.wge_ctl, 0);
bf_set(wqe_rctl, &wqe_abts->xmit_sequence.wge_ctl, FC_RCTL_BA_ABTS);
bf_set(wqe_type, &wqe_abts->xmit_sequence.wge_ctl, FC_TYPE_BLS);
/* Word 6 */
bf_set(wqe_ctxt_tag, &wqe_abts->xmit_sequence.wqe_com,
phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
bf_set(wqe_xri_tag, &wqe_abts->xmit_sequence.wqe_com,
abts_wqeq->sli4_xritag);
/* Word 7 */
bf_set(wqe_cmnd, &wqe_abts->xmit_sequence.wqe_com,
CMD_XMIT_SEQUENCE64_WQE);
bf_set(wqe_ct, &wqe_abts->xmit_sequence.wqe_com, SLI4_CT_RPI);
bf_set(wqe_class, &wqe_abts->xmit_sequence.wqe_com, CLASS3);
bf_set(wqe_pu, &wqe_abts->xmit_sequence.wqe_com, 0);
/* Word 8 */
wqe_abts->xmit_sequence.wqe_com.abort_tag = abts_wqeq->iotag;
/* Word 9 */
bf_set(wqe_reqtag, &wqe_abts->xmit_sequence.wqe_com, abts_wqeq->iotag);
/* Needs to be set by caller */
bf_set(wqe_rcvoxid, &wqe_abts->xmit_sequence.wqe_com, xri);
/* Word 10 */
bf_set(wqe_iod, &wqe_abts->xmit_sequence.wqe_com, LPFC_WQE_IOD_WRITE);
bf_set(wqe_lenloc, &wqe_abts->xmit_sequence.wqe_com,
LPFC_WQE_LENLOC_WORD12);
bf_set(wqe_ebde_cnt, &wqe_abts->xmit_sequence.wqe_com, 0);
bf_set(wqe_qosd, &wqe_abts->xmit_sequence.wqe_com, 0);
/* Word 11 */
bf_set(wqe_cqid, &wqe_abts->xmit_sequence.wqe_com,
LPFC_WQE_CQ_ID_DEFAULT);
bf_set(wqe_cmd_type, &wqe_abts->xmit_sequence.wqe_com,
OTHER_COMMAND);
abts_wqeq->vport = phba->pport;
abts_wqeq->ndlp = ndlp;
abts_wqeq->context_un.axchg = ctxp;
abts_wqeq->bpl_dmabuf = NULL;
abts_wqeq->num_bdes = 0;
/* hba_wqidx should already be setup from command we are aborting */
abts_wqeq->iocb.ulpCommand = CMD_XMIT_SEQUENCE64_CR;
abts_wqeq->iocb.ulpLe = 1;
lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
"6069 Issue ABTS to xri x%x reqtag x%x\n",
xri, abts_wqeq->iotag);
return 1;
}
static int
lpfc_nvmet_sol_fcp_issue_abort(struct lpfc_hba *phba,
struct lpfc_async_xchg_ctx *ctxp,
uint32_t sid, uint16_t xri)
{
struct lpfc_nvmet_tgtport *tgtp;
struct lpfc_iocbq *abts_wqeq;
struct lpfc_nodelist *ndlp;
unsigned long flags;
bool ia;
int rc;
tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
if (!ctxp->wqeq) {
ctxp->wqeq = ctxp->ctxbuf->iocbq;
ctxp->wqeq->hba_wqidx = 0;
}
ndlp = lpfc_findnode_did(phba->pport, sid);
if (!ndlp ||
((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) &&
(ndlp->nlp_state != NLP_STE_MAPPED_NODE))) {
atomic_inc(&tgtp->xmt_abort_rsp_error);
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"6160 Drop ABORT - wrong NDLP state x%x.\n",
(ndlp) ? ndlp->nlp_state : NLP_STE_MAX_STATE);
/* No failure to an ABTS request. */
spin_lock_irqsave(&ctxp->ctxlock, flags);
ctxp->flag &= ~LPFC_NVME_ABORT_OP;
spin_unlock_irqrestore(&ctxp->ctxlock, flags);
return 0;
}
/* Issue ABTS for this WQE based on iotag */
ctxp->abort_wqeq = lpfc_sli_get_iocbq(phba);
spin_lock_irqsave(&ctxp->ctxlock, flags);
if (!ctxp->abort_wqeq) {
atomic_inc(&tgtp->xmt_abort_rsp_error);
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"6161 ABORT failed: No wqeqs: "
"xri: x%x\n", ctxp->oxid);
/* No failure to an ABTS request. */
ctxp->flag &= ~LPFC_NVME_ABORT_OP;
spin_unlock_irqrestore(&ctxp->ctxlock, flags);
return 0;
}
abts_wqeq = ctxp->abort_wqeq;
ctxp->state = LPFC_NVME_STE_ABORT;
ia = (ctxp->flag & LPFC_NVME_ABTS_RCV) ? true : false;
spin_unlock_irqrestore(&ctxp->ctxlock, flags);
/* Announce entry to new IO submit field. */
lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
"6162 ABORT Request to rport DID x%06x "
"for xri x%x x%x\n",
ctxp->sid, ctxp->oxid, ctxp->wqeq->sli4_xritag);
/* If the hba is getting reset, this flag is set. It is
* cleared when the reset is complete and rings reestablished.
*/
spin_lock_irqsave(&phba->hbalock, flags);
/* driver queued commands are in process of being flushed */
if (phba->hba_flag & HBA_IOQ_FLUSH) {
spin_unlock_irqrestore(&phba->hbalock, flags);
atomic_inc(&tgtp->xmt_abort_rsp_error);
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"6163 Driver in reset cleanup - flushing "
"NVME Req now. hba_flag x%x oxid x%x\n",
phba->hba_flag, ctxp->oxid);
lpfc_sli_release_iocbq(phba, abts_wqeq);
spin_lock_irqsave(&ctxp->ctxlock, flags);
ctxp->flag &= ~LPFC_NVME_ABORT_OP;
spin_unlock_irqrestore(&ctxp->ctxlock, flags);
return 0;
}
/* Outstanding abort is in progress */
if (abts_wqeq->cmd_flag & LPFC_DRIVER_ABORTED) {
spin_unlock_irqrestore(&phba->hbalock, flags);
atomic_inc(&tgtp->xmt_abort_rsp_error);
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"6164 Outstanding NVME I/O Abort Request "
"still pending on oxid x%x\n",
ctxp->oxid);
lpfc_sli_release_iocbq(phba, abts_wqeq);
spin_lock_irqsave(&ctxp->ctxlock, flags);
ctxp->flag &= ~LPFC_NVME_ABORT_OP;
spin_unlock_irqrestore(&ctxp->ctxlock, flags);
return 0;
}
/* Ready - mark outstanding as aborted by driver. */
abts_wqeq->cmd_flag |= LPFC_DRIVER_ABORTED;
lpfc_sli_prep_abort_xri(phba, abts_wqeq, ctxp->wqeq->sli4_xritag,
abts_wqeq->iotag, CLASS3,
LPFC_WQE_CQ_ID_DEFAULT, ia, true);
/* ABTS WQE must go to the same WQ as the WQE to be aborted */
abts_wqeq->hba_wqidx = ctxp->wqeq->hba_wqidx;
abts_wqeq->cmd_cmpl = lpfc_nvmet_sol_fcp_abort_cmp;
abts_wqeq->cmd_flag |= LPFC_IO_NVME;
abts_wqeq->context_un.axchg = ctxp;
abts_wqeq->vport = phba->pport;
if (!ctxp->hdwq)
ctxp->hdwq = &phba->sli4_hba.hdwq[abts_wqeq->hba_wqidx];
rc = lpfc_sli4_issue_wqe(phba, ctxp->hdwq, abts_wqeq);
spin_unlock_irqrestore(&phba->hbalock, flags);
if (rc == WQE_SUCCESS) {
atomic_inc(&tgtp->xmt_abort_sol);
return 0;
}
atomic_inc(&tgtp->xmt_abort_rsp_error);
spin_lock_irqsave(&ctxp->ctxlock, flags);
ctxp->flag &= ~LPFC_NVME_ABORT_OP;
spin_unlock_irqrestore(&ctxp->ctxlock, flags);
lpfc_sli_release_iocbq(phba, abts_wqeq);
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"6166 Failed ABORT issue_wqe with status x%x "
"for oxid x%x.\n",
rc, ctxp->oxid);
return 1;
}
static int
lpfc_nvmet_unsol_fcp_issue_abort(struct lpfc_hba *phba,
struct lpfc_async_xchg_ctx *ctxp,
uint32_t sid, uint16_t xri)
{
struct lpfc_nvmet_tgtport *tgtp;
struct lpfc_iocbq *abts_wqeq;
unsigned long flags;
bool released = false;
int rc;
tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
if (!ctxp->wqeq) {
ctxp->wqeq = ctxp->ctxbuf->iocbq;
ctxp->wqeq->hba_wqidx = 0;
}
if (ctxp->state == LPFC_NVME_STE_FREE) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"6417 NVMET ABORT ctx freed %d %d oxid x%x\n",
ctxp->state, ctxp->entry_cnt, ctxp->oxid);
rc = WQE_BUSY;
goto aerr;
}
ctxp->state = LPFC_NVME_STE_ABORT;
ctxp->entry_cnt++;
rc = lpfc_nvmet_unsol_issue_abort(phba, ctxp, sid, xri);
if (rc == 0)
goto aerr;
spin_lock_irqsave(&phba->hbalock, flags);
abts_wqeq = ctxp->wqeq;
abts_wqeq->cmd_cmpl = lpfc_nvmet_unsol_fcp_abort_cmp;
abts_wqeq->cmd_flag |= LPFC_IO_NVMET;
if (!ctxp->hdwq)
ctxp->hdwq = &phba->sli4_hba.hdwq[abts_wqeq->hba_wqidx];
rc = lpfc_sli4_issue_wqe(phba, ctxp->hdwq, abts_wqeq);
spin_unlock_irqrestore(&phba->hbalock, flags);
if (rc == WQE_SUCCESS) {
return 0;
}
aerr:
spin_lock_irqsave(&ctxp->ctxlock, flags);
if (ctxp->flag & LPFC_NVME_CTX_RLS) {
spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock);
list_del_init(&ctxp->list);
spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock);
released = true;
}
ctxp->flag &= ~(LPFC_NVME_ABORT_OP | LPFC_NVME_CTX_RLS);
spin_unlock_irqrestore(&ctxp->ctxlock, flags);
atomic_inc(&tgtp->xmt_abort_rsp_error);
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"6135 Failed to Issue ABTS for oxid x%x. Status x%x "
"(%x)\n",
ctxp->oxid, rc, released);
if (released)
lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf);
return 1;
}
/**
* lpfc_nvme_unsol_ls_issue_abort - issue ABTS on an exchange received
* via async frame receive where the frame is not handled.
* @phba: pointer to adapter structure
* @ctxp: pointer to the asynchronously received received sequence
* @sid: address of the remote port to send the ABTS to
* @xri: oxid value to for the ABTS (other side's exchange id).
**/
int
lpfc_nvme_unsol_ls_issue_abort(struct lpfc_hba *phba,
struct lpfc_async_xchg_ctx *ctxp,
uint32_t sid, uint16_t xri)
{
struct lpfc_nvmet_tgtport *tgtp = NULL;
struct lpfc_iocbq *abts_wqeq;
unsigned long flags;
int rc;
if ((ctxp->state == LPFC_NVME_STE_LS_RCV && ctxp->entry_cnt == 1) ||
(ctxp->state == LPFC_NVME_STE_LS_RSP && ctxp->entry_cnt == 2)) {
ctxp->state = LPFC_NVME_STE_LS_ABORT;
ctxp->entry_cnt++;
} else {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"6418 NVMET LS abort state mismatch "
"IO x%x: %d %d\n",
ctxp->oxid, ctxp->state, ctxp->entry_cnt);
ctxp->state = LPFC_NVME_STE_LS_ABORT;
}
if (phba->nvmet_support && phba->targetport)
tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
if (!ctxp->wqeq) {
/* Issue ABTS for this WQE based on iotag */
ctxp->wqeq = lpfc_sli_get_iocbq(phba);
if (!ctxp->wqeq) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"6068 Abort failed: No wqeqs: "
"xri: x%x\n", xri);
/* No failure to an ABTS request. */
kfree(ctxp);
return 0;
}
}
abts_wqeq = ctxp->wqeq;
if (lpfc_nvmet_unsol_issue_abort(phba, ctxp, sid, xri) == 0) {
rc = WQE_BUSY;
goto out;
}
spin_lock_irqsave(&phba->hbalock, flags);
abts_wqeq->cmd_cmpl = lpfc_nvmet_xmt_ls_abort_cmp;
abts_wqeq->cmd_flag |= LPFC_IO_NVME_LS;
rc = lpfc_sli4_issue_wqe(phba, ctxp->hdwq, abts_wqeq);
spin_unlock_irqrestore(&phba->hbalock, flags);
if (rc == WQE_SUCCESS) {
if (tgtp)
atomic_inc(&tgtp->xmt_abort_unsol);
return 0;
}
out:
if (tgtp)
atomic_inc(&tgtp->xmt_abort_rsp_error);
abts_wqeq->rsp_dmabuf = NULL;
abts_wqeq->bpl_dmabuf = NULL;
lpfc_sli_release_iocbq(phba, abts_wqeq);
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"6056 Failed to Issue ABTS. Status x%x\n", rc);
return 1;
}
/**
* lpfc_nvmet_invalidate_host
*
* @phba: pointer to the driver instance bound to an adapter port.
* @ndlp: pointer to an lpfc_nodelist type
*
* This routine upcalls the nvmet transport to invalidate an NVME
* host to which this target instance had active connections.
*/
void
lpfc_nvmet_invalidate_host(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp)
{
u32 ndlp_has_hh;
struct lpfc_nvmet_tgtport *tgtp;
lpfc_printf_log(phba, KERN_INFO,
LOG_NVME | LOG_NVME_ABTS | LOG_NVME_DISC,
"6203 Invalidating hosthandle x%px\n",
ndlp);
tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
atomic_set(&tgtp->state, LPFC_NVMET_INV_HOST_ACTIVE);
spin_lock_irq(&ndlp->lock);
ndlp_has_hh = ndlp->fc4_xpt_flags & NLP_XPT_HAS_HH;
spin_unlock_irq(&ndlp->lock);
/* Do not invalidate any nodes that do not have a hosthandle.
* The host_release callbk will cause a node reference
* count imbalance and a crash.
*/
if (!ndlp_has_hh) {
lpfc_printf_log(phba, KERN_INFO,
LOG_NVME | LOG_NVME_ABTS | LOG_NVME_DISC,
"6204 Skip invalidate on node x%px DID x%x\n",
ndlp, ndlp->nlp_DID);
return;
}
#if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
/* Need to get the nvmet_fc_target_port pointer here.*/
nvmet_fc_invalidate_host(phba->targetport, ndlp);
#endif
}