333 lines
9.2 KiB
C
333 lines
9.2 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* fs-verity hash algorithms
|
|
*
|
|
* Copyright 2019 Google LLC
|
|
*/
|
|
|
|
#include "fsverity_private.h"
|
|
|
|
#include <crypto/hash.h>
|
|
#include <linux/scatterlist.h>
|
|
|
|
/* The hash algorithms supported by fs-verity */
|
|
struct fsverity_hash_alg fsverity_hash_algs[] = {
|
|
[FS_VERITY_HASH_ALG_SHA256] = {
|
|
.name = "sha256",
|
|
.digest_size = SHA256_DIGEST_SIZE,
|
|
.block_size = SHA256_BLOCK_SIZE,
|
|
.algo_id = HASH_ALGO_SHA256,
|
|
},
|
|
[FS_VERITY_HASH_ALG_SHA512] = {
|
|
.name = "sha512",
|
|
.digest_size = SHA512_DIGEST_SIZE,
|
|
.block_size = SHA512_BLOCK_SIZE,
|
|
.algo_id = HASH_ALGO_SHA512,
|
|
},
|
|
};
|
|
|
|
static DEFINE_MUTEX(fsverity_hash_alg_init_mutex);
|
|
|
|
/**
|
|
* fsverity_get_hash_alg() - validate and prepare a hash algorithm
|
|
* @inode: optional inode for logging purposes
|
|
* @num: the hash algorithm number
|
|
*
|
|
* Get the struct fsverity_hash_alg for the given hash algorithm number, and
|
|
* ensure it has a hash transform ready to go. The hash transforms are
|
|
* allocated on-demand so that we don't waste resources unnecessarily, and
|
|
* because the crypto modules may be initialized later than fs/verity/.
|
|
*
|
|
* Return: pointer to the hash alg on success, else an ERR_PTR()
|
|
*/
|
|
struct fsverity_hash_alg *fsverity_get_hash_alg(const struct inode *inode,
|
|
unsigned int num)
|
|
{
|
|
struct fsverity_hash_alg *alg;
|
|
struct crypto_ahash *tfm;
|
|
int err;
|
|
|
|
if (num >= ARRAY_SIZE(fsverity_hash_algs) ||
|
|
!fsverity_hash_algs[num].name) {
|
|
fsverity_warn(inode, "Unknown hash algorithm number: %u", num);
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
alg = &fsverity_hash_algs[num];
|
|
|
|
/* pairs with smp_store_release() below */
|
|
if (likely(smp_load_acquire(&alg->tfm) != NULL))
|
|
return alg;
|
|
|
|
mutex_lock(&fsverity_hash_alg_init_mutex);
|
|
|
|
if (alg->tfm != NULL)
|
|
goto out_unlock;
|
|
|
|
/*
|
|
* Using the shash API would make things a bit simpler, but the ahash
|
|
* API is preferable as it allows the use of crypto accelerators.
|
|
*/
|
|
tfm = crypto_alloc_ahash(alg->name, 0, 0);
|
|
if (IS_ERR(tfm)) {
|
|
if (PTR_ERR(tfm) == -ENOENT) {
|
|
fsverity_warn(inode,
|
|
"Missing crypto API support for hash algorithm \"%s\"",
|
|
alg->name);
|
|
alg = ERR_PTR(-ENOPKG);
|
|
goto out_unlock;
|
|
}
|
|
fsverity_err(inode,
|
|
"Error allocating hash algorithm \"%s\": %ld",
|
|
alg->name, PTR_ERR(tfm));
|
|
alg = ERR_CAST(tfm);
|
|
goto out_unlock;
|
|
}
|
|
|
|
err = -EINVAL;
|
|
if (WARN_ON(alg->digest_size != crypto_ahash_digestsize(tfm)))
|
|
goto err_free_tfm;
|
|
if (WARN_ON(alg->block_size != crypto_ahash_blocksize(tfm)))
|
|
goto err_free_tfm;
|
|
|
|
err = mempool_init_kmalloc_pool(&alg->req_pool, 1,
|
|
sizeof(struct ahash_request) +
|
|
crypto_ahash_reqsize(tfm));
|
|
if (err)
|
|
goto err_free_tfm;
|
|
|
|
pr_info("%s using implementation \"%s\"\n",
|
|
alg->name, crypto_ahash_driver_name(tfm));
|
|
|
|
/* pairs with smp_load_acquire() above */
|
|
smp_store_release(&alg->tfm, tfm);
|
|
goto out_unlock;
|
|
|
|
err_free_tfm:
|
|
crypto_free_ahash(tfm);
|
|
alg = ERR_PTR(err);
|
|
out_unlock:
|
|
mutex_unlock(&fsverity_hash_alg_init_mutex);
|
|
return alg;
|
|
}
|
|
|
|
/**
|
|
* fsverity_alloc_hash_request() - allocate a hash request object
|
|
* @alg: the hash algorithm for which to allocate the request
|
|
* @gfp_flags: memory allocation flags
|
|
*
|
|
* This is mempool-backed, so this never fails if __GFP_DIRECT_RECLAIM is set in
|
|
* @gfp_flags. However, in that case this might need to wait for all
|
|
* previously-allocated requests to be freed. So to avoid deadlocks, callers
|
|
* must never need multiple requests at a time to make forward progress.
|
|
*
|
|
* Return: the request object on success; NULL on failure (but see above)
|
|
*/
|
|
struct ahash_request *fsverity_alloc_hash_request(struct fsverity_hash_alg *alg,
|
|
gfp_t gfp_flags)
|
|
{
|
|
struct ahash_request *req = mempool_alloc(&alg->req_pool, gfp_flags);
|
|
|
|
if (req)
|
|
ahash_request_set_tfm(req, alg->tfm);
|
|
return req;
|
|
}
|
|
|
|
/**
|
|
* fsverity_free_hash_request() - free a hash request object
|
|
* @alg: the hash algorithm
|
|
* @req: the hash request object to free
|
|
*/
|
|
void fsverity_free_hash_request(struct fsverity_hash_alg *alg,
|
|
struct ahash_request *req)
|
|
{
|
|
if (req) {
|
|
ahash_request_zero(req);
|
|
mempool_free(req, &alg->req_pool);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* fsverity_prepare_hash_state() - precompute the initial hash state
|
|
* @alg: hash algorithm
|
|
* @salt: a salt which is to be prepended to all data to be hashed
|
|
* @salt_size: salt size in bytes, possibly 0
|
|
*
|
|
* Return: NULL if the salt is empty, otherwise the kmalloc()'ed precomputed
|
|
* initial hash state on success or an ERR_PTR() on failure.
|
|
*/
|
|
const u8 *fsverity_prepare_hash_state(struct fsverity_hash_alg *alg,
|
|
const u8 *salt, size_t salt_size)
|
|
{
|
|
u8 *hashstate = NULL;
|
|
struct ahash_request *req = NULL;
|
|
u8 *padded_salt = NULL;
|
|
size_t padded_salt_size;
|
|
struct scatterlist sg;
|
|
DECLARE_CRYPTO_WAIT(wait);
|
|
int err;
|
|
|
|
if (salt_size == 0)
|
|
return NULL;
|
|
|
|
hashstate = kmalloc(crypto_ahash_statesize(alg->tfm), GFP_KERNEL);
|
|
if (!hashstate)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
/* This allocation never fails, since it's mempool-backed. */
|
|
req = fsverity_alloc_hash_request(alg, GFP_KERNEL);
|
|
|
|
/*
|
|
* Zero-pad the salt to the next multiple of the input size of the hash
|
|
* algorithm's compression function, e.g. 64 bytes for SHA-256 or 128
|
|
* bytes for SHA-512. This ensures that the hash algorithm won't have
|
|
* any bytes buffered internally after processing the salt, thus making
|
|
* salted hashing just as fast as unsalted hashing.
|
|
*/
|
|
padded_salt_size = round_up(salt_size, alg->block_size);
|
|
padded_salt = kzalloc(padded_salt_size, GFP_KERNEL);
|
|
if (!padded_salt) {
|
|
err = -ENOMEM;
|
|
goto err_free;
|
|
}
|
|
memcpy(padded_salt, salt, salt_size);
|
|
|
|
sg_init_one(&sg, padded_salt, padded_salt_size);
|
|
ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP |
|
|
CRYPTO_TFM_REQ_MAY_BACKLOG,
|
|
crypto_req_done, &wait);
|
|
ahash_request_set_crypt(req, &sg, NULL, padded_salt_size);
|
|
|
|
err = crypto_wait_req(crypto_ahash_init(req), &wait);
|
|
if (err)
|
|
goto err_free;
|
|
|
|
err = crypto_wait_req(crypto_ahash_update(req), &wait);
|
|
if (err)
|
|
goto err_free;
|
|
|
|
err = crypto_ahash_export(req, hashstate);
|
|
if (err)
|
|
goto err_free;
|
|
out:
|
|
fsverity_free_hash_request(alg, req);
|
|
kfree(padded_salt);
|
|
return hashstate;
|
|
|
|
err_free:
|
|
kfree(hashstate);
|
|
hashstate = ERR_PTR(err);
|
|
goto out;
|
|
}
|
|
|
|
/**
|
|
* fsverity_hash_block() - hash a single data or hash block
|
|
* @params: the Merkle tree's parameters
|
|
* @inode: inode for which the hashing is being done
|
|
* @req: preallocated hash request
|
|
* @page: the page containing the block to hash
|
|
* @offset: the offset of the block within @page
|
|
* @out: output digest, size 'params->digest_size' bytes
|
|
*
|
|
* Hash a single data or hash block. The hash is salted if a salt is specified
|
|
* in the Merkle tree parameters.
|
|
*
|
|
* Return: 0 on success, -errno on failure
|
|
*/
|
|
int fsverity_hash_block(const struct merkle_tree_params *params,
|
|
const struct inode *inode, struct ahash_request *req,
|
|
struct page *page, unsigned int offset, u8 *out)
|
|
{
|
|
struct scatterlist sg;
|
|
DECLARE_CRYPTO_WAIT(wait);
|
|
int err;
|
|
|
|
sg_init_table(&sg, 1);
|
|
sg_set_page(&sg, page, params->block_size, offset);
|
|
ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP |
|
|
CRYPTO_TFM_REQ_MAY_BACKLOG,
|
|
crypto_req_done, &wait);
|
|
ahash_request_set_crypt(req, &sg, out, params->block_size);
|
|
|
|
if (params->hashstate) {
|
|
err = crypto_ahash_import(req, params->hashstate);
|
|
if (err) {
|
|
fsverity_err(inode,
|
|
"Error %d importing hash state", err);
|
|
return err;
|
|
}
|
|
err = crypto_ahash_finup(req);
|
|
} else {
|
|
err = crypto_ahash_digest(req);
|
|
}
|
|
|
|
err = crypto_wait_req(err, &wait);
|
|
if (err)
|
|
fsverity_err(inode, "Error %d computing block hash", err);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* fsverity_hash_buffer() - hash some data
|
|
* @alg: the hash algorithm to use
|
|
* @data: the data to hash
|
|
* @size: size of data to hash, in bytes
|
|
* @out: output digest, size 'alg->digest_size' bytes
|
|
*
|
|
* Hash some data which is located in physically contiguous memory (i.e. memory
|
|
* allocated by kmalloc(), not by vmalloc()). No salt is used.
|
|
*
|
|
* Return: 0 on success, -errno on failure
|
|
*/
|
|
int fsverity_hash_buffer(struct fsverity_hash_alg *alg,
|
|
const void *data, size_t size, u8 *out)
|
|
{
|
|
struct ahash_request *req;
|
|
struct scatterlist sg;
|
|
DECLARE_CRYPTO_WAIT(wait);
|
|
int err;
|
|
|
|
/* This allocation never fails, since it's mempool-backed. */
|
|
req = fsverity_alloc_hash_request(alg, GFP_KERNEL);
|
|
|
|
sg_init_one(&sg, data, size);
|
|
ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP |
|
|
CRYPTO_TFM_REQ_MAY_BACKLOG,
|
|
crypto_req_done, &wait);
|
|
ahash_request_set_crypt(req, &sg, out, size);
|
|
|
|
err = crypto_wait_req(crypto_ahash_digest(req), &wait);
|
|
|
|
fsverity_free_hash_request(alg, req);
|
|
return err;
|
|
}
|
|
|
|
void __init fsverity_check_hash_algs(void)
|
|
{
|
|
size_t i;
|
|
|
|
/*
|
|
* Sanity check the hash algorithms (could be a build-time check, but
|
|
* they're in an array)
|
|
*/
|
|
for (i = 0; i < ARRAY_SIZE(fsverity_hash_algs); i++) {
|
|
const struct fsverity_hash_alg *alg = &fsverity_hash_algs[i];
|
|
|
|
if (!alg->name)
|
|
continue;
|
|
|
|
BUG_ON(alg->digest_size > FS_VERITY_MAX_DIGEST_SIZE);
|
|
|
|
/*
|
|
* For efficiency, the implementation currently assumes the
|
|
* digest and block sizes are powers of 2. This limitation can
|
|
* be lifted if the code is updated to handle other values.
|
|
*/
|
|
BUG_ON(!is_power_of_2(alg->digest_size));
|
|
BUG_ON(!is_power_of_2(alg->block_size));
|
|
|
|
/* Verify that there is a valid mapping to HASH_ALGO_*. */
|
|
BUG_ON(alg->algo_id == 0);
|
|
BUG_ON(alg->digest_size != hash_digest_size[alg->algo_id]);
|
|
}
|
|
}
|