linux-zen-server/include/linux/hugetlb.h

1286 lines
34 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _LINUX_HUGETLB_H
#define _LINUX_HUGETLB_H
#include <linux/mm.h>
#include <linux/mm_types.h>
#include <linux/mmdebug.h>
#include <linux/fs.h>
#include <linux/hugetlb_inline.h>
#include <linux/cgroup.h>
#include <linux/page_ref.h>
#include <linux/list.h>
#include <linux/kref.h>
#include <linux/pgtable.h>
#include <linux/gfp.h>
#include <linux/userfaultfd_k.h>
struct ctl_table;
struct user_struct;
struct mmu_gather;
struct node;
#ifndef CONFIG_ARCH_HAS_HUGEPD
typedef struct { unsigned long pd; } hugepd_t;
#define is_hugepd(hugepd) (0)
#define __hugepd(x) ((hugepd_t) { (x) })
#endif
#ifdef CONFIG_HUGETLB_PAGE
#include <linux/mempolicy.h>
#include <linux/shm.h>
#include <asm/tlbflush.h>
/*
* For HugeTLB page, there are more metadata to save in the struct page. But
* the head struct page cannot meet our needs, so we have to abuse other tail
* struct page to store the metadata.
*/
#define __NR_USED_SUBPAGE 3
struct hugepage_subpool {
spinlock_t lock;
long count;
long max_hpages; /* Maximum huge pages or -1 if no maximum. */
long used_hpages; /* Used count against maximum, includes */
/* both allocated and reserved pages. */
struct hstate *hstate;
long min_hpages; /* Minimum huge pages or -1 if no minimum. */
long rsv_hpages; /* Pages reserved against global pool to */
/* satisfy minimum size. */
};
struct resv_map {
struct kref refs;
spinlock_t lock;
struct list_head regions;
long adds_in_progress;
struct list_head region_cache;
long region_cache_count;
#ifdef CONFIG_CGROUP_HUGETLB
/*
* On private mappings, the counter to uncharge reservations is stored
* here. If these fields are 0, then either the mapping is shared, or
* cgroup accounting is disabled for this resv_map.
*/
struct page_counter *reservation_counter;
unsigned long pages_per_hpage;
struct cgroup_subsys_state *css;
#endif
};
/*
* Region tracking -- allows tracking of reservations and instantiated pages
* across the pages in a mapping.
*
* The region data structures are embedded into a resv_map and protected
* by a resv_map's lock. The set of regions within the resv_map represent
* reservations for huge pages, or huge pages that have already been
* instantiated within the map. The from and to elements are huge page
* indices into the associated mapping. from indicates the starting index
* of the region. to represents the first index past the end of the region.
*
* For example, a file region structure with from == 0 and to == 4 represents
* four huge pages in a mapping. It is important to note that the to element
* represents the first element past the end of the region. This is used in
* arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
*
* Interval notation of the form [from, to) will be used to indicate that
* the endpoint from is inclusive and to is exclusive.
*/
struct file_region {
struct list_head link;
long from;
long to;
#ifdef CONFIG_CGROUP_HUGETLB
/*
* On shared mappings, each reserved region appears as a struct
* file_region in resv_map. These fields hold the info needed to
* uncharge each reservation.
*/
struct page_counter *reservation_counter;
struct cgroup_subsys_state *css;
#endif
};
struct hugetlb_vma_lock {
struct kref refs;
struct rw_semaphore rw_sema;
struct vm_area_struct *vma;
};
extern struct resv_map *resv_map_alloc(void);
void resv_map_release(struct kref *ref);
extern spinlock_t hugetlb_lock;
extern int hugetlb_max_hstate __read_mostly;
#define for_each_hstate(h) \
for ((h) = hstates; (h) < &hstates[hugetlb_max_hstate]; (h)++)
struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
long min_hpages);
void hugepage_put_subpool(struct hugepage_subpool *spool);
void hugetlb_dup_vma_private(struct vm_area_struct *vma);
void clear_vma_resv_huge_pages(struct vm_area_struct *vma);
int hugetlb_sysctl_handler(struct ctl_table *, int, void *, size_t *, loff_t *);
int hugetlb_overcommit_handler(struct ctl_table *, int, void *, size_t *,
loff_t *);
int hugetlb_treat_movable_handler(struct ctl_table *, int, void *, size_t *,
loff_t *);
int hugetlb_mempolicy_sysctl_handler(struct ctl_table *, int, void *, size_t *,
loff_t *);
int move_hugetlb_page_tables(struct vm_area_struct *vma,
struct vm_area_struct *new_vma,
unsigned long old_addr, unsigned long new_addr,
unsigned long len);
int copy_hugetlb_page_range(struct mm_struct *, struct mm_struct *,
struct vm_area_struct *, struct vm_area_struct *);
struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma,
unsigned long address, unsigned int flags);
long follow_hugetlb_page(struct mm_struct *, struct vm_area_struct *,
struct page **, struct vm_area_struct **,
unsigned long *, unsigned long *, long, unsigned int,
int *);
void unmap_hugepage_range(struct vm_area_struct *,
unsigned long, unsigned long, struct page *,
zap_flags_t);
void __unmap_hugepage_range_final(struct mmu_gather *tlb,
struct vm_area_struct *vma,
unsigned long start, unsigned long end,
struct page *ref_page, zap_flags_t zap_flags);
void hugetlb_report_meminfo(struct seq_file *);
int hugetlb_report_node_meminfo(char *buf, int len, int nid);
void hugetlb_show_meminfo_node(int nid);
unsigned long hugetlb_total_pages(void);
vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
unsigned long address, unsigned int flags);
#ifdef CONFIG_USERFAULTFD
int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm, pte_t *dst_pte,
struct vm_area_struct *dst_vma,
unsigned long dst_addr,
unsigned long src_addr,
enum mcopy_atomic_mode mode,
struct page **pagep,
bool wp_copy);
#endif /* CONFIG_USERFAULTFD */
bool hugetlb_reserve_pages(struct inode *inode, long from, long to,
struct vm_area_struct *vma,
vm_flags_t vm_flags);
long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
long freed);
bool isolate_hugetlb(struct folio *folio, struct list_head *list);
int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison);
int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
bool *migratable_cleared);
void folio_putback_active_hugetlb(struct folio *folio);
void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason);
void free_huge_page(struct page *page);
void hugetlb_fix_reserve_counts(struct inode *inode);
extern struct mutex *hugetlb_fault_mutex_table;
u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx);
pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
unsigned long addr, pud_t *pud);
struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage);
extern int sysctl_hugetlb_shm_group;
extern struct list_head huge_boot_pages;
/* arch callbacks */
pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
unsigned long addr, unsigned long sz);
/*
* huge_pte_offset(): Walk the hugetlb pgtable until the last level PTE.
* Returns the pte_t* if found, or NULL if the address is not mapped.
*
* IMPORTANT: we should normally not directly call this function, instead
* this is only a common interface to implement arch-specific
* walker. Please use hugetlb_walk() instead, because that will attempt to
* verify the locking for you.
*
* Since this function will walk all the pgtable pages (including not only
* high-level pgtable page, but also PUD entry that can be unshared
* concurrently for VM_SHARED), the caller of this function should be
* responsible of its thread safety. One can follow this rule:
*
* (1) For private mappings: pmd unsharing is not possible, so holding the
* mmap_lock for either read or write is sufficient. Most callers
* already hold the mmap_lock, so normally, no special action is
* required.
*
* (2) For shared mappings: pmd unsharing is possible (so the PUD-ranged
* pgtable page can go away from under us! It can be done by a pmd
* unshare with a follow up munmap() on the other process), then we
* need either:
*
* (2.1) hugetlb vma lock read or write held, to make sure pmd unshare
* won't happen upon the range (it also makes sure the pte_t we
* read is the right and stable one), or,
*
* (2.2) hugetlb mapping i_mmap_rwsem lock held read or write, to make
* sure even if unshare happened the racy unmap() will wait until
* i_mmap_rwsem is released.
*
* Option (2.1) is the safest, which guarantees pte stability from pmd
* sharing pov, until the vma lock released. Option (2.2) doesn't protect
* a concurrent pmd unshare, but it makes sure the pgtable page is safe to
* access.
*/
pte_t *huge_pte_offset(struct mm_struct *mm,
unsigned long addr, unsigned long sz);
unsigned long hugetlb_mask_last_page(struct hstate *h);
int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
unsigned long addr, pte_t *ptep);
void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
unsigned long *start, unsigned long *end);
void hugetlb_vma_lock_read(struct vm_area_struct *vma);
void hugetlb_vma_unlock_read(struct vm_area_struct *vma);
void hugetlb_vma_lock_write(struct vm_area_struct *vma);
void hugetlb_vma_unlock_write(struct vm_area_struct *vma);
int hugetlb_vma_trylock_write(struct vm_area_struct *vma);
void hugetlb_vma_assert_locked(struct vm_area_struct *vma);
void hugetlb_vma_lock_release(struct kref *kref);
int pmd_huge(pmd_t pmd);
int pud_huge(pud_t pud);
long hugetlb_change_protection(struct vm_area_struct *vma,
unsigned long address, unsigned long end, pgprot_t newprot,
unsigned long cp_flags);
bool is_hugetlb_entry_migration(pte_t pte);
void hugetlb_unshare_all_pmds(struct vm_area_struct *vma);
#else /* !CONFIG_HUGETLB_PAGE */
static inline void hugetlb_dup_vma_private(struct vm_area_struct *vma)
{
}
static inline void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
{
}
static inline unsigned long hugetlb_total_pages(void)
{
return 0;
}
static inline struct address_space *hugetlb_page_mapping_lock_write(
struct page *hpage)
{
return NULL;
}
static inline int huge_pmd_unshare(struct mm_struct *mm,
struct vm_area_struct *vma,
unsigned long addr, pte_t *ptep)
{
return 0;
}
static inline void adjust_range_if_pmd_sharing_possible(
struct vm_area_struct *vma,
unsigned long *start, unsigned long *end)
{
}
static inline struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma,
unsigned long address, unsigned int flags)
{
BUILD_BUG(); /* should never be compiled in if !CONFIG_HUGETLB_PAGE*/
}
static inline long follow_hugetlb_page(struct mm_struct *mm,
struct vm_area_struct *vma, struct page **pages,
struct vm_area_struct **vmas, unsigned long *position,
unsigned long *nr_pages, long i, unsigned int flags,
int *nonblocking)
{
BUG();
return 0;
}
static inline int copy_hugetlb_page_range(struct mm_struct *dst,
struct mm_struct *src,
struct vm_area_struct *dst_vma,
struct vm_area_struct *src_vma)
{
BUG();
return 0;
}
static inline int move_hugetlb_page_tables(struct vm_area_struct *vma,
struct vm_area_struct *new_vma,
unsigned long old_addr,
unsigned long new_addr,
unsigned long len)
{
BUG();
return 0;
}
static inline void hugetlb_report_meminfo(struct seq_file *m)
{
}
static inline int hugetlb_report_node_meminfo(char *buf, int len, int nid)
{
return 0;
}
static inline void hugetlb_show_meminfo_node(int nid)
{
}
static inline int prepare_hugepage_range(struct file *file,
unsigned long addr, unsigned long len)
{
return -EINVAL;
}
static inline void hugetlb_vma_lock_read(struct vm_area_struct *vma)
{
}
static inline void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
{
}
static inline void hugetlb_vma_lock_write(struct vm_area_struct *vma)
{
}
static inline void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
{
}
static inline int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
{
return 1;
}
static inline void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
{
}
static inline int pmd_huge(pmd_t pmd)
{
return 0;
}
static inline int pud_huge(pud_t pud)
{
return 0;
}
static inline int is_hugepage_only_range(struct mm_struct *mm,
unsigned long addr, unsigned long len)
{
return 0;
}
static inline void hugetlb_free_pgd_range(struct mmu_gather *tlb,
unsigned long addr, unsigned long end,
unsigned long floor, unsigned long ceiling)
{
BUG();
}
#ifdef CONFIG_USERFAULTFD
static inline int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
pte_t *dst_pte,
struct vm_area_struct *dst_vma,
unsigned long dst_addr,
unsigned long src_addr,
enum mcopy_atomic_mode mode,
struct page **pagep,
bool wp_copy)
{
BUG();
return 0;
}
#endif /* CONFIG_USERFAULTFD */
static inline pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr,
unsigned long sz)
{
return NULL;
}
static inline bool isolate_hugetlb(struct folio *folio, struct list_head *list)
{
return false;
}
static inline int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
{
return 0;
}
static inline int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
bool *migratable_cleared)
{
return 0;
}
static inline void folio_putback_active_hugetlb(struct folio *folio)
{
}
static inline void move_hugetlb_state(struct folio *old_folio,
struct folio *new_folio, int reason)
{
}
static inline long hugetlb_change_protection(
struct vm_area_struct *vma, unsigned long address,
unsigned long end, pgprot_t newprot,
unsigned long cp_flags)
{
return 0;
}
static inline void __unmap_hugepage_range_final(struct mmu_gather *tlb,
struct vm_area_struct *vma, unsigned long start,
unsigned long end, struct page *ref_page,
zap_flags_t zap_flags)
{
BUG();
}
static inline vm_fault_t hugetlb_fault(struct mm_struct *mm,
struct vm_area_struct *vma, unsigned long address,
unsigned int flags)
{
BUG();
return 0;
}
static inline void hugetlb_unshare_all_pmds(struct vm_area_struct *vma) { }
#endif /* !CONFIG_HUGETLB_PAGE */
/*
* hugepages at page global directory. If arch support
* hugepages at pgd level, they need to define this.
*/
#ifndef pgd_huge
#define pgd_huge(x) 0
#endif
#ifndef p4d_huge
#define p4d_huge(x) 0
#endif
#ifndef pgd_write
static inline int pgd_write(pgd_t pgd)
{
BUG();
return 0;
}
#endif
#define HUGETLB_ANON_FILE "anon_hugepage"
enum {
/*
* The file will be used as an shm file so shmfs accounting rules
* apply
*/
HUGETLB_SHMFS_INODE = 1,
/*
* The file is being created on the internal vfs mount and shmfs
* accounting rules do not apply
*/
HUGETLB_ANONHUGE_INODE = 2,
};
#ifdef CONFIG_HUGETLBFS
struct hugetlbfs_sb_info {
long max_inodes; /* inodes allowed */
long free_inodes; /* inodes free */
spinlock_t stat_lock;
struct hstate *hstate;
struct hugepage_subpool *spool;
kuid_t uid;
kgid_t gid;
umode_t mode;
};
static inline struct hugetlbfs_sb_info *HUGETLBFS_SB(struct super_block *sb)
{
return sb->s_fs_info;
}
struct hugetlbfs_inode_info {
struct shared_policy policy;
struct inode vfs_inode;
unsigned int seals;
};
static inline struct hugetlbfs_inode_info *HUGETLBFS_I(struct inode *inode)
{
return container_of(inode, struct hugetlbfs_inode_info, vfs_inode);
}
extern const struct file_operations hugetlbfs_file_operations;
extern const struct vm_operations_struct hugetlb_vm_ops;
struct file *hugetlb_file_setup(const char *name, size_t size, vm_flags_t acct,
int creat_flags, int page_size_log);
static inline bool is_file_hugepages(struct file *file)
{
if (file->f_op == &hugetlbfs_file_operations)
return true;
return is_file_shm_hugepages(file);
}
static inline struct hstate *hstate_inode(struct inode *i)
{
return HUGETLBFS_SB(i->i_sb)->hstate;
}
#else /* !CONFIG_HUGETLBFS */
#define is_file_hugepages(file) false
static inline struct file *
hugetlb_file_setup(const char *name, size_t size, vm_flags_t acctflag,
int creat_flags, int page_size_log)
{
return ERR_PTR(-ENOSYS);
}
static inline struct hstate *hstate_inode(struct inode *i)
{
return NULL;
}
#endif /* !CONFIG_HUGETLBFS */
#ifdef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
unsigned long len, unsigned long pgoff,
unsigned long flags);
#endif /* HAVE_ARCH_HUGETLB_UNMAPPED_AREA */
unsigned long
generic_hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
unsigned long len, unsigned long pgoff,
unsigned long flags);
/*
* huegtlb page specific state flags. These flags are located in page.private
* of the hugetlb head page. Functions created via the below macros should be
* used to manipulate these flags.
*
* HPG_restore_reserve - Set when a hugetlb page consumes a reservation at
* allocation time. Cleared when page is fully instantiated. Free
* routine checks flag to restore a reservation on error paths.
* Synchronization: Examined or modified by code that knows it has
* the only reference to page. i.e. After allocation but before use
* or when the page is being freed.
* HPG_migratable - Set after a newly allocated page is added to the page
* cache and/or page tables. Indicates the page is a candidate for
* migration.
* Synchronization: Initially set after new page allocation with no
* locking. When examined and modified during migration processing
* (isolate, migrate, putback) the hugetlb_lock is held.
* HPG_temporary - Set on a page that is temporarily allocated from the buddy
* allocator. Typically used for migration target pages when no pages
* are available in the pool. The hugetlb free page path will
* immediately free pages with this flag set to the buddy allocator.
* Synchronization: Can be set after huge page allocation from buddy when
* code knows it has only reference. All other examinations and
* modifications require hugetlb_lock.
* HPG_freed - Set when page is on the free lists.
* Synchronization: hugetlb_lock held for examination and modification.
* HPG_vmemmap_optimized - Set when the vmemmap pages of the page are freed.
* HPG_raw_hwp_unreliable - Set when the hugetlb page has a hwpoison sub-page
* that is not tracked by raw_hwp_page list.
*/
enum hugetlb_page_flags {
HPG_restore_reserve = 0,
HPG_migratable,
HPG_temporary,
HPG_freed,
HPG_vmemmap_optimized,
HPG_raw_hwp_unreliable,
__NR_HPAGEFLAGS,
};
/*
* Macros to create test, set and clear function definitions for
* hugetlb specific page flags.
*/
#ifdef CONFIG_HUGETLB_PAGE
#define TESTHPAGEFLAG(uname, flname) \
static __always_inline \
bool folio_test_hugetlb_##flname(struct folio *folio) \
{ void *private = &folio->private; \
return test_bit(HPG_##flname, private); \
} \
static inline int HPage##uname(struct page *page) \
{ return test_bit(HPG_##flname, &(page->private)); }
#define SETHPAGEFLAG(uname, flname) \
static __always_inline \
void folio_set_hugetlb_##flname(struct folio *folio) \
{ void *private = &folio->private; \
set_bit(HPG_##flname, private); \
} \
static inline void SetHPage##uname(struct page *page) \
{ set_bit(HPG_##flname, &(page->private)); }
#define CLEARHPAGEFLAG(uname, flname) \
static __always_inline \
void folio_clear_hugetlb_##flname(struct folio *folio) \
{ void *private = &folio->private; \
clear_bit(HPG_##flname, private); \
} \
static inline void ClearHPage##uname(struct page *page) \
{ clear_bit(HPG_##flname, &(page->private)); }
#else
#define TESTHPAGEFLAG(uname, flname) \
static inline bool \
folio_test_hugetlb_##flname(struct folio *folio) \
{ return 0; } \
static inline int HPage##uname(struct page *page) \
{ return 0; }
#define SETHPAGEFLAG(uname, flname) \
static inline void \
folio_set_hugetlb_##flname(struct folio *folio) \
{ } \
static inline void SetHPage##uname(struct page *page) \
{ }
#define CLEARHPAGEFLAG(uname, flname) \
static inline void \
folio_clear_hugetlb_##flname(struct folio *folio) \
{ } \
static inline void ClearHPage##uname(struct page *page) \
{ }
#endif
#define HPAGEFLAG(uname, flname) \
TESTHPAGEFLAG(uname, flname) \
SETHPAGEFLAG(uname, flname) \
CLEARHPAGEFLAG(uname, flname) \
/*
* Create functions associated with hugetlb page flags
*/
HPAGEFLAG(RestoreReserve, restore_reserve)
HPAGEFLAG(Migratable, migratable)
HPAGEFLAG(Temporary, temporary)
HPAGEFLAG(Freed, freed)
HPAGEFLAG(VmemmapOptimized, vmemmap_optimized)
HPAGEFLAG(RawHwpUnreliable, raw_hwp_unreliable)
#ifdef CONFIG_HUGETLB_PAGE
#define HSTATE_NAME_LEN 32
/* Defines one hugetlb page size */
struct hstate {
struct mutex resize_lock;
int next_nid_to_alloc;
int next_nid_to_free;
unsigned int order;
unsigned int demote_order;
unsigned long mask;
unsigned long max_huge_pages;
unsigned long nr_huge_pages;
unsigned long free_huge_pages;
unsigned long resv_huge_pages;
unsigned long surplus_huge_pages;
unsigned long nr_overcommit_huge_pages;
struct list_head hugepage_activelist;
struct list_head hugepage_freelists[MAX_NUMNODES];
unsigned int max_huge_pages_node[MAX_NUMNODES];
unsigned int nr_huge_pages_node[MAX_NUMNODES];
unsigned int free_huge_pages_node[MAX_NUMNODES];
unsigned int surplus_huge_pages_node[MAX_NUMNODES];
#ifdef CONFIG_CGROUP_HUGETLB
/* cgroup control files */
struct cftype cgroup_files_dfl[8];
struct cftype cgroup_files_legacy[10];
#endif
char name[HSTATE_NAME_LEN];
};
struct huge_bootmem_page {
struct list_head list;
struct hstate *hstate;
};
int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list);
struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
unsigned long addr, int avoid_reserve);
struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
nodemask_t *nmask, gfp_t gfp_mask);
struct folio *alloc_hugetlb_folio_vma(struct hstate *h, struct vm_area_struct *vma,
unsigned long address);
int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
pgoff_t idx);
void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
unsigned long address, struct folio *folio);
/* arch callback */
int __init __alloc_bootmem_huge_page(struct hstate *h, int nid);
int __init alloc_bootmem_huge_page(struct hstate *h, int nid);
bool __init hugetlb_node_alloc_supported(void);
void __init hugetlb_add_hstate(unsigned order);
bool __init arch_hugetlb_valid_size(unsigned long size);
struct hstate *size_to_hstate(unsigned long size);
#ifndef HUGE_MAX_HSTATE
#define HUGE_MAX_HSTATE 1
#endif
extern struct hstate hstates[HUGE_MAX_HSTATE];
extern unsigned int default_hstate_idx;
#define default_hstate (hstates[default_hstate_idx])
static inline struct hugepage_subpool *hugetlb_folio_subpool(struct folio *folio)
{
return folio->_hugetlb_subpool;
}
/*
* hugetlb page subpool pointer located in hpage[2].hugetlb_subpool
*/
static inline struct hugepage_subpool *hugetlb_page_subpool(struct page *hpage)
{
return hugetlb_folio_subpool(page_folio(hpage));
}
static inline void hugetlb_set_folio_subpool(struct folio *folio,
struct hugepage_subpool *subpool)
{
folio->_hugetlb_subpool = subpool;
}
static inline void hugetlb_set_page_subpool(struct page *hpage,
struct hugepage_subpool *subpool)
{
hugetlb_set_folio_subpool(page_folio(hpage), subpool);
}
static inline struct hstate *hstate_file(struct file *f)
{
return hstate_inode(file_inode(f));
}
static inline struct hstate *hstate_sizelog(int page_size_log)
{
if (!page_size_log)
return &default_hstate;
if (page_size_log < BITS_PER_LONG)
return size_to_hstate(1UL << page_size_log);
return NULL;
}
static inline struct hstate *hstate_vma(struct vm_area_struct *vma)
{
return hstate_file(vma->vm_file);
}
static inline unsigned long huge_page_size(const struct hstate *h)
{
return (unsigned long)PAGE_SIZE << h->order;
}
extern unsigned long vma_kernel_pagesize(struct vm_area_struct *vma);
extern unsigned long vma_mmu_pagesize(struct vm_area_struct *vma);
static inline unsigned long huge_page_mask(struct hstate *h)
{
return h->mask;
}
static inline unsigned int huge_page_order(struct hstate *h)
{
return h->order;
}
static inline unsigned huge_page_shift(struct hstate *h)
{
return h->order + PAGE_SHIFT;
}
static inline bool hstate_is_gigantic(struct hstate *h)
{
return huge_page_order(h) >= MAX_ORDER;
}
static inline unsigned int pages_per_huge_page(const struct hstate *h)
{
return 1 << h->order;
}
static inline unsigned int blocks_per_huge_page(struct hstate *h)
{
return huge_page_size(h) / 512;
}
#include <asm/hugetlb.h>
#ifndef is_hugepage_only_range
static inline int is_hugepage_only_range(struct mm_struct *mm,
unsigned long addr, unsigned long len)
{
return 0;
}
#define is_hugepage_only_range is_hugepage_only_range
#endif
#ifndef arch_clear_hugepage_flags
static inline void arch_clear_hugepage_flags(struct page *page) { }
#define arch_clear_hugepage_flags arch_clear_hugepage_flags
#endif
#ifndef arch_make_huge_pte
static inline pte_t arch_make_huge_pte(pte_t entry, unsigned int shift,
vm_flags_t flags)
{
return pte_mkhuge(entry);
}
#endif
static inline struct hstate *folio_hstate(struct folio *folio)
{
VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio);
return size_to_hstate(folio_size(folio));
}
static inline struct hstate *page_hstate(struct page *page)
{
return folio_hstate(page_folio(page));
}
static inline unsigned hstate_index_to_shift(unsigned index)
{
return hstates[index].order + PAGE_SHIFT;
}
static inline int hstate_index(struct hstate *h)
{
return h - hstates;
}
extern int dissolve_free_huge_page(struct page *page);
extern int dissolve_free_huge_pages(unsigned long start_pfn,
unsigned long end_pfn);
#ifdef CONFIG_MEMORY_FAILURE
extern void folio_clear_hugetlb_hwpoison(struct folio *folio);
#else
static inline void folio_clear_hugetlb_hwpoison(struct folio *folio)
{
}
#endif
#ifdef CONFIG_ARCH_ENABLE_HUGEPAGE_MIGRATION
#ifndef arch_hugetlb_migration_supported
static inline bool arch_hugetlb_migration_supported(struct hstate *h)
{
if ((huge_page_shift(h) == PMD_SHIFT) ||
(huge_page_shift(h) == PUD_SHIFT) ||
(huge_page_shift(h) == PGDIR_SHIFT))
return true;
else
return false;
}
#endif
#else
static inline bool arch_hugetlb_migration_supported(struct hstate *h)
{
return false;
}
#endif
static inline bool hugepage_migration_supported(struct hstate *h)
{
return arch_hugetlb_migration_supported(h);
}
/*
* Movability check is different as compared to migration check.
* It determines whether or not a huge page should be placed on
* movable zone or not. Movability of any huge page should be
* required only if huge page size is supported for migration.
* There won't be any reason for the huge page to be movable if
* it is not migratable to start with. Also the size of the huge
* page should be large enough to be placed under a movable zone
* and still feasible enough to be migratable. Just the presence
* in movable zone does not make the migration feasible.
*
* So even though large huge page sizes like the gigantic ones
* are migratable they should not be movable because its not
* feasible to migrate them from movable zone.
*/
static inline bool hugepage_movable_supported(struct hstate *h)
{
if (!hugepage_migration_supported(h))
return false;
if (hstate_is_gigantic(h))
return false;
return true;
}
/* Movability of hugepages depends on migration support. */
static inline gfp_t htlb_alloc_mask(struct hstate *h)
{
if (hugepage_movable_supported(h))
return GFP_HIGHUSER_MOVABLE;
else
return GFP_HIGHUSER;
}
static inline gfp_t htlb_modify_alloc_mask(struct hstate *h, gfp_t gfp_mask)
{
gfp_t modified_mask = htlb_alloc_mask(h);
/* Some callers might want to enforce node */
modified_mask |= (gfp_mask & __GFP_THISNODE);
modified_mask |= (gfp_mask & __GFP_NOWARN);
return modified_mask;
}
static inline spinlock_t *huge_pte_lockptr(struct hstate *h,
struct mm_struct *mm, pte_t *pte)
{
if (huge_page_size(h) == PMD_SIZE)
return pmd_lockptr(mm, (pmd_t *) pte);
VM_BUG_ON(huge_page_size(h) == PAGE_SIZE);
return &mm->page_table_lock;
}
#ifndef hugepages_supported
/*
* Some platform decide whether they support huge pages at boot
* time. Some of them, such as powerpc, set HPAGE_SHIFT to 0
* when there is no such support
*/
#define hugepages_supported() (HPAGE_SHIFT != 0)
#endif
void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm);
static inline void hugetlb_count_init(struct mm_struct *mm)
{
atomic_long_set(&mm->hugetlb_usage, 0);
}
static inline void hugetlb_count_add(long l, struct mm_struct *mm)
{
atomic_long_add(l, &mm->hugetlb_usage);
}
static inline void hugetlb_count_sub(long l, struct mm_struct *mm)
{
atomic_long_sub(l, &mm->hugetlb_usage);
}
#ifndef huge_ptep_modify_prot_start
#define huge_ptep_modify_prot_start huge_ptep_modify_prot_start
static inline pte_t huge_ptep_modify_prot_start(struct vm_area_struct *vma,
unsigned long addr, pte_t *ptep)
{
return huge_ptep_get_and_clear(vma->vm_mm, addr, ptep);
}
#endif
#ifndef huge_ptep_modify_prot_commit
#define huge_ptep_modify_prot_commit huge_ptep_modify_prot_commit
static inline void huge_ptep_modify_prot_commit(struct vm_area_struct *vma,
unsigned long addr, pte_t *ptep,
pte_t old_pte, pte_t pte)
{
set_huge_pte_at(vma->vm_mm, addr, ptep, pte);
}
#endif
#ifdef CONFIG_NUMA
void hugetlb_register_node(struct node *node);
void hugetlb_unregister_node(struct node *node);
#endif
#else /* CONFIG_HUGETLB_PAGE */
struct hstate {};
static inline struct hugepage_subpool *hugetlb_folio_subpool(struct folio *folio)
{
return NULL;
}
static inline struct hugepage_subpool *hugetlb_page_subpool(struct page *hpage)
{
return NULL;
}
static inline int isolate_or_dissolve_huge_page(struct page *page,
struct list_head *list)
{
return -ENOMEM;
}
static inline struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
unsigned long addr,
int avoid_reserve)
{
return NULL;
}
static inline struct folio *
alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
nodemask_t *nmask, gfp_t gfp_mask)
{
return NULL;
}
static inline struct folio *alloc_hugetlb_folio_vma(struct hstate *h,
struct vm_area_struct *vma,
unsigned long address)
{
return NULL;
}
static inline int __alloc_bootmem_huge_page(struct hstate *h)
{
return 0;
}
static inline struct hstate *hstate_file(struct file *f)
{
return NULL;
}
static inline struct hstate *hstate_sizelog(int page_size_log)
{
return NULL;
}
static inline struct hstate *hstate_vma(struct vm_area_struct *vma)
{
return NULL;
}
static inline struct hstate *folio_hstate(struct folio *folio)
{
return NULL;
}
static inline struct hstate *page_hstate(struct page *page)
{
return NULL;
}
static inline struct hstate *size_to_hstate(unsigned long size)
{
return NULL;
}
static inline unsigned long huge_page_size(struct hstate *h)
{
return PAGE_SIZE;
}
static inline unsigned long huge_page_mask(struct hstate *h)
{
return PAGE_MASK;
}
static inline unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
return PAGE_SIZE;
}
static inline unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
{
return PAGE_SIZE;
}
static inline unsigned int huge_page_order(struct hstate *h)
{
return 0;
}
static inline unsigned int huge_page_shift(struct hstate *h)
{
return PAGE_SHIFT;
}
static inline bool hstate_is_gigantic(struct hstate *h)
{
return false;
}
static inline unsigned int pages_per_huge_page(struct hstate *h)
{
return 1;
}
static inline unsigned hstate_index_to_shift(unsigned index)
{
return 0;
}
static inline int hstate_index(struct hstate *h)
{
return 0;
}
static inline int dissolve_free_huge_page(struct page *page)
{
return 0;
}
static inline int dissolve_free_huge_pages(unsigned long start_pfn,
unsigned long end_pfn)
{
return 0;
}
static inline bool hugepage_migration_supported(struct hstate *h)
{
return false;
}
static inline bool hugepage_movable_supported(struct hstate *h)
{
return false;
}
static inline gfp_t htlb_alloc_mask(struct hstate *h)
{
return 0;
}
static inline gfp_t htlb_modify_alloc_mask(struct hstate *h, gfp_t gfp_mask)
{
return 0;
}
static inline spinlock_t *huge_pte_lockptr(struct hstate *h,
struct mm_struct *mm, pte_t *pte)
{
return &mm->page_table_lock;
}
static inline void hugetlb_count_init(struct mm_struct *mm)
{
}
static inline void hugetlb_report_usage(struct seq_file *f, struct mm_struct *m)
{
}
static inline void hugetlb_count_sub(long l, struct mm_struct *mm)
{
}
static inline pte_t huge_ptep_clear_flush(struct vm_area_struct *vma,
unsigned long addr, pte_t *ptep)
{
return *ptep;
}
static inline void set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
pte_t *ptep, pte_t pte)
{
}
static inline void hugetlb_register_node(struct node *node)
{
}
static inline void hugetlb_unregister_node(struct node *node)
{
}
#endif /* CONFIG_HUGETLB_PAGE */
static inline spinlock_t *huge_pte_lock(struct hstate *h,
struct mm_struct *mm, pte_t *pte)
{
spinlock_t *ptl;
ptl = huge_pte_lockptr(h, mm, pte);
spin_lock(ptl);
return ptl;
}
#if defined(CONFIG_HUGETLB_PAGE) && defined(CONFIG_CMA)
extern void __init hugetlb_cma_reserve(int order);
#else
static inline __init void hugetlb_cma_reserve(int order)
{
}
#endif
#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
static inline bool hugetlb_pmd_shared(pte_t *pte)
{
return page_count(virt_to_page(pte)) > 1;
}
#else
static inline bool hugetlb_pmd_shared(pte_t *pte)
{
return false;
}
#endif
bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr);
#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
/*
* ARCHes with special requirements for evicting HUGETLB backing TLB entries can
* implement this.
*/
#define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
#endif
static inline bool __vma_shareable_lock(struct vm_area_struct *vma)
{
return (vma->vm_flags & VM_MAYSHARE) && vma->vm_private_data;
}
/*
* Safe version of huge_pte_offset() to check the locks. See comments
* above huge_pte_offset().
*/
static inline pte_t *
hugetlb_walk(struct vm_area_struct *vma, unsigned long addr, unsigned long sz)
{
#if defined(CONFIG_HUGETLB_PAGE) && \
defined(CONFIG_ARCH_WANT_HUGE_PMD_SHARE) && defined(CONFIG_LOCKDEP)
struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
/*
* If pmd sharing possible, locking needed to safely walk the
* hugetlb pgtables. More information can be found at the comment
* above huge_pte_offset() in the same file.
*
* NOTE: lockdep_is_held() is only defined with CONFIG_LOCKDEP.
*/
if (__vma_shareable_lock(vma))
WARN_ON_ONCE(!lockdep_is_held(&vma_lock->rw_sema) &&
!lockdep_is_held(
&vma->vm_file->f_mapping->i_mmap_rwsem));
#endif
return huge_pte_offset(vma->vm_mm, addr, sz);
}
#endif /* _LINUX_HUGETLB_H */