linux-zen-server/net/sunrpc/xprtrdma/transport.c

806 lines
22 KiB
C

// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
/*
* Copyright (c) 2014-2017 Oracle. All rights reserved.
* Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the BSD-type
* license below:
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
*
* Neither the name of the Network Appliance, Inc. nor the names of
* its contributors may be used to endorse or promote products
* derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* transport.c
*
* This file contains the top-level implementation of an RPC RDMA
* transport.
*
* Naming convention: functions beginning with xprt_ are part of the
* transport switch. All others are RPC RDMA internal.
*/
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/seq_file.h>
#include <linux/smp.h>
#include <linux/sunrpc/addr.h>
#include <linux/sunrpc/svc_rdma.h>
#include "xprt_rdma.h"
#include <trace/events/rpcrdma.h>
/*
* tunables
*/
static unsigned int xprt_rdma_slot_table_entries = RPCRDMA_DEF_SLOT_TABLE;
unsigned int xprt_rdma_max_inline_read = RPCRDMA_DEF_INLINE;
unsigned int xprt_rdma_max_inline_write = RPCRDMA_DEF_INLINE;
unsigned int xprt_rdma_memreg_strategy = RPCRDMA_FRWR;
int xprt_rdma_pad_optimize;
static struct xprt_class xprt_rdma;
#if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
static unsigned int min_slot_table_size = RPCRDMA_MIN_SLOT_TABLE;
static unsigned int max_slot_table_size = RPCRDMA_MAX_SLOT_TABLE;
static unsigned int min_inline_size = RPCRDMA_MIN_INLINE;
static unsigned int max_inline_size = RPCRDMA_MAX_INLINE;
static unsigned int max_padding = PAGE_SIZE;
static unsigned int min_memreg = RPCRDMA_BOUNCEBUFFERS;
static unsigned int max_memreg = RPCRDMA_LAST - 1;
static unsigned int dummy;
static struct ctl_table_header *sunrpc_table_header;
static struct ctl_table xr_tunables_table[] = {
{
.procname = "rdma_slot_table_entries",
.data = &xprt_rdma_slot_table_entries,
.maxlen = sizeof(unsigned int),
.mode = 0644,
.proc_handler = proc_dointvec_minmax,
.extra1 = &min_slot_table_size,
.extra2 = &max_slot_table_size
},
{
.procname = "rdma_max_inline_read",
.data = &xprt_rdma_max_inline_read,
.maxlen = sizeof(unsigned int),
.mode = 0644,
.proc_handler = proc_dointvec_minmax,
.extra1 = &min_inline_size,
.extra2 = &max_inline_size,
},
{
.procname = "rdma_max_inline_write",
.data = &xprt_rdma_max_inline_write,
.maxlen = sizeof(unsigned int),
.mode = 0644,
.proc_handler = proc_dointvec_minmax,
.extra1 = &min_inline_size,
.extra2 = &max_inline_size,
},
{
.procname = "rdma_inline_write_padding",
.data = &dummy,
.maxlen = sizeof(unsigned int),
.mode = 0644,
.proc_handler = proc_dointvec_minmax,
.extra1 = SYSCTL_ZERO,
.extra2 = &max_padding,
},
{
.procname = "rdma_memreg_strategy",
.data = &xprt_rdma_memreg_strategy,
.maxlen = sizeof(unsigned int),
.mode = 0644,
.proc_handler = proc_dointvec_minmax,
.extra1 = &min_memreg,
.extra2 = &max_memreg,
},
{
.procname = "rdma_pad_optimize",
.data = &xprt_rdma_pad_optimize,
.maxlen = sizeof(unsigned int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
{ },
};
static struct ctl_table sunrpc_table[] = {
{
.procname = "sunrpc",
.mode = 0555,
.child = xr_tunables_table
},
{ },
};
#endif
static const struct rpc_xprt_ops xprt_rdma_procs;
static void
xprt_rdma_format_addresses4(struct rpc_xprt *xprt, struct sockaddr *sap)
{
struct sockaddr_in *sin = (struct sockaddr_in *)sap;
char buf[20];
snprintf(buf, sizeof(buf), "%08x", ntohl(sin->sin_addr.s_addr));
xprt->address_strings[RPC_DISPLAY_HEX_ADDR] = kstrdup(buf, GFP_KERNEL);
xprt->address_strings[RPC_DISPLAY_NETID] = RPCBIND_NETID_RDMA;
}
static void
xprt_rdma_format_addresses6(struct rpc_xprt *xprt, struct sockaddr *sap)
{
struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sap;
char buf[40];
snprintf(buf, sizeof(buf), "%pi6", &sin6->sin6_addr);
xprt->address_strings[RPC_DISPLAY_HEX_ADDR] = kstrdup(buf, GFP_KERNEL);
xprt->address_strings[RPC_DISPLAY_NETID] = RPCBIND_NETID_RDMA6;
}
void
xprt_rdma_format_addresses(struct rpc_xprt *xprt, struct sockaddr *sap)
{
char buf[128];
switch (sap->sa_family) {
case AF_INET:
xprt_rdma_format_addresses4(xprt, sap);
break;
case AF_INET6:
xprt_rdma_format_addresses6(xprt, sap);
break;
default:
pr_err("rpcrdma: Unrecognized address family\n");
return;
}
(void)rpc_ntop(sap, buf, sizeof(buf));
xprt->address_strings[RPC_DISPLAY_ADDR] = kstrdup(buf, GFP_KERNEL);
snprintf(buf, sizeof(buf), "%u", rpc_get_port(sap));
xprt->address_strings[RPC_DISPLAY_PORT] = kstrdup(buf, GFP_KERNEL);
snprintf(buf, sizeof(buf), "%4hx", rpc_get_port(sap));
xprt->address_strings[RPC_DISPLAY_HEX_PORT] = kstrdup(buf, GFP_KERNEL);
xprt->address_strings[RPC_DISPLAY_PROTO] = "rdma";
}
void
xprt_rdma_free_addresses(struct rpc_xprt *xprt)
{
unsigned int i;
for (i = 0; i < RPC_DISPLAY_MAX; i++)
switch (i) {
case RPC_DISPLAY_PROTO:
case RPC_DISPLAY_NETID:
continue;
default:
kfree(xprt->address_strings[i]);
}
}
/**
* xprt_rdma_connect_worker - establish connection in the background
* @work: worker thread context
*
* Requester holds the xprt's send lock to prevent activity on this
* transport while a fresh connection is being established. RPC tasks
* sleep on the xprt's pending queue waiting for connect to complete.
*/
static void
xprt_rdma_connect_worker(struct work_struct *work)
{
struct rpcrdma_xprt *r_xprt = container_of(work, struct rpcrdma_xprt,
rx_connect_worker.work);
struct rpc_xprt *xprt = &r_xprt->rx_xprt;
unsigned int pflags = current->flags;
int rc;
if (atomic_read(&xprt->swapper))
current->flags |= PF_MEMALLOC;
rc = rpcrdma_xprt_connect(r_xprt);
xprt_clear_connecting(xprt);
if (!rc) {
xprt->connect_cookie++;
xprt->stat.connect_count++;
xprt->stat.connect_time += (long)jiffies -
xprt->stat.connect_start;
xprt_set_connected(xprt);
rc = -EAGAIN;
} else
rpcrdma_xprt_disconnect(r_xprt);
xprt_unlock_connect(xprt, r_xprt);
xprt_wake_pending_tasks(xprt, rc);
current_restore_flags(pflags, PF_MEMALLOC);
}
/**
* xprt_rdma_inject_disconnect - inject a connection fault
* @xprt: transport context
*
* If @xprt is connected, disconnect it to simulate spurious
* connection loss. Caller must hold @xprt's send lock to
* ensure that data structures and hardware resources are
* stable during the rdma_disconnect() call.
*/
static void
xprt_rdma_inject_disconnect(struct rpc_xprt *xprt)
{
struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
trace_xprtrdma_op_inject_dsc(r_xprt);
rdma_disconnect(r_xprt->rx_ep->re_id);
}
/**
* xprt_rdma_destroy - Full tear down of transport
* @xprt: doomed transport context
*
* Caller guarantees there will be no more calls to us with
* this @xprt.
*/
static void
xprt_rdma_destroy(struct rpc_xprt *xprt)
{
struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
cancel_delayed_work_sync(&r_xprt->rx_connect_worker);
rpcrdma_xprt_disconnect(r_xprt);
rpcrdma_buffer_destroy(&r_xprt->rx_buf);
xprt_rdma_free_addresses(xprt);
xprt_free(xprt);
module_put(THIS_MODULE);
}
/* 60 second timeout, no retries */
static const struct rpc_timeout xprt_rdma_default_timeout = {
.to_initval = 60 * HZ,
.to_maxval = 60 * HZ,
};
/**
* xprt_setup_rdma - Set up transport to use RDMA
*
* @args: rpc transport arguments
*/
static struct rpc_xprt *
xprt_setup_rdma(struct xprt_create *args)
{
struct rpc_xprt *xprt;
struct rpcrdma_xprt *new_xprt;
struct sockaddr *sap;
int rc;
if (args->addrlen > sizeof(xprt->addr))
return ERR_PTR(-EBADF);
if (!try_module_get(THIS_MODULE))
return ERR_PTR(-EIO);
xprt = xprt_alloc(args->net, sizeof(struct rpcrdma_xprt), 0,
xprt_rdma_slot_table_entries);
if (!xprt) {
module_put(THIS_MODULE);
return ERR_PTR(-ENOMEM);
}
xprt->timeout = &xprt_rdma_default_timeout;
xprt->connect_timeout = xprt->timeout->to_initval;
xprt->max_reconnect_timeout = xprt->timeout->to_maxval;
xprt->bind_timeout = RPCRDMA_BIND_TO;
xprt->reestablish_timeout = RPCRDMA_INIT_REEST_TO;
xprt->idle_timeout = RPCRDMA_IDLE_DISC_TO;
xprt->resvport = 0; /* privileged port not needed */
xprt->ops = &xprt_rdma_procs;
/*
* Set up RDMA-specific connect data.
*/
sap = args->dstaddr;
/* Ensure xprt->addr holds valid server TCP (not RDMA)
* address, for any side protocols which peek at it */
xprt->prot = IPPROTO_TCP;
xprt->xprt_class = &xprt_rdma;
xprt->addrlen = args->addrlen;
memcpy(&xprt->addr, sap, xprt->addrlen);
if (rpc_get_port(sap))
xprt_set_bound(xprt);
xprt_rdma_format_addresses(xprt, sap);
new_xprt = rpcx_to_rdmax(xprt);
rc = rpcrdma_buffer_create(new_xprt);
if (rc) {
xprt_rdma_free_addresses(xprt);
xprt_free(xprt);
module_put(THIS_MODULE);
return ERR_PTR(rc);
}
INIT_DELAYED_WORK(&new_xprt->rx_connect_worker,
xprt_rdma_connect_worker);
xprt->max_payload = RPCRDMA_MAX_DATA_SEGS << PAGE_SHIFT;
return xprt;
}
/**
* xprt_rdma_close - close a transport connection
* @xprt: transport context
*
* Called during autoclose or device removal.
*
* Caller holds @xprt's send lock to prevent activity on this
* transport while the connection is torn down.
*/
void xprt_rdma_close(struct rpc_xprt *xprt)
{
struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
rpcrdma_xprt_disconnect(r_xprt);
xprt->reestablish_timeout = 0;
++xprt->connect_cookie;
xprt_disconnect_done(xprt);
}
/**
* xprt_rdma_set_port - update server port with rpcbind result
* @xprt: controlling RPC transport
* @port: new port value
*
* Transport connect status is unchanged.
*/
static void
xprt_rdma_set_port(struct rpc_xprt *xprt, u16 port)
{
struct sockaddr *sap = (struct sockaddr *)&xprt->addr;
char buf[8];
rpc_set_port(sap, port);
kfree(xprt->address_strings[RPC_DISPLAY_PORT]);
snprintf(buf, sizeof(buf), "%u", port);
xprt->address_strings[RPC_DISPLAY_PORT] = kstrdup(buf, GFP_KERNEL);
kfree(xprt->address_strings[RPC_DISPLAY_HEX_PORT]);
snprintf(buf, sizeof(buf), "%4hx", port);
xprt->address_strings[RPC_DISPLAY_HEX_PORT] = kstrdup(buf, GFP_KERNEL);
}
/**
* xprt_rdma_timer - invoked when an RPC times out
* @xprt: controlling RPC transport
* @task: RPC task that timed out
*
* Invoked when the transport is still connected, but an RPC
* retransmit timeout occurs.
*
* Since RDMA connections don't have a keep-alive, forcibly
* disconnect and retry to connect. This drives full
* detection of the network path, and retransmissions of
* all pending RPCs.
*/
static void
xprt_rdma_timer(struct rpc_xprt *xprt, struct rpc_task *task)
{
xprt_force_disconnect(xprt);
}
/**
* xprt_rdma_set_connect_timeout - set timeouts for establishing a connection
* @xprt: controlling transport instance
* @connect_timeout: reconnect timeout after client disconnects
* @reconnect_timeout: reconnect timeout after server disconnects
*
*/
static void xprt_rdma_set_connect_timeout(struct rpc_xprt *xprt,
unsigned long connect_timeout,
unsigned long reconnect_timeout)
{
struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
trace_xprtrdma_op_set_cto(r_xprt, connect_timeout, reconnect_timeout);
spin_lock(&xprt->transport_lock);
if (connect_timeout < xprt->connect_timeout) {
struct rpc_timeout to;
unsigned long initval;
to = *xprt->timeout;
initval = connect_timeout;
if (initval < RPCRDMA_INIT_REEST_TO << 1)
initval = RPCRDMA_INIT_REEST_TO << 1;
to.to_initval = initval;
to.to_maxval = initval;
r_xprt->rx_timeout = to;
xprt->timeout = &r_xprt->rx_timeout;
xprt->connect_timeout = connect_timeout;
}
if (reconnect_timeout < xprt->max_reconnect_timeout)
xprt->max_reconnect_timeout = reconnect_timeout;
spin_unlock(&xprt->transport_lock);
}
/**
* xprt_rdma_connect - schedule an attempt to reconnect
* @xprt: transport state
* @task: RPC scheduler context (unused)
*
*/
static void
xprt_rdma_connect(struct rpc_xprt *xprt, struct rpc_task *task)
{
struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
struct rpcrdma_ep *ep = r_xprt->rx_ep;
unsigned long delay;
WARN_ON_ONCE(!xprt_lock_connect(xprt, task, r_xprt));
delay = 0;
if (ep && ep->re_connect_status != 0) {
delay = xprt_reconnect_delay(xprt);
xprt_reconnect_backoff(xprt, RPCRDMA_INIT_REEST_TO);
}
trace_xprtrdma_op_connect(r_xprt, delay);
queue_delayed_work(system_long_wq, &r_xprt->rx_connect_worker, delay);
}
/**
* xprt_rdma_alloc_slot - allocate an rpc_rqst
* @xprt: controlling RPC transport
* @task: RPC task requesting a fresh rpc_rqst
*
* tk_status values:
* %0 if task->tk_rqstp points to a fresh rpc_rqst
* %-EAGAIN if no rpc_rqst is available; queued on backlog
*/
static void
xprt_rdma_alloc_slot(struct rpc_xprt *xprt, struct rpc_task *task)
{
struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
struct rpcrdma_req *req;
req = rpcrdma_buffer_get(&r_xprt->rx_buf);
if (!req)
goto out_sleep;
task->tk_rqstp = &req->rl_slot;
task->tk_status = 0;
return;
out_sleep:
task->tk_status = -ENOMEM;
xprt_add_backlog(xprt, task);
}
/**
* xprt_rdma_free_slot - release an rpc_rqst
* @xprt: controlling RPC transport
* @rqst: rpc_rqst to release
*
*/
static void
xprt_rdma_free_slot(struct rpc_xprt *xprt, struct rpc_rqst *rqst)
{
struct rpcrdma_xprt *r_xprt =
container_of(xprt, struct rpcrdma_xprt, rx_xprt);
rpcrdma_reply_put(&r_xprt->rx_buf, rpcr_to_rdmar(rqst));
if (!xprt_wake_up_backlog(xprt, rqst)) {
memset(rqst, 0, sizeof(*rqst));
rpcrdma_buffer_put(&r_xprt->rx_buf, rpcr_to_rdmar(rqst));
}
}
static bool rpcrdma_check_regbuf(struct rpcrdma_xprt *r_xprt,
struct rpcrdma_regbuf *rb, size_t size,
gfp_t flags)
{
if (unlikely(rdmab_length(rb) < size)) {
if (!rpcrdma_regbuf_realloc(rb, size, flags))
return false;
r_xprt->rx_stats.hardway_register_count += size;
}
return true;
}
/**
* xprt_rdma_allocate - allocate transport resources for an RPC
* @task: RPC task
*
* Return values:
* 0: Success; rq_buffer points to RPC buffer to use
* ENOMEM: Out of memory, call again later
* EIO: A permanent error occurred, do not retry
*/
static int
xprt_rdma_allocate(struct rpc_task *task)
{
struct rpc_rqst *rqst = task->tk_rqstp;
struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(rqst->rq_xprt);
struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
gfp_t flags = rpc_task_gfp_mask();
if (!rpcrdma_check_regbuf(r_xprt, req->rl_sendbuf, rqst->rq_callsize,
flags))
goto out_fail;
if (!rpcrdma_check_regbuf(r_xprt, req->rl_recvbuf, rqst->rq_rcvsize,
flags))
goto out_fail;
rqst->rq_buffer = rdmab_data(req->rl_sendbuf);
rqst->rq_rbuffer = rdmab_data(req->rl_recvbuf);
return 0;
out_fail:
return -ENOMEM;
}
/**
* xprt_rdma_free - release resources allocated by xprt_rdma_allocate
* @task: RPC task
*
* Caller guarantees rqst->rq_buffer is non-NULL.
*/
static void
xprt_rdma_free(struct rpc_task *task)
{
struct rpc_rqst *rqst = task->tk_rqstp;
struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
if (unlikely(!list_empty(&req->rl_registered))) {
trace_xprtrdma_mrs_zap(task);
frwr_unmap_sync(rpcx_to_rdmax(rqst->rq_xprt), req);
}
/* XXX: If the RPC is completing because of a signal and
* not because a reply was received, we ought to ensure
* that the Send completion has fired, so that memory
* involved with the Send is not still visible to the NIC.
*/
}
/**
* xprt_rdma_send_request - marshal and send an RPC request
* @rqst: RPC message in rq_snd_buf
*
* Caller holds the transport's write lock.
*
* Returns:
* %0 if the RPC message has been sent
* %-ENOTCONN if the caller should reconnect and call again
* %-EAGAIN if the caller should call again
* %-ENOBUFS if the caller should call again after a delay
* %-EMSGSIZE if encoding ran out of buffer space. The request
* was not sent. Do not try to send this message again.
* %-EIO if an I/O error occurred. The request was not sent.
* Do not try to send this message again.
*/
static int
xprt_rdma_send_request(struct rpc_rqst *rqst)
{
struct rpc_xprt *xprt = rqst->rq_xprt;
struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
int rc = 0;
#if defined(CONFIG_SUNRPC_BACKCHANNEL)
if (unlikely(!rqst->rq_buffer))
return xprt_rdma_bc_send_reply(rqst);
#endif /* CONFIG_SUNRPC_BACKCHANNEL */
if (!xprt_connected(xprt))
return -ENOTCONN;
if (!xprt_request_get_cong(xprt, rqst))
return -EBADSLT;
rc = rpcrdma_marshal_req(r_xprt, rqst);
if (rc < 0)
goto failed_marshal;
/* Must suppress retransmit to maintain credits */
if (rqst->rq_connect_cookie == xprt->connect_cookie)
goto drop_connection;
rqst->rq_xtime = ktime_get();
if (frwr_send(r_xprt, req))
goto drop_connection;
rqst->rq_xmit_bytes_sent += rqst->rq_snd_buf.len;
/* An RPC with no reply will throw off credit accounting,
* so drop the connection to reset the credit grant.
*/
if (!rpc_reply_expected(rqst->rq_task))
goto drop_connection;
return 0;
failed_marshal:
if (rc != -ENOTCONN)
return rc;
drop_connection:
xprt_rdma_close(xprt);
return -ENOTCONN;
}
void xprt_rdma_print_stats(struct rpc_xprt *xprt, struct seq_file *seq)
{
struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
long idle_time = 0;
if (xprt_connected(xprt))
idle_time = (long)(jiffies - xprt->last_used) / HZ;
seq_puts(seq, "\txprt:\trdma ");
seq_printf(seq, "%u %lu %lu %lu %ld %lu %lu %lu %llu %llu ",
0, /* need a local port? */
xprt->stat.bind_count,
xprt->stat.connect_count,
xprt->stat.connect_time / HZ,
idle_time,
xprt->stat.sends,
xprt->stat.recvs,
xprt->stat.bad_xids,
xprt->stat.req_u,
xprt->stat.bklog_u);
seq_printf(seq, "%lu %lu %lu %llu %llu %llu %llu %lu %lu %lu %lu ",
r_xprt->rx_stats.read_chunk_count,
r_xprt->rx_stats.write_chunk_count,
r_xprt->rx_stats.reply_chunk_count,
r_xprt->rx_stats.total_rdma_request,
r_xprt->rx_stats.total_rdma_reply,
r_xprt->rx_stats.pullup_copy_count,
r_xprt->rx_stats.fixup_copy_count,
r_xprt->rx_stats.hardway_register_count,
r_xprt->rx_stats.failed_marshal_count,
r_xprt->rx_stats.bad_reply_count,
r_xprt->rx_stats.nomsg_call_count);
seq_printf(seq, "%lu %lu %lu %lu %lu %lu\n",
r_xprt->rx_stats.mrs_recycled,
r_xprt->rx_stats.mrs_orphaned,
r_xprt->rx_stats.mrs_allocated,
r_xprt->rx_stats.local_inv_needed,
r_xprt->rx_stats.empty_sendctx_q,
r_xprt->rx_stats.reply_waits_for_send);
}
static int
xprt_rdma_enable_swap(struct rpc_xprt *xprt)
{
return 0;
}
static void
xprt_rdma_disable_swap(struct rpc_xprt *xprt)
{
}
/*
* Plumbing for rpc transport switch and kernel module
*/
static const struct rpc_xprt_ops xprt_rdma_procs = {
.reserve_xprt = xprt_reserve_xprt_cong,
.release_xprt = xprt_release_xprt_cong, /* sunrpc/xprt.c */
.alloc_slot = xprt_rdma_alloc_slot,
.free_slot = xprt_rdma_free_slot,
.release_request = xprt_release_rqst_cong, /* ditto */
.wait_for_reply_request = xprt_wait_for_reply_request_def, /* ditto */
.timer = xprt_rdma_timer,
.rpcbind = rpcb_getport_async, /* sunrpc/rpcb_clnt.c */
.set_port = xprt_rdma_set_port,
.connect = xprt_rdma_connect,
.buf_alloc = xprt_rdma_allocate,
.buf_free = xprt_rdma_free,
.send_request = xprt_rdma_send_request,
.close = xprt_rdma_close,
.destroy = xprt_rdma_destroy,
.set_connect_timeout = xprt_rdma_set_connect_timeout,
.print_stats = xprt_rdma_print_stats,
.enable_swap = xprt_rdma_enable_swap,
.disable_swap = xprt_rdma_disable_swap,
.inject_disconnect = xprt_rdma_inject_disconnect,
#if defined(CONFIG_SUNRPC_BACKCHANNEL)
.bc_setup = xprt_rdma_bc_setup,
.bc_maxpayload = xprt_rdma_bc_maxpayload,
.bc_num_slots = xprt_rdma_bc_max_slots,
.bc_free_rqst = xprt_rdma_bc_free_rqst,
.bc_destroy = xprt_rdma_bc_destroy,
#endif
};
static struct xprt_class xprt_rdma = {
.list = LIST_HEAD_INIT(xprt_rdma.list),
.name = "rdma",
.owner = THIS_MODULE,
.ident = XPRT_TRANSPORT_RDMA,
.setup = xprt_setup_rdma,
.netid = { "rdma", "rdma6", "" },
};
void xprt_rdma_cleanup(void)
{
#if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
if (sunrpc_table_header) {
unregister_sysctl_table(sunrpc_table_header);
sunrpc_table_header = NULL;
}
#endif
xprt_unregister_transport(&xprt_rdma);
xprt_unregister_transport(&xprt_rdma_bc);
}
int xprt_rdma_init(void)
{
int rc;
rc = xprt_register_transport(&xprt_rdma);
if (rc)
return rc;
rc = xprt_register_transport(&xprt_rdma_bc);
if (rc) {
xprt_unregister_transport(&xprt_rdma);
return rc;
}
#if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
if (!sunrpc_table_header)
sunrpc_table_header = register_sysctl_table(sunrpc_table);
#endif
return 0;
}