233 lines
5.2 KiB
C
233 lines
5.2 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* multiorder.c: Multi-order radix tree entry testing
|
|
* Copyright (c) 2016 Intel Corporation
|
|
* Author: Ross Zwisler <ross.zwisler@linux.intel.com>
|
|
* Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
|
|
*/
|
|
#include <linux/radix-tree.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/errno.h>
|
|
#include <pthread.h>
|
|
|
|
#include "test.h"
|
|
|
|
static int item_insert_order(struct xarray *xa, unsigned long index,
|
|
unsigned order)
|
|
{
|
|
XA_STATE_ORDER(xas, xa, index, order);
|
|
struct item *item = item_create(index, order);
|
|
|
|
do {
|
|
xas_lock(&xas);
|
|
xas_store(&xas, item);
|
|
xas_unlock(&xas);
|
|
} while (xas_nomem(&xas, GFP_KERNEL));
|
|
|
|
if (!xas_error(&xas))
|
|
return 0;
|
|
|
|
free(item);
|
|
return xas_error(&xas);
|
|
}
|
|
|
|
void multiorder_iteration(struct xarray *xa)
|
|
{
|
|
XA_STATE(xas, xa, 0);
|
|
struct item *item;
|
|
int i, j, err;
|
|
|
|
#define NUM_ENTRIES 11
|
|
int index[NUM_ENTRIES] = {0, 2, 4, 8, 16, 32, 34, 36, 64, 72, 128};
|
|
int order[NUM_ENTRIES] = {1, 1, 2, 3, 4, 1, 0, 1, 3, 0, 7};
|
|
|
|
printv(1, "Multiorder iteration test\n");
|
|
|
|
for (i = 0; i < NUM_ENTRIES; i++) {
|
|
err = item_insert_order(xa, index[i], order[i]);
|
|
assert(!err);
|
|
}
|
|
|
|
for (j = 0; j < 256; j++) {
|
|
for (i = 0; i < NUM_ENTRIES; i++)
|
|
if (j <= (index[i] | ((1 << order[i]) - 1)))
|
|
break;
|
|
|
|
xas_set(&xas, j);
|
|
xas_for_each(&xas, item, ULONG_MAX) {
|
|
int height = order[i] / XA_CHUNK_SHIFT;
|
|
int shift = height * XA_CHUNK_SHIFT;
|
|
unsigned long mask = (1UL << order[i]) - 1;
|
|
|
|
assert((xas.xa_index | mask) == (index[i] | mask));
|
|
assert(xas.xa_node->shift == shift);
|
|
assert(!radix_tree_is_internal_node(item));
|
|
assert((item->index | mask) == (index[i] | mask));
|
|
assert(item->order == order[i]);
|
|
i++;
|
|
}
|
|
}
|
|
|
|
item_kill_tree(xa);
|
|
}
|
|
|
|
void multiorder_tagged_iteration(struct xarray *xa)
|
|
{
|
|
XA_STATE(xas, xa, 0);
|
|
struct item *item;
|
|
int i, j;
|
|
|
|
#define MT_NUM_ENTRIES 9
|
|
int index[MT_NUM_ENTRIES] = {0, 2, 4, 16, 32, 40, 64, 72, 128};
|
|
int order[MT_NUM_ENTRIES] = {1, 0, 2, 4, 3, 1, 3, 0, 7};
|
|
|
|
#define TAG_ENTRIES 7
|
|
int tag_index[TAG_ENTRIES] = {0, 4, 16, 40, 64, 72, 128};
|
|
|
|
printv(1, "Multiorder tagged iteration test\n");
|
|
|
|
for (i = 0; i < MT_NUM_ENTRIES; i++)
|
|
assert(!item_insert_order(xa, index[i], order[i]));
|
|
|
|
assert(!xa_marked(xa, XA_MARK_1));
|
|
|
|
for (i = 0; i < TAG_ENTRIES; i++)
|
|
xa_set_mark(xa, tag_index[i], XA_MARK_1);
|
|
|
|
for (j = 0; j < 256; j++) {
|
|
int k;
|
|
|
|
for (i = 0; i < TAG_ENTRIES; i++) {
|
|
for (k = i; index[k] < tag_index[i]; k++)
|
|
;
|
|
if (j <= (index[k] | ((1 << order[k]) - 1)))
|
|
break;
|
|
}
|
|
|
|
xas_set(&xas, j);
|
|
xas_for_each_marked(&xas, item, ULONG_MAX, XA_MARK_1) {
|
|
unsigned long mask;
|
|
for (k = i; index[k] < tag_index[i]; k++)
|
|
;
|
|
mask = (1UL << order[k]) - 1;
|
|
|
|
assert((xas.xa_index | mask) == (tag_index[i] | mask));
|
|
assert(!xa_is_internal(item));
|
|
assert((item->index | mask) == (tag_index[i] | mask));
|
|
assert(item->order == order[k]);
|
|
i++;
|
|
}
|
|
}
|
|
|
|
assert(tag_tagged_items(xa, 0, ULONG_MAX, TAG_ENTRIES, XA_MARK_1,
|
|
XA_MARK_2) == TAG_ENTRIES);
|
|
|
|
for (j = 0; j < 256; j++) {
|
|
int mask, k;
|
|
|
|
for (i = 0; i < TAG_ENTRIES; i++) {
|
|
for (k = i; index[k] < tag_index[i]; k++)
|
|
;
|
|
if (j <= (index[k] | ((1 << order[k]) - 1)))
|
|
break;
|
|
}
|
|
|
|
xas_set(&xas, j);
|
|
xas_for_each_marked(&xas, item, ULONG_MAX, XA_MARK_2) {
|
|
for (k = i; index[k] < tag_index[i]; k++)
|
|
;
|
|
mask = (1 << order[k]) - 1;
|
|
|
|
assert((xas.xa_index | mask) == (tag_index[i] | mask));
|
|
assert(!xa_is_internal(item));
|
|
assert((item->index | mask) == (tag_index[i] | mask));
|
|
assert(item->order == order[k]);
|
|
i++;
|
|
}
|
|
}
|
|
|
|
assert(tag_tagged_items(xa, 1, ULONG_MAX, MT_NUM_ENTRIES * 2, XA_MARK_1,
|
|
XA_MARK_0) == TAG_ENTRIES);
|
|
i = 0;
|
|
xas_set(&xas, 0);
|
|
xas_for_each_marked(&xas, item, ULONG_MAX, XA_MARK_0) {
|
|
assert(xas.xa_index == tag_index[i]);
|
|
i++;
|
|
}
|
|
assert(i == TAG_ENTRIES);
|
|
|
|
item_kill_tree(xa);
|
|
}
|
|
|
|
bool stop_iteration = false;
|
|
|
|
static void *creator_func(void *ptr)
|
|
{
|
|
/* 'order' is set up to ensure we have sibling entries */
|
|
unsigned int order = RADIX_TREE_MAP_SHIFT - 1;
|
|
struct radix_tree_root *tree = ptr;
|
|
int i;
|
|
|
|
for (i = 0; i < 10000; i++) {
|
|
item_insert_order(tree, 0, order);
|
|
item_delete_rcu(tree, 0);
|
|
}
|
|
|
|
stop_iteration = true;
|
|
return NULL;
|
|
}
|
|
|
|
static void *iterator_func(void *ptr)
|
|
{
|
|
XA_STATE(xas, ptr, 0);
|
|
struct item *item;
|
|
|
|
while (!stop_iteration) {
|
|
rcu_read_lock();
|
|
xas_for_each(&xas, item, ULONG_MAX) {
|
|
if (xas_retry(&xas, item))
|
|
continue;
|
|
|
|
item_sanity(item, xas.xa_index);
|
|
}
|
|
rcu_read_unlock();
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static void multiorder_iteration_race(struct xarray *xa)
|
|
{
|
|
const int num_threads = sysconf(_SC_NPROCESSORS_ONLN);
|
|
pthread_t worker_thread[num_threads];
|
|
int i;
|
|
|
|
pthread_create(&worker_thread[0], NULL, &creator_func, xa);
|
|
for (i = 1; i < num_threads; i++)
|
|
pthread_create(&worker_thread[i], NULL, &iterator_func, xa);
|
|
|
|
for (i = 0; i < num_threads; i++)
|
|
pthread_join(worker_thread[i], NULL);
|
|
|
|
item_kill_tree(xa);
|
|
}
|
|
|
|
static DEFINE_XARRAY(array);
|
|
|
|
void multiorder_checks(void)
|
|
{
|
|
multiorder_iteration(&array);
|
|
multiorder_tagged_iteration(&array);
|
|
multiorder_iteration_race(&array);
|
|
|
|
radix_tree_cpu_dead(0);
|
|
}
|
|
|
|
int __weak main(void)
|
|
{
|
|
rcu_register_thread();
|
|
radix_tree_init();
|
|
multiorder_checks();
|
|
rcu_unregister_thread();
|
|
return 0;
|
|
}
|