2023-08-30 17:31:07 +02:00
|
|
|
// SPDX-License-Identifier: MIT
|
|
|
|
/*
|
|
|
|
* Copyright © 2014-2019 Intel Corporation
|
|
|
|
*
|
|
|
|
* Authors:
|
|
|
|
* Vinit Azad <vinit.azad@intel.com>
|
|
|
|
* Ben Widawsky <ben@bwidawsk.net>
|
|
|
|
* Dave Gordon <david.s.gordon@intel.com>
|
|
|
|
* Alex Dai <yu.dai@intel.com>
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "gt/intel_gt.h"
|
|
|
|
#include "gt/intel_gt_mcr.h"
|
|
|
|
#include "gt/intel_gt_regs.h"
|
2023-10-24 12:59:35 +02:00
|
|
|
#include "gt/intel_rps.h"
|
2023-08-30 17:31:07 +02:00
|
|
|
#include "intel_guc_fw.h"
|
|
|
|
#include "intel_guc_print.h"
|
|
|
|
#include "i915_drv.h"
|
|
|
|
|
|
|
|
static void guc_prepare_xfer(struct intel_gt *gt)
|
|
|
|
{
|
|
|
|
struct intel_uncore *uncore = gt->uncore;
|
|
|
|
|
|
|
|
u32 shim_flags = GUC_ENABLE_READ_CACHE_LOGIC |
|
|
|
|
GUC_ENABLE_READ_CACHE_FOR_SRAM_DATA |
|
|
|
|
GUC_ENABLE_READ_CACHE_FOR_WOPCM_DATA |
|
|
|
|
GUC_ENABLE_MIA_CLOCK_GATING;
|
|
|
|
|
|
|
|
if (GRAPHICS_VER_FULL(uncore->i915) < IP_VER(12, 50))
|
|
|
|
shim_flags |= GUC_DISABLE_SRAM_INIT_TO_ZEROES |
|
|
|
|
GUC_ENABLE_MIA_CACHING;
|
|
|
|
|
|
|
|
/* Must program this register before loading the ucode with DMA */
|
|
|
|
intel_uncore_write(uncore, GUC_SHIM_CONTROL, shim_flags);
|
|
|
|
|
|
|
|
if (IS_GEN9_LP(uncore->i915))
|
|
|
|
intel_uncore_write(uncore, GEN9LP_GT_PM_CONFIG, GT_DOORBELL_ENABLE);
|
|
|
|
else
|
|
|
|
intel_uncore_write(uncore, GEN9_GT_PM_CONFIG, GT_DOORBELL_ENABLE);
|
|
|
|
|
|
|
|
if (GRAPHICS_VER(uncore->i915) == 9) {
|
|
|
|
/* DOP Clock Gating Enable for GuC clocks */
|
|
|
|
intel_uncore_rmw(uncore, GEN7_MISCCPCTL, 0,
|
|
|
|
GEN8_DOP_CLOCK_GATE_GUC_ENABLE);
|
|
|
|
|
|
|
|
/* allows for 5us (in 10ns units) before GT can go to RC6 */
|
|
|
|
intel_uncore_write(uncore, GUC_ARAT_C6DIS, 0x1FF);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static int guc_xfer_rsa_mmio(struct intel_uc_fw *guc_fw,
|
|
|
|
struct intel_uncore *uncore)
|
|
|
|
{
|
|
|
|
u32 rsa[UOS_RSA_SCRATCH_COUNT];
|
|
|
|
size_t copied;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
copied = intel_uc_fw_copy_rsa(guc_fw, rsa, sizeof(rsa));
|
|
|
|
if (copied < sizeof(rsa))
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
for (i = 0; i < UOS_RSA_SCRATCH_COUNT; i++)
|
|
|
|
intel_uncore_write(uncore, UOS_RSA_SCRATCH(i), rsa[i]);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int guc_xfer_rsa_vma(struct intel_uc_fw *guc_fw,
|
|
|
|
struct intel_uncore *uncore)
|
|
|
|
{
|
|
|
|
struct intel_guc *guc = container_of(guc_fw, struct intel_guc, fw);
|
|
|
|
|
|
|
|
intel_uncore_write(uncore, UOS_RSA_SCRATCH(0),
|
|
|
|
intel_guc_ggtt_offset(guc, guc_fw->rsa_data));
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Copy RSA signature from the fw image to HW for verification */
|
|
|
|
static int guc_xfer_rsa(struct intel_uc_fw *guc_fw,
|
|
|
|
struct intel_uncore *uncore)
|
|
|
|
{
|
|
|
|
if (guc_fw->rsa_data)
|
|
|
|
return guc_xfer_rsa_vma(guc_fw, uncore);
|
|
|
|
else
|
|
|
|
return guc_xfer_rsa_mmio(guc_fw, uncore);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Read the GuC status register (GUC_STATUS) and store it in the
|
|
|
|
* specified location; then return a boolean indicating whether
|
2023-10-24 12:59:35 +02:00
|
|
|
* the value matches either completion or a known failure code.
|
2023-08-30 17:31:07 +02:00
|
|
|
*
|
|
|
|
* This is used for polling the GuC status in a wait_for()
|
|
|
|
* loop below.
|
|
|
|
*/
|
2023-10-24 12:59:35 +02:00
|
|
|
static inline bool guc_load_done(struct intel_uncore *uncore, u32 *status, bool *success)
|
2023-08-30 17:31:07 +02:00
|
|
|
{
|
|
|
|
u32 val = intel_uncore_read(uncore, GUC_STATUS);
|
|
|
|
u32 uk_val = REG_FIELD_GET(GS_UKERNEL_MASK, val);
|
2023-10-24 12:59:35 +02:00
|
|
|
u32 br_val = REG_FIELD_GET(GS_BOOTROM_MASK, val);
|
2023-08-30 17:31:07 +02:00
|
|
|
|
|
|
|
*status = val;
|
2023-10-24 12:59:35 +02:00
|
|
|
switch (uk_val) {
|
|
|
|
case INTEL_GUC_LOAD_STATUS_READY:
|
|
|
|
*success = true;
|
|
|
|
return true;
|
|
|
|
|
|
|
|
case INTEL_GUC_LOAD_STATUS_ERROR_DEVID_BUILD_MISMATCH:
|
|
|
|
case INTEL_GUC_LOAD_STATUS_GUC_PREPROD_BUILD_MISMATCH:
|
|
|
|
case INTEL_GUC_LOAD_STATUS_ERROR_DEVID_INVALID_GUCTYPE:
|
|
|
|
case INTEL_GUC_LOAD_STATUS_HWCONFIG_ERROR:
|
|
|
|
case INTEL_GUC_LOAD_STATUS_DPC_ERROR:
|
|
|
|
case INTEL_GUC_LOAD_STATUS_EXCEPTION:
|
|
|
|
case INTEL_GUC_LOAD_STATUS_INIT_DATA_INVALID:
|
|
|
|
case INTEL_GUC_LOAD_STATUS_MPU_DATA_INVALID:
|
|
|
|
case INTEL_GUC_LOAD_STATUS_INIT_MMIO_SAVE_RESTORE_INVALID:
|
|
|
|
*success = false;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
switch (br_val) {
|
|
|
|
case INTEL_BOOTROM_STATUS_NO_KEY_FOUND:
|
|
|
|
case INTEL_BOOTROM_STATUS_RSA_FAILED:
|
|
|
|
case INTEL_BOOTROM_STATUS_PAVPC_FAILED:
|
|
|
|
case INTEL_BOOTROM_STATUS_WOPCM_FAILED:
|
|
|
|
case INTEL_BOOTROM_STATUS_LOADLOC_FAILED:
|
|
|
|
case INTEL_BOOTROM_STATUS_JUMP_FAILED:
|
|
|
|
case INTEL_BOOTROM_STATUS_RC6CTXCONFIG_FAILED:
|
|
|
|
case INTEL_BOOTROM_STATUS_MPUMAP_INCORRECT:
|
|
|
|
case INTEL_BOOTROM_STATUS_EXCEPTION:
|
|
|
|
case INTEL_BOOTROM_STATUS_PROD_KEY_CHECK_FAILURE:
|
|
|
|
*success = false;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
return false;
|
2023-08-30 17:31:07 +02:00
|
|
|
}
|
|
|
|
|
2023-10-24 12:59:35 +02:00
|
|
|
/*
|
|
|
|
* Use a longer timeout for debug builds so that problems can be detected
|
|
|
|
* and analysed. But a shorter timeout for releases so that user's don't
|
|
|
|
* wait forever to find out there is a problem. Note that the only reason
|
|
|
|
* an end user should hit the timeout is in case of extreme thermal throttling.
|
|
|
|
* And a system that is that hot during boot is probably dead anyway!
|
|
|
|
*/
|
|
|
|
#if defined(CONFIG_DRM_I915_DEBUG_GEM)
|
|
|
|
#define GUC_LOAD_RETRY_LIMIT 20
|
|
|
|
#else
|
|
|
|
#define GUC_LOAD_RETRY_LIMIT 3
|
|
|
|
#endif
|
|
|
|
|
2023-08-30 17:31:07 +02:00
|
|
|
static int guc_wait_ucode(struct intel_guc *guc)
|
|
|
|
{
|
|
|
|
struct intel_gt *gt = guc_to_gt(guc);
|
|
|
|
struct intel_uncore *uncore = gt->uncore;
|
2023-10-24 12:59:35 +02:00
|
|
|
ktime_t before, after, delta;
|
|
|
|
bool success;
|
2023-08-30 17:31:07 +02:00
|
|
|
u32 status;
|
2023-10-24 12:59:35 +02:00
|
|
|
int ret, count;
|
|
|
|
u64 delta_ms;
|
|
|
|
u32 before_freq;
|
2023-08-30 17:31:07 +02:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Wait for the GuC to start up.
|
2023-10-24 12:59:35 +02:00
|
|
|
*
|
2023-08-30 17:31:07 +02:00
|
|
|
* Measurements indicate this should take no more than 20ms
|
|
|
|
* (assuming the GT clock is at maximum frequency). So, a
|
|
|
|
* timeout here indicates that the GuC has failed and is unusable.
|
|
|
|
* (Higher levels of the driver may decide to reset the GuC and
|
|
|
|
* attempt the ucode load again if this happens.)
|
|
|
|
*
|
|
|
|
* FIXME: There is a known (but exceedingly unlikely) race condition
|
|
|
|
* where the asynchronous frequency management code could reduce
|
|
|
|
* the GT clock while a GuC reload is in progress (during a full
|
|
|
|
* GT reset). A fix is in progress but there are complex locking
|
|
|
|
* issues to be resolved. In the meantime bump the timeout to
|
|
|
|
* 200ms. Even at slowest clock, this should be sufficient. And
|
|
|
|
* in the working case, a larger timeout makes no difference.
|
2023-10-24 12:59:35 +02:00
|
|
|
*
|
|
|
|
* IFWI updates have also been seen to cause sporadic failures due to
|
|
|
|
* the requested frequency not being granted and thus the firmware
|
|
|
|
* load is attempted at minimum frequency. That can lead to load times
|
|
|
|
* in the seconds range. However, there is a limit on how long an
|
|
|
|
* individual wait_for() can wait. So wrap it in a loop.
|
2023-08-30 17:31:07 +02:00
|
|
|
*/
|
2023-10-24 12:59:35 +02:00
|
|
|
before_freq = intel_rps_read_actual_frequency(&uncore->gt->rps);
|
|
|
|
before = ktime_get();
|
|
|
|
for (count = 0; count < GUC_LOAD_RETRY_LIMIT; count++) {
|
|
|
|
ret = wait_for(guc_load_done(uncore, &status, &success), 1000);
|
|
|
|
if (!ret || !success)
|
|
|
|
break;
|
|
|
|
|
|
|
|
guc_dbg(guc, "load still in progress, count = %d, freq = %dMHz, status = 0x%08X [0x%02X/%02X]\n",
|
|
|
|
count, intel_rps_read_actual_frequency(&uncore->gt->rps), status,
|
2023-08-30 17:31:07 +02:00
|
|
|
REG_FIELD_GET(GS_BOOTROM_MASK, status),
|
2023-10-24 12:59:35 +02:00
|
|
|
REG_FIELD_GET(GS_UKERNEL_MASK, status));
|
|
|
|
}
|
|
|
|
after = ktime_get();
|
|
|
|
delta = ktime_sub(after, before);
|
|
|
|
delta_ms = ktime_to_ms(delta);
|
|
|
|
if (ret || !success) {
|
|
|
|
u32 ukernel = REG_FIELD_GET(GS_UKERNEL_MASK, status);
|
|
|
|
u32 bootrom = REG_FIELD_GET(GS_BOOTROM_MASK, status);
|
|
|
|
|
|
|
|
guc_info(guc, "load failed: status = 0x%08X, time = %lldms, freq = %dMHz, ret = %d\n",
|
|
|
|
status, delta_ms, intel_rps_read_actual_frequency(&uncore->gt->rps), ret);
|
|
|
|
guc_info(guc, "load failed: status: Reset = %d, BootROM = 0x%02X, UKernel = 0x%02X, MIA = 0x%02X, Auth = 0x%02X\n",
|
|
|
|
REG_FIELD_GET(GS_MIA_IN_RESET, status),
|
|
|
|
bootrom, ukernel,
|
|
|
|
REG_FIELD_GET(GS_MIA_MASK, status),
|
|
|
|
REG_FIELD_GET(GS_AUTH_STATUS_MASK, status));
|
2023-08-30 17:31:07 +02:00
|
|
|
|
2023-10-24 12:59:35 +02:00
|
|
|
switch (bootrom) {
|
|
|
|
case INTEL_BOOTROM_STATUS_NO_KEY_FOUND:
|
|
|
|
guc_info(guc, "invalid key requested, header = 0x%08X\n",
|
|
|
|
intel_uncore_read(uncore, GUC_HEADER_INFO));
|
|
|
|
ret = -ENOEXEC;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case INTEL_BOOTROM_STATUS_RSA_FAILED:
|
2023-08-30 17:31:07 +02:00
|
|
|
guc_info(guc, "firmware signature verification failed\n");
|
|
|
|
ret = -ENOEXEC;
|
2023-10-24 12:59:35 +02:00
|
|
|
break;
|
|
|
|
|
|
|
|
case INTEL_BOOTROM_STATUS_PROD_KEY_CHECK_FAILURE:
|
|
|
|
guc_info(guc, "firmware production part check failure\n");
|
|
|
|
ret = -ENOEXEC;
|
|
|
|
break;
|
2023-08-30 17:31:07 +02:00
|
|
|
}
|
|
|
|
|
2023-10-24 12:59:35 +02:00
|
|
|
switch (ukernel) {
|
|
|
|
case INTEL_GUC_LOAD_STATUS_EXCEPTION:
|
2023-08-30 17:31:07 +02:00
|
|
|
guc_info(guc, "firmware exception. EIP: %#x\n",
|
|
|
|
intel_uncore_read(uncore, SOFT_SCRATCH(13)));
|
|
|
|
ret = -ENXIO;
|
2023-10-24 12:59:35 +02:00
|
|
|
break;
|
|
|
|
|
|
|
|
case INTEL_GUC_LOAD_STATUS_INIT_MMIO_SAVE_RESTORE_INVALID:
|
|
|
|
guc_info(guc, "illegal register in save/restore workaround list\n");
|
|
|
|
ret = -EPERM;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case INTEL_GUC_LOAD_STATUS_HWCONFIG_START:
|
|
|
|
guc_info(guc, "still extracting hwconfig table.\n");
|
|
|
|
ret = -ETIMEDOUT;
|
|
|
|
break;
|
2023-08-30 17:31:07 +02:00
|
|
|
}
|
2023-10-24 12:59:35 +02:00
|
|
|
|
|
|
|
/* Uncommon/unexpected error, see earlier status code print for details */
|
|
|
|
if (ret == 0)
|
|
|
|
ret = -ENXIO;
|
|
|
|
} else if (delta_ms > 200) {
|
|
|
|
guc_warn(guc, "excessive init time: %lldms! [freq = %dMHz, before = %dMHz, status = 0x%08X, count = %d, ret = %d]\n",
|
|
|
|
delta_ms, intel_rps_read_actual_frequency(&uncore->gt->rps),
|
|
|
|
before_freq, status, count, ret);
|
|
|
|
} else {
|
|
|
|
guc_dbg(guc, "init took %lldms, freq = %dMHz, before = %dMHz, status = 0x%08X, count = %d, ret = %d\n",
|
|
|
|
delta_ms, intel_rps_read_actual_frequency(&uncore->gt->rps),
|
|
|
|
before_freq, status, count, ret);
|
2023-08-30 17:31:07 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* intel_guc_fw_upload() - load GuC uCode to device
|
|
|
|
* @guc: intel_guc structure
|
|
|
|
*
|
|
|
|
* Called from intel_uc_init_hw() during driver load, resume from sleep and
|
|
|
|
* after a GPU reset.
|
|
|
|
*
|
|
|
|
* The firmware image should have already been fetched into memory, so only
|
|
|
|
* check that fetch succeeded, and then transfer the image to the h/w.
|
|
|
|
*
|
|
|
|
* Return: non-zero code on error
|
|
|
|
*/
|
|
|
|
int intel_guc_fw_upload(struct intel_guc *guc)
|
|
|
|
{
|
|
|
|
struct intel_gt *gt = guc_to_gt(guc);
|
|
|
|
struct intel_uncore *uncore = gt->uncore;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
guc_prepare_xfer(gt);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Note that GuC needs the CSS header plus uKernel code to be copied
|
|
|
|
* by the DMA engine in one operation, whereas the RSA signature is
|
|
|
|
* loaded separately, either by copying it to the UOS_RSA_SCRATCH
|
|
|
|
* register (if key size <= 256) or through a ggtt-pinned vma (if key
|
|
|
|
* size > 256). The RSA size and therefore the way we provide it to the
|
|
|
|
* HW is fixed for each platform and hard-coded in the bootrom.
|
|
|
|
*/
|
|
|
|
ret = guc_xfer_rsa(&guc->fw, uncore);
|
|
|
|
if (ret)
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Current uCode expects the code to be loaded at 8k; locations below
|
|
|
|
* this are used for the stack.
|
|
|
|
*/
|
|
|
|
ret = intel_uc_fw_upload(&guc->fw, 0x2000, UOS_MOVE);
|
|
|
|
if (ret)
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
ret = guc_wait_ucode(guc);
|
|
|
|
if (ret)
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
intel_uc_fw_change_status(&guc->fw, INTEL_UC_FIRMWARE_RUNNING);
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
out:
|
|
|
|
intel_uc_fw_change_status(&guc->fw, INTEL_UC_FIRMWARE_LOAD_FAIL);
|
|
|
|
return ret;
|
|
|
|
}
|