linux-zen-desktop/drivers/gpu/drm/nouveau/nvkm/engine/gr/gv100.c

343 lines
10 KiB
C
Raw Normal View History

2023-08-30 17:31:07 +02:00
/*
* Copyright 2018 Red Hat Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include "gf100.h"
#include "ctxgf100.h"
#include <nvif/class.h>
static void
gv100_gr_trap_sm(struct gf100_gr *gr, int gpc, int tpc, int sm)
{
struct nvkm_subdev *subdev = &gr->base.engine.subdev;
struct nvkm_device *device = subdev->device;
u32 werr = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x730 + (sm * 0x80)));
u32 gerr = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x734 + (sm * 0x80)));
const struct nvkm_enum *warp;
char glob[128];
nvkm_snprintbf(glob, sizeof(glob), gf100_mp_global_error, gerr);
warp = nvkm_enum_find(gf100_mp_warp_error, werr & 0xffff);
nvkm_error(subdev, "GPC%i/TPC%i/SM%d trap: "
"global %08x [%s] warp %04x [%s]\n",
gpc, tpc, sm, gerr, glob, werr, warp ? warp->name : "");
nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x730 + sm * 0x80), 0x00000000);
nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x734 + sm * 0x80), gerr);
}
void
gv100_gr_trap_mp(struct gf100_gr *gr, int gpc, int tpc)
{
gv100_gr_trap_sm(gr, gpc, tpc, 0);
gv100_gr_trap_sm(gr, gpc, tpc, 1);
}
void
gv100_gr_init_4188a4(struct gf100_gr *gr)
{
struct nvkm_device *device = gr->base.engine.subdev.device;
nvkm_mask(device, 0x4188a4, 0x03000000, 0x03000000);
}
void
gv100_gr_init_shader_exceptions(struct gf100_gr *gr, int gpc, int tpc)
{
struct nvkm_device *device = gr->base.engine.subdev.device;
int sm;
for (sm = 0; sm < 0x100; sm += 0x80) {
nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x610), 0x00000001);
nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x72c + sm), 0x00000004);
}
}
void
gv100_gr_init_504430(struct gf100_gr *gr, int gpc, int tpc)
{
struct nvkm_device *device = gr->base.engine.subdev.device;
nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x430), 0x403f0000);
}
void
gv100_gr_init_419bd8(struct gf100_gr *gr)
{
struct nvkm_device *device = gr->base.engine.subdev.device;
nvkm_mask(device, 0x419bd8, 0x00000700, 0x00000000);
}
u32
gv100_gr_nonpes_aware_tpc(struct gf100_gr *gr, u32 gpc, u32 tpc)
{
u32 pes, temp, tpc_new = 0;
for (pes = 0; pes < gr->ppc_nr[gpc]; pes++) {
if (gr->ppc_tpc_mask[gpc][pes] & BIT(tpc))
break;
tpc_new += gr->ppc_tpc_nr[gpc][pes];
}
temp = (BIT(tpc) - 1) & gr->ppc_tpc_mask[gpc][pes];
temp = hweight32(temp);
return tpc_new + temp;
}
static int
gv100_gr_scg_estimate_perf(struct gf100_gr *gr, unsigned long *gpc_tpc_mask,
u32 disable_gpc, u32 disable_tpc, int *perf)
{
const u32 scale_factor = 512UL; /* Use fx23.9 */
const u32 pix_scale = 1024*1024UL; /* Pix perf in [29:20] */
const u32 world_scale = 1024UL; /* World performance in [19:10] */
const u32 tpc_scale = 1; /* TPC balancing in [9:0] */
u32 scg_num_pes = 0;
u32 min_scg_gpc_pix_perf = scale_factor; /* Init perf as maximum */
u32 average_tpcs = 0; /* Average of # of TPCs per GPC */
u32 deviation; /* absolute diff between TPC# and average_tpcs, averaged across GPCs */
u32 norm_tpc_deviation; /* deviation/max_tpc_per_gpc */
u32 tpc_balance;
u32 scg_gpc_pix_perf;
u32 scg_world_perf;
u32 gpc;
u32 pes;
int diff;
bool tpc_removed_gpc = false;
bool tpc_removed_pes = false;
u32 max_tpc_gpc = 0;
u32 num_tpc_mask;
u32 *num_tpc_gpc;
int ret = -EINVAL;
if (!(num_tpc_gpc = kcalloc(gr->gpc_nr, sizeof(*num_tpc_gpc), GFP_KERNEL)))
return -ENOMEM;
/* Calculate pix-perf-reduction-rate per GPC and find bottleneck TPC */
for (gpc = 0; gpc < gr->gpc_nr; gpc++) {
num_tpc_mask = gpc_tpc_mask[gpc];
if ((gpc == disable_gpc) && num_tpc_mask & BIT(disable_tpc)) {
/* Safety check if a TPC is removed twice */
if (WARN_ON(tpc_removed_gpc))
goto done;
/* Remove logical TPC from set */
num_tpc_mask &= ~BIT(disable_tpc);
tpc_removed_gpc = true;
}
/* track balancing of tpcs across gpcs */
num_tpc_gpc[gpc] = hweight32(num_tpc_mask);
average_tpcs += num_tpc_gpc[gpc];
/* save the maximum numer of gpcs */
max_tpc_gpc = num_tpc_gpc[gpc] > max_tpc_gpc ? num_tpc_gpc[gpc] : max_tpc_gpc;
/*
* Calculate ratio between TPC count and post-FS and post-SCG
*
* ratio represents relative throughput of the GPC
*/
scg_gpc_pix_perf = scale_factor * num_tpc_gpc[gpc] / gr->tpc_nr[gpc];
if (min_scg_gpc_pix_perf > scg_gpc_pix_perf)
min_scg_gpc_pix_perf = scg_gpc_pix_perf;
/* Calculate # of surviving PES */
for (pes = 0; pes < gr->ppc_nr[gpc]; pes++) {
/* Count the number of TPC on the set */
num_tpc_mask = gr->ppc_tpc_mask[gpc][pes] & gpc_tpc_mask[gpc];
if ((gpc == disable_gpc) && (num_tpc_mask & BIT(disable_tpc))) {
if (WARN_ON(tpc_removed_pes))
goto done;
num_tpc_mask &= ~BIT(disable_tpc);
tpc_removed_pes = true;
}
if (hweight32(num_tpc_mask))
scg_num_pes++;
}
}
if (WARN_ON(!tpc_removed_gpc || !tpc_removed_pes))
goto done;
if (max_tpc_gpc == 0) {
*perf = 0;
goto done_ok;
}
/* Now calculate perf */
scg_world_perf = (scale_factor * scg_num_pes) / gr->ppc_total;
deviation = 0;
average_tpcs = scale_factor * average_tpcs / gr->gpc_nr;
for (gpc = 0; gpc < gr->gpc_nr; gpc++) {
diff = average_tpcs - scale_factor * num_tpc_gpc[gpc];
if (diff < 0)
diff = -diff;
deviation += diff;
}
deviation /= gr->gpc_nr;
norm_tpc_deviation = deviation / max_tpc_gpc;
tpc_balance = scale_factor - norm_tpc_deviation;
if ((tpc_balance > scale_factor) ||
(scg_world_perf > scale_factor) ||
(min_scg_gpc_pix_perf > scale_factor) ||
(norm_tpc_deviation > scale_factor)) {
WARN_ON(1);
goto done;
}
*perf = (pix_scale * min_scg_gpc_pix_perf) +
(world_scale * scg_world_perf) +
(tpc_scale * tpc_balance);
done_ok:
ret = 0;
done:
kfree(num_tpc_gpc);
return ret;
}
int
gv100_gr_oneinit_sm_id(struct gf100_gr *gr)
{
unsigned long *gpc_tpc_mask;
u32 *tpc_table, *gpc_table;
u32 gpc, tpc, pes, gtpc;
int perf, maxperf, ret = 0;
gpc_tpc_mask = kcalloc(gr->gpc_nr, sizeof(*gpc_tpc_mask), GFP_KERNEL);
gpc_table = kcalloc(gr->tpc_total, sizeof(*gpc_table), GFP_KERNEL);
tpc_table = kcalloc(gr->tpc_total, sizeof(*tpc_table), GFP_KERNEL);
if (!gpc_table || !tpc_table || !gpc_tpc_mask) {
ret = -ENOMEM;
goto done;
}
for (gpc = 0; gpc < gr->gpc_nr; gpc++) {
for (pes = 0; pes < gr->ppc_nr[gpc]; pes++)
gpc_tpc_mask[gpc] |= gr->ppc_tpc_mask[gpc][pes];
}
for (gtpc = 0; gtpc < gr->tpc_total; gtpc++) {
for (maxperf = -1, gpc = 0; gpc < gr->gpc_nr; gpc++) {
for_each_set_bit(tpc, &gpc_tpc_mask[gpc], gr->tpc_nr[gpc]) {
ret = gv100_gr_scg_estimate_perf(gr, gpc_tpc_mask, gpc, tpc, &perf);
if (ret)
goto done;
/* nvgpu does ">=" here, but this gets us RM's numbers. */
if (perf > maxperf) {
maxperf = perf;
gpc_table[gtpc] = gpc;
tpc_table[gtpc] = tpc;
}
}
}
gpc_tpc_mask[gpc_table[gtpc]] &= ~BIT(tpc_table[gtpc]);
}
/*TODO: build table for sm_per_tpc != 1, don't use yet, but might need later? */
for (gtpc = 0; gtpc < gr->tpc_total; gtpc++) {
gr->sm[gtpc].gpc = gpc_table[gtpc];
gr->sm[gtpc].tpc = tpc_table[gtpc];
gr->sm_nr++;
}
done:
kfree(gpc_table);
kfree(tpc_table);
kfree(gpc_tpc_mask);
return ret;
}
static const struct gf100_gr_func
gv100_gr = {
.oneinit_tiles = gm200_gr_oneinit_tiles,
.oneinit_sm_id = gv100_gr_oneinit_sm_id,
.init = gf100_gr_init,
.init_419bd8 = gv100_gr_init_419bd8,
.init_gpc_mmu = gm200_gr_init_gpc_mmu,
.init_vsc_stream_master = gk104_gr_init_vsc_stream_master,
.init_zcull = gf117_gr_init_zcull,
.init_num_active_ltcs = gm200_gr_init_num_active_ltcs,
.init_rop_active_fbps = gp100_gr_init_rop_active_fbps,
.init_swdx_pes_mask = gp102_gr_init_swdx_pes_mask,
.init_fecs_exceptions = gp100_gr_init_fecs_exceptions,
.init_ds_hww_esr_2 = gm200_gr_init_ds_hww_esr_2,
.init_sked_hww_esr = gk104_gr_init_sked_hww_esr,
.init_ppc_exceptions = gk104_gr_init_ppc_exceptions,
.init_504430 = gv100_gr_init_504430,
.init_shader_exceptions = gv100_gr_init_shader_exceptions,
.init_rop_exceptions = gf100_gr_init_rop_exceptions,
.init_exception2 = gf100_gr_init_exception2,
.init_4188a4 = gv100_gr_init_4188a4,
.trap_mp = gv100_gr_trap_mp,
.fecs.reset = gf100_gr_fecs_reset,
.rops = gm200_gr_rops,
.gpc_nr = 6,
.tpc_nr = 7,
.ppc_nr = 3,
.grctx = &gv100_grctx,
.zbc = &gp102_gr_zbc,
.sclass = {
{ -1, -1, FERMI_TWOD_A },
{ -1, -1, KEPLER_INLINE_TO_MEMORY_B },
{ -1, -1, VOLTA_A, &gf100_fermi },
{ -1, -1, VOLTA_COMPUTE_A },
{}
}
};
MODULE_FIRMWARE("nvidia/gv100/gr/fecs_bl.bin");
MODULE_FIRMWARE("nvidia/gv100/gr/fecs_inst.bin");
MODULE_FIRMWARE("nvidia/gv100/gr/fecs_data.bin");
MODULE_FIRMWARE("nvidia/gv100/gr/fecs_sig.bin");
MODULE_FIRMWARE("nvidia/gv100/gr/gpccs_bl.bin");
MODULE_FIRMWARE("nvidia/gv100/gr/gpccs_inst.bin");
MODULE_FIRMWARE("nvidia/gv100/gr/gpccs_data.bin");
MODULE_FIRMWARE("nvidia/gv100/gr/gpccs_sig.bin");
MODULE_FIRMWARE("nvidia/gv100/gr/sw_ctx.bin");
MODULE_FIRMWARE("nvidia/gv100/gr/sw_nonctx.bin");
MODULE_FIRMWARE("nvidia/gv100/gr/sw_bundle_init.bin");
MODULE_FIRMWARE("nvidia/gv100/gr/sw_method_init.bin");
static const struct gf100_gr_fwif
gv100_gr_fwif[] = {
{ 0, gm200_gr_load, &gv100_gr, &gp108_gr_fecs_acr, &gp108_gr_gpccs_acr },
{ -1, gm200_gr_nofw },
{}
};
int
gv100_gr_new(struct nvkm_device *device, enum nvkm_subdev_type type, int inst, struct nvkm_gr **pgr)
{
return gf100_gr_new_(gv100_gr_fwif, device, type, inst, pgr);
}